Chest Imaging - Original Article

The reliability of low-dose chest CT for the initial imaging of COVID-19: comparison of structured findings, categorical diagnoses and dose levels

10.5152/dir.2021.20802

  • Hakkı Muammer Karakaş
  • Gülşah Yıldırım
  • Esin Derin Çiçek

Received Date: 01.10.2020 Accepted Date: 12.03.2021 Diagn Interv Radiol 2021;27(5):607-614

PURPOSE

The widespread use of computed tomography (CT) in COVID-19 may cause adverse biological effects. Many recommend to minimize radiation dose while maintaining diagnostic quality. This study was designed to evaluate the difference between findings of COVID-19 pneumonia on standard and low-dose protocols to provide data on the utility of the latter during initial imaging of COVID-19.

METHODS

Patients suspected of having COVID-19 were scanned with a 128-slices scanner using two consecutive protocols in the same session (standard-dose scan: 120 kV and 300 mA; low-dose scan: 80 kV and 40 mA). Dose data acquisition and analysis was performed using an automated software. High and low-dose examinations were anonymized, shuffled and read by two radiologist with consensus according to a highly structured reporting format that was primarily based on the consensus statement of the RSNA. Accordingly, 8 typical, 2 indeterminate, and 7 atypical findings were investigated. Cases were then assigned to one of the categories: (i) Cov19Typ, typical COVID-19; (ii) Cov19Ind, indeterminate COVID-19; (iii) Cov19Aty, atypical COVID-19; (iv) Cov19Neg, not COVID-19. McNemar test was used to analyze the number of disagreements between standard and low-dose scans regarding paired proportions of structured findings. Inter- test reliability was tested using kappa coefficient.

RESULTS

The study included 740 patients with a mean age of 44.05±16.59 years. The median (minimum–maximum) dose level for standard protocol was 189.98 mGy•cm (98.20–493.54 mGy•cm) and for low-dose protocol was 15.59 mGy•cm (11.59–32.37 mGy•cm) differing by -80 and -254 mGy•cm from pan-European diagnostic reference levels. Only two findings for typical, one finding for indeterminate, and three findings for atypical categories were statistically similar (p > 0.05). The difference in other categories resulted in significantly different final diagnosis for COVID-19 (p < 0.001). Overall, 626 patients received matching diagnoses with the two protocols. According to intertest reliability analysis, kappa value was found to be 0.669 (p < 0.001) to indicate substantial match. CT with standard-dose had a sensitivity of 94% and a specificity of 72%, while CT with low-dose had a sensitivity of 90% and a specificity of 81%.

CONCLUSION

Low kV and mA scans, as used in this study according to scanner manufacturer's global recommendations, may significantly lower exposure levels. However, these scans are significantly inferior in the detection of several individual CT findings of COVID-19 pneumonia, particularly the ones with GGO. Therefore, they should not be used as the protocol of choice in the initial imaging of COVID-19 patients during which higher sensitivity is required.