Liver transplantation is the treatment of choice for end-stage liver disease (ESLD), such as that from alcoholic cirrhosis or viral hepatitis. The demand for donor livers is increasing, outstripping the available supply and creating a long waiting list of patients with ESLD, many of whom die while on the waiting list. Increasingly, living donor liver transplantation (LDLT) is seen as a viable alternative to deceased donor liver transplantation to increase the supply of available donor livers. Studies of LDLT have shown acceptable results in terms of short-term survival and graft outcomes compared with deceased donor liver transplantation with full size organ (1) and long-term donor quality of life (2). In the nine-center adult-to-adult living donor liver transplantation cohort study (A2ALL), one-year graft survival was 81% (3) and most living donors maintained an above average health-related quality of life at 11 years postoperatively (4). In addition, recent advancements in surgical techniques and presurgical evaluation and preparation have continued to improve outcomes (5).

LDLT is a major surgical undertaking. The healthy donor is subjected to a hemihepatectomy, a surgical procedure with significant risks, without apparent medical benefits to the donor. Studies have shown that living liver donors in the United States have a perioperative risk of mortality of 1.7 per 1000 donors (6), from causes including sepsis and acute liver failure. In addition, numerous other complications can occur after donation, including biliary leaks or stricture, and vascular thrombosis. Thus, careful evaluation and selection of the donors is mandatory to minimize the risks to the donors, as well as to maximize the benefits to the recipients. Preoperative imaging (computed tomography, CT; magnetic resonance imaging, MRI) plays a key role in the evaluation of donors by depicting biliary and hepatic vascular anatomy, liver volumetrics, and parenchymal disease, information that is key to safe LDLT. This review provides an overview of key surgical considerations in LDLT that the radiologists must be aware of, and imaging findings on CT and MRI that the radiologists must convey to the surgeons when evaluating potential donors for LDLT.

Types of LDLT and surgical considerations

The three most commonly harvested grafts for LDLT are left lateral segment, left lobe, and right lobe grafts. The left lateral segment graft, which includes Couinaud’s segments II and III, is usually used for pediatric recipients or small size recipients. Most of the adult recipients need either a left or a right lobe graft. Whether a left or right lobe graft should be harvested from the donors depends on estimated graft and donor remnant liver volume, as well as biliary and vascular anatomy. Detailed preoperative assessment of the potential donor liver volumetrics, biliary and vascular anatomy, and liver parenchyma is vital to minimize risks to the donors and maximize benefits to the recipients. Computed tomography (CT) and magnetic resonance imaging (MRI) are currently the imaging modalities of choice in the preoperative evaluation of potential donors. This review provides an overview of key surgical considerations in LDLT that the radiologists must be aware of, and imaging findings on CT and MRI that the radiologists must convey to the surgeons when evaluating potential donors for LDLT.
ments II and III, is usually used for pediatric recipients or small size recipients. Most of the adult recipients need either a left or a right lobe graft. Whether a left or right lobe graft should be harvested from the donors depends on estimated graft and donor remnant liver volume, as well as biliary and vascular anatomy. Typically, the hemihepatectomy plane is 1 cm to the right of the middle hepatic vein (MHV), along Cantlie’s line, running from the gallbladder fossa to the inferior vena cava (IVC) (Fig. 1).

Left hepatectomy (segments II–IV) in the donors usually involves harvesting of the MHV to obtain a reasonably large graft volume and to maintain good graft viability. Right hepatectomy (segments V–VIII) can be performed in the donors if the donor’s left lobe volume is greater than 30% of total hepatic volume. Right lobe grafts are often harvested without the MHV trunk. Such grafts are at increased risk for congestion of the right paramedian sector, especially if there are large branches draining the right lobe of the liver into the MHV, with subsequent graft dysfunction. To minimize such complications, MHV drainage to recipient IVC may be reconstructed with vascular grafts (7). The caudate lobe usually remains in the donor because it directly drains into the IVC.

Living liver donor imaging

Preoperative imaging provides noninvasive assessment of liver anatomy and possible pathology in potential donors in order to identify those not suitable for donation and to allow for preoperative planning. In a recent retrospective study of 159 liver donor candidates, 61 (38%) were excluded based on CT imaging findings. Of these patients, 66% were excluded due to inadequate liver volume, 23% were excluded due to vascular or biliary variants, and 8% were excluded due to steatosis (8).

CT and MRI are the main modalities for the preoperative assessment of potential living liver donors. The CT protocol for donors at our institution includes unenhanced CT followed by multiphase contrast-enhanced CT. For the unenhanced CT, a single slice of 5 mm through the mid-liver and spleen is obtained to assess for fatty liver. After intravenous injection of 120–150 mL of iodinated contrast material with a concentration of 350 mg iodine/mL at a rate of 4–5 mL per second, 1.25 mm slice thickness arterial and portal venous phase CT of the abdomen is acquired next to evaluate for hepatic vasculature and parenchyma. CT cholangiography can be performed to assess biliary anatomy. First, to reduce the risk of allergic reaction, 25 mg of diphenhydramine (Benadryl; Pfizer) is administered intravenously. The cholangiographic contrast, 20 mL of 52% iodipamide meglumin (Cholografin; Bracco Diagnostics), is diluted in 80 mL of normal saline and then infused intravenously over 30–60 minutes. Fifteen minutes after completion of Cholografin infusion, CT cholangiogram is acquired through the liver at a 1.25 mm slice thickness. Source images are then post-processed for multiplanar reformation and three-dimensional (3D) reconstruction with maximum intensity projection and volume rendering.

MRI has been studied as a sole preoperative imaging modality for potential living liver donor evaluation. In our practice, however, MRI is used as a complementary tool for the evaluation of biliary anatomy when the CT cholangiographic contrast agent, iodipamide meglumin, is not available. To assess biliary anatomy, we acquire both respiratory-trigger 3D T2-weighted magnetic resonance cholangiopancreatography (MRCP) and T1-weighted MRCP at multiple delay time points (15 to 30 minutes delay) following intravenous injection of the hepatobiliary MRI contrast agent Gadoxetate disodium (Eovist, Bayer). The T1-weighted MRCP sequences are gradient recalled echo (GRE) images and performed in a breath-hold.

In the following sections, we will describe the role of CT and MRI in the assessment of liver volumetrics, biliary and hepatic vascular anatomy, and liver parenchyma in potential living liver donors. The impact of the imaging findings on donor selection and surgical planning will be reviewed.

Liver volumetrics

Liver volumetrics is a key component of potential living liver donor evaluation because inadequate liver volume is the most common reason for donor exclusion based on imaging, and the decision to perform left versus right lobe harvesting largely depends on donor liver volume. For the donors, liver remnant volume of 30%–40% of the total liver volume is required for donor survival (7). For the recipients, a graft-to-recipient weight ratio (GRWR) of at least 0.8% or a graft-to-standard liver volume ratio of at least 40% is needed for adequate graft function and to avoid small-for-size syndrome (SFSS) in the recipients (9). SFSS is defined as dysfunction or nonfunction of the graft, characterized by signs of hepatic dysfunction such as cholestasis, ascites, coagulopathy, and encephalopathy, during the first postoperative week after exclusion of other causes. The pathogenesis of SFSS is related to a graft that is too small to meet the demands of the transplant recipient, likely exacerbated by factors such as portal...
hyperperfusion, poor hepatic venous drainage, steatosis, and poor condition of the patient (high MELD score) (10).

In most patients, the right lobe of the liver is larger and right lobe graft is at much lower risks of SFSS in the transplant recipient. However, right lobe donation is associated with greater donor morbidity and mortality (11). Therefore left lobe donation is preferred for the donors if SFSS can be avoided in the recipient. Additional benefits of using the left lobe include more predictable anatomy and easier anastomosis of the biliary duct, portal venous system, and hepatic venous system (12). A recent study showed that the creation of a hemiportocaval shunt can effectively lower portocaval gradient pressures and may prevent development of SFSS in left lobe grafts with GRWR <0.8% (13).

In contrast, large-for-size grafts generally do not pose as many problems as small-for-size grafts. Problems caused by large-for-size grafts are related to compression in a relatively small abdominal cavity resulting in inadequate blood supply to the graft.

Both CT and MRI can be used to calculate liver volumetrics (Fig. 2). Liver volumes can be determined by manually tracing the contours of the entire liver and the intended graft excluding the large vessels, major fissures and the gallbladder fossa using contiguous CT or MRI images. Recently, automated and semi-automated methods have been put forward that have shown comparable results to the manual methods, and with increased efficiency (14). These automated liver segmentation schemes are based on thresholding, feature analysis, and region growing. When compared with manual methods, the automated methods require substantially less user time, and the liver volumetrics obtained show high concordance with that obtained from manual tracing. Several commercial software packages are available for such liver volumetric calculation. Both CT and MRI have shown equivalent accuracy for liver volume estimation (14). Both modalities, however, tend to overestimate the actual hepatic volume when compared with intra-operative volumetric evaluation, probably due to intra-operative loss of blood (15). Therefore, some authors have proposed the use of conversion factors and formulas to standardize imaging volumetrics (16).

Biliary imaging

Several schemes, including the Huang classification (17), have been used to classify biliary anatomy. In conventional biliary anatomy, the right posterior hepatic duct (RPHD, draining segments VI and VII) combines with the right anterior hepatic duct (RAHD, draining segments V and VIII) before joining the left hepatic duct (LHD, draining segments II, III, and IV) to become the common hepatic duct (CHD). The ducts draining the caudate lobe may join the left or right hepatic ducts. The cystic duct drains into the CHD below the confluence of right and left hepatic ducts to form the common bile duct. Conventional biliary anatomy is seen approximately in only 55% of people (18). Variant biliary anatomy is more common in the right biliary tree (Fig. 3). In 13%–19% of individuals, the RPHD inserts on the LHD; in 5% of individuals, the RPHD inserts on the CHD; in 11% of individuals, the RAHD, RPHD, and LHD trifurcate from the CHD (19). Biliary complications, such as bile leak and anatomic stenosis, are one of the most common causes of morbidity and mortality in LDLT, occurring in the range of 15%–30% (20, 21). Biliary complications are more common when more than one biliary anastomosis is required. Variant biliary anatomy involving right lobe grafts frequently neces-
sities more than one biliary anastomosis. Therefore accurate preoperative imaging assessment of biliary anatomy is critical for surgical planning and for predicting the risks of biliary complication.

CT cholangiography (CTC) with the cholangiographic contrast agent, iodipamide meglumin, provides an excellent, safe, and minimally invasive option to assess biliary anatomy, risk stratify living liver donors for biliary complications, and aid in preoperative planning. Several studies have shown that CTC enables good-to-excellent visualization of second-order biliary branches (22, 23). Fig. 4 shows examples of CTC depicting variant biliary anatomy in potential living liver donors. Additionally, CTC has been shown to be able to predict biliary complication in the recipients of LDLT. In patients with variant anatomy, the risk of developing biliary complications is much higher if the distance to the corresponding hepatic artery from the second-order bile duct is greater than 1 cm (24). One drawback of CTC is the risk of contrast reactions; however, these occurred at a rate similar to that of conventional contrast-enhanced CT (1%–3%) (25), and no major events were noted, likely reflecting the slower infusion rate of CTC and pre-medication with diphenhydramine (25). Compared with MRCP (discussed below), CTC has higher spatial resolution, shorter scan time, and is less prone to artifact, allowing more consistent visualization of biliary anatomy (26, 27). The use of CTC for LDLT evaluation, however, has not been widespread as the cholangiographic contrast agent iodipamide meglumin is limited in availability.

MRCP is frequently used to depict biliary anatomy in the preoperative evaluation of living liver donors and has shown good accuracy (28). For example, a recent study showed that MRCP has an overall accuracy rate of 91.6%, with 84.9% sensitivity, 96% specificity, 88.2% positive predictive value, and 94.7% negative predictive value, when compared with intraoperative cholangiogram (28). An advantage of MRCP over CTC is its lack of ionizing radiation; an important consideration for living liver donors who tend to be relatively young and may receive multiple follow-up scans. A key sequence for MRI biliary evaluation is a high quality respiratory-triggered thin slice 3D T2-weighted MRCP sequence. In a recent study of 20 patients, 3D T2-weighted MRCP accurately predicted biliary anatomy in 18 patients, with 100% positive predictive value and specificity for normal biliary anatomy (29). Fig. 5a shows an example of variant biliary anatomy depicted on a T2-weighted MRCP image. Another key MRI sequence for biliary evaluation is a T1-weighted MRCP following intravenous administration of hepatobiliary contrast agents, such as gadobenate disodium (Eovist, Bayer). Typically, 50% of the gadobenate disodium is taken up by hepatocytes to be excreted into the bile, and the biliary anatomy is best depicted between 20–120 min after injection (30). Fig. 5b shows example of biliary variant depicted on 20 minutes delay T1-weighted MRCP following gadobenate disodium administration. Various sequence modifications can optimize results. In particular, an increased flip angle can improve contrast between the biliary tree, radial k-space sampling can minimize motion artifacts, and free-breathing acquisition can improve signal-to-noise ratio (31). In addition, intravenous low-dose morphine has been shown to distend and improve bile duct visualization in gadobenate disodium enhanced MRCP (32).

Hepatic vascular imaging

Hepatic arterial anatomy can be classified using the Michel classification (33). In conventional hepatic arterial anatomy, the right and left hepatic arteries (RHA, LHA) arise...
Conventional hepatic venous anatomy consists of the right (RHV; draining segments V-VII), middle (MHV; draining segments IV, V, and VIII), and left (LHV; draining segments II and III) hepatic veins draining separately into the IVC. In 60% of patients, the MHV and LHV join before draining into the IVC (34). Segment I, or the caudate lobe, usually has a separate drainage into the IVC. Detailed hepatic venous mapping is important as the plane of donor hepatectomies is determined by the anatomy of the hepatic veins. Typically, hemihepatectomies are performed along the Cantlie’s line along the gallbladder fossa, which lies 1 cm to the right of the MHV (Fig. 1). In general, any vessels that run through this transection plane are prone to injury during surgery. For example, in right donor hepatectomy, the presence of large branching veins draining into MHV from the right lobe (Fig. 9) may necessitate alteration of the transection plane, and/or separate anastomosis of the venous branches to IVC to avoid venous congestion (37). It is also important to identify any accessory inferior right hepatic veins that drain directly into the IVC. Accessory hepatic veins with a diameter of 5 mm or more will require separate anastomoses to the IVC to prevent hepatic congestions. A distance of 4 cm or more in the coronal plane between the accessory vein and the confluence of the hepatic veins (Fig. 10) may make it difficult to surgically implant both veins with a single occluding clamp on the recipient’s IVC (38).

For potential living liver donor vascular evaluation, CT angiography (CTA) is the most commonly used modality with comparable results to, and without the invasiveness, cost, or radiation exposure of traditional angiography. Its high spatial resolution and excellent contrast between vessels and surrounding parenchyma allow detection of a wide range of vascular variants that may affect surgical planning or are relative contraindications to LDLT (39). Magnetic resonance angiography using a gadolinium-based agent with bolus tracking has also been used extensively for vascular imaging. It is safe, noninvasive, and radiation-free. However, it has longer scan time and is more prone to motion artifacts (19), and therefore small vessels may not be consistently visualized on magnetic resonance angiography.

Liver parenchyma imaging

Diffuse parenchymal liver disease poses risks for both the donor and recipient in
LDLT. In particular, nonalcoholic fatty liver disease is the most common parenchymal pathology found in potential living liver donors. There is a higher prevalence of nonalcoholic fatty liver disease among men, and patients with obesity, type 2 diabetes, and hyperlipidemia (40). A recent study showed that the presence of more than 30% of macrovesicular steatosis was an independent risk factor for impaired one-year graft survival (41). Therefore detection of significant fatty liver is a critical component of potential living liver donor evaluation.

CT and MRI are the most commonly used imaging modalities for noninvasive detection of fatty liver (42). Unenhanced CT is a simple method to estimate the degree of fatty liver (Fig. 11). Studies have shown that the finding of liver attenuation more than 10 Hounsfield units (HUs) lower than that of the spleen has 88%–95% sensitivity and 90%–99% specificity for the diagnosis of 30% or greater steatosis in the liver (43). In addition, an absolute HU of 40 or less has been reported to represent at least 30% fatty liver (44). A hepatic-to-splenic attenuation ratio of 0.8 or less has been shown to have 100% specificity for 30% or greater fatty liver (45). Administration of contrast interferes with the CT method of fatty liver quantification. Dual-echo chemical shift MRI has also been used extensively in the clinics to detect the presence of fatty liver (46). Loss of signal on out-of-phase images suggests fatty liver. A previous study showed that normal and fatty liver were correctly differentiated with chemical shift out-of-phase and in-phase imaging in 68%–93% of cases (47). Proton density fat fraction calculation is a recently described chemical-shift-based water and fat separation technique (iterative decomposition of water and fat with echo asymmetry and least squares estimation, IDEAL-IQ) that can be completed in a breath-hold and allows for simple calculation of liver fat fraction (Fig. 12). The advantage of this technique is that it provides correction of factors that influence MRI signal intensity, such as T1 bias, and T2* decay. This technique has been shown to provide accurate quantification of hepatic fat content in potential living liver donors (48).
Conflict of interest disclosure
The authors declared no conflicts of interest.

References
33. Covey AM, Brody LA, Maluccio MA, Getrajdman GI, Brown KT. Variant hepatic arterial anatomy revisited: digital subtraction angiography performed in 600 patients. Radiology 2002; 224:542–547. [CrossRef]


