ABSTRACT
PURPOSE
Earlier imaging techniques for coronary artery disease (CAD) focused primarily on either morphological or functional assessment of CAD. However, dual-energy computed tomography (DECT) can be used to assess myocardial blood supply both morphologically and functionally. We aimed to evaluate the diagnostic accuracy of DECT in detecting morphological and functional components of CAD, using invasive coronary angiography (ICA) and single photon emission computed tomography (SPECT) as reference standards.
METHODS
Twenty-five patients with known or suspicious CAD and scheduled for ICA were investigated by DECT and SPECT. DECT was performed during the resting state using retrospective electrocardiography (ECG) gating. CT coronary angiography and perfusion images were generated from the same raw data. All patients were evaluated for significant stenosis (≥50%) on both ICA and DECT coronary angiography, and for myocardial perfusion defects on SPECT and DECT perfusion. Comparison was done between ICA and DECT coronary angiography for detection of significant stenosis and between SPECT and DECT perfusion for detecting myocardial perfusion defects.
RESULTS
Using ICA as reference standard, sensitivity, specificity, and accuracy of DECT coronary angiography in detecting ≥50% stenosis of coronary artery lumen were 81.6%, 97.8%, and 95.0%, respectively, by segment-based analysis and 92.1%, 96.1%, and 93.7%, respectively, by vessel-based analysis. Using SPECT as the reference standard, the sensitivity, specificity, and accuracy of DECT perfusion in detecting myocardial perfusion defects were 70.4%, 86.4%, and 80.6%, respectively, on per-segment analysis and 90.7%, 66.6%, and 84.7%, respectively, on per-territorial basis.
CONCLUSION
DECT accurately detected coronary artery stenosis and myocardial ischemia using ICA and SPECT as reference standards. In the same scan, DECT can accurately provide integrative imaging of coronary artery morphology and myocardial perfusion.