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lung cancer is the second most common primary malignant tumor, representing about 
11.4% of cancer diagnoses in the world in 2020, and it is the leading cause (about 18%, 

i.e., 1.8 million) of cancer-related deaths worldwide,1 of which distant metastases is the fore-
most reason.2 The brain is the most commonly involved metastatic organ in patients with 
lung cancer.3 as the most common primary cancer of brain metastasis (BM),4,5 lung cancer 
accounts for more than 50% of BMs.6 among the primary tumors with brain metastasis at 
the initial diagnosis (i.e., synchronous brain metastasis, SBM), lung cancer accounted for 
75.4% in a study on 2682 synchronous cases,7 and 78% in another report.8 about 10%-20% 
of non-small cell lung cancer (nSClC) patients had BM at the initial diagnosis, and approxi-
mately 40% developed BM which was not found at diagnosis and revealed during the clin-
ical course (i.e., metachronous brain metastasis, MBM) throughout the course of disease, 
with poor prognosis of about 3-6 months of overall survival.9-11 SBMs were detected more 
frequently in small cell lung cancer (SClC) and were diagnosed in about 24% of patients, 
and the accumulated occurrence of BM was around 50% at 2 years in SClC.12 

PURPOSE 
We aimed to assess the feasibility of radiomics analysis based on non-contrast-enhanced thorac-
ic CT images in predicting synchronous brain metastasis (SBM) in lung cancer patients at initial 
diagnosis. 

METHODS
This retrospective study enrolled 371 lung cancer patients (with SBM n=147, without SBM n=224) 
confirmed by histopathology. Patients were allocated to the training set (n=258) and testing set 
(n=113). The optimal radiomics features were selected by using the least absolute shrinkage and 
selection operator (laSSO) algorithm. The radiomics, clinicoradiologic, and combined models 
were developed to predict SBM using multivariable logistic regression. Then the discrimination 
ability of the models was assessed. Furthermore, the prediction performance of the abovemen-
tioned three models for oligometastatic (1-3 lesions) or multiple (>3 lesions) brain metastases in 
SBM, metachronous brain metastasis (MBM), and total (SBM and MBM) groups were investigated.

RESULTS
Six radiomics features and two clinicoradiologic characteristics were chosen for predicting SBM. 
Both the radiomics model (area under the receiver operating characteristic curve [aUC] = 0.870 
and 0.824 in the training and testing sets, respectively) and the combined model (aUC = 0.912 
and 0.859, respectively) presented better predictive ability for SBM than the clinicoradiologic 
model (aUC = 0.712 and 0.692, respectively). The decision curve analysis (DCa) demonstrated 
the clinical usefulness of the radiomics-based models. The radiomics model can also be used to 
predict oligometastatic or multiple brain metastases in SBM, MBM, and total groups (P = .045, P 
= .022, and P = .030, respectively).

CONCLUSION
The radiomics model and the combined model can be used as valuable imaging markers for 
predicting patients at high risk of SBM at the initial diagnosis of lung cancer. Furthermore, the 
radiomics model can also be utilized as an indicator for identifying oligometastatic or multiple 
brain metastases.
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It is crucially important to differentiate 
SBM from non-SBM because of different 
treatment strategies and prognoses. But 
some patients with SBM complained of 
mild or no clinical symptoms of the central 
nervous system,8,13 therefore, further inves-
tigation of the brain in these patients were 
often delayed or overlooked. although the 
guidelines of the 8th edition of the ameri-
can Joint Committee on Cancer (aJCC) can-
cer staging recommend cranial MRI exam-
ination in the initial assessment of stages 
III-IV nSClC,14 and the national Comprehen-
sive Cancer network (nCCn) recommend 
staging cranial MRI in the initial assessment 
of stages II-IV nSClC.15 It is a tremendous 
burden on the healthcare system and econ-
omy to screen all potential SBM patients of 
lung cancer. It may be infeasible to perform 
MRI for all patients in resource-limited in-
stitutions, especially in underdeveloped 
countries. Furthermore, not all patients can 
perform MRI examination because of con-
traindications for MRI or contrast medium.

Based on its excellent density and spa-
tial resolution, computed tomography (CT) 
has become the first choice diagnostic tool 
for lung disease. But the differential ability 
based on conventional radiological charac-
teristics of thoracic CT is limited because of 
overlapping of these characteristics in lung 
cancer patients with and without SBM, and 
imperceptible differences of some potential 
features are impossible to be identified by 
naked eye. as an emerging technology for 
image analysis, radiomics can transform 
medical images into quantitative data non-
invasively, and reflect the heterogeneity of 
tumors indirectly.16 nowadays, radiomics is 
used for predicting therapeutic effects, his-
tological subtypes, and distant metastasis 
in lung cancer.17-19 We hypothesized that the 

micro-environment of lung cancer changes 
in patients who have SBM, and radiomics 
analysis can be used to potentially comple-
ment recommended staging brain MRI ex-
amination by aJCC and nCCn. It can help to 
screen and improve personalized treatment 
options with thoracic CT images of lung 
cancer noninvasively and without addition-
al costs. at the same time, number of BMs 
was also a significant prognostic factor for 
lung cancer patients.20 Oligometastatic (1-3 
lesions) or multiple (>3 lesions) BMs mean 
different therapeutic options and progno-
ses. Surgical resection or stereotactic radio-
surgery was recommended to well-selected 
patients with oligometastatic BMs.9,21 

In this article, we aim to evaluate whether 
the non-contrast-enhanced thoracic CT ra-
diomics-based models can predict SBM in 
patients with lung cancer at initial diagno-
sis, and to assess whether these models can 
be used to predict oligometastatic or multi-
ple BMs for further therapeutic selection in 
clinical practice. 

Methods
Patients

This retrospective research was granted 
by the Institutional Review Board of our 
institution (no. 2020-188), who did not re-
quire informed consent of participants. In 
total, 681 cases with histopathologically 
confirmed lung cancer by biopsy or surgi-
cal removal from October 2012 to august 
2020 were collected. Patients who under-
went pretreatment chest CT and brain MRI 
examinations were recruited. The inclusion 
criteria were: 1) all cases confirmed with 
definite histopathological reports; 2) tho-
racic CT scans performed before biopsy or 
surgery; 3) plain and contrast-enhanced 
head MRI examinations performed within 2 
weeks of thoracic CT scan. The exclusion cri-
teria were: 1) biopsy or therapeutic history 
before thoracic CT examination; 2) unavail-
able pathological records or image data; 
3) unsatisfactory resolution of thoracic CT 
images or lesions smaller than 1 cm, which 
did not allow for accurate delineation of 
the tumor and extraction of features. SBMs 
were diagnosed by pathology (neurosurgi-
cal resection, n=28; biopsy, n=11) or typical 
radiological features and follow-up exam-
ination (the suspicious brain metastasis pro-
gressed in number or size or decreased after 
chemotherapy or targeted therapy). The pa-
tients without SBMs were diagnosed by no 
evidence of BM through MRI examinations 

of the head or no suspicious BM during fol-
low-up. Finally, 371 cases, 147 with SBM and 
224 without SBM, were included. all 371 cas-
es were allocated to the training set (n=258) 
and testing set (n=113) randomly, keeping 
the distribution of SBM and non-SBM cases 
in two sets consistent. The workflow of this 
study is shown in Figure 1.

Image acquisition
all cases had chest scan with a dual-source 

64-multidetector CT (MDCT) (Somatom Defi-
nition Flash, Siemens healthineers) or a 64-
MDCT (Brilliance, Philips healthcare) scanner. 
The CT protocol was as follows: tube current 
140-250 mas, tube voltage 120 kVp; slice 
thickness 5 mm; reconstruction section thick-
ness 1.25 mm. Contrast-enhanced CT scans 
were performed after injection of iodinated 
contrast agent (1.0 ml/kg iohexol injection, 
300 mg/ml, Omnipaque, ge healthcare) at a 
rate of 3.5 ml/s via a pump injector through 
the antecubital vein. Some peripheral lung 
cancer patients (n=35) with typical CT charac-
teristics were performed with only plain scans 
because there were no difficulties to confirm 
the boundary of lesions. all patients also un-
derwent plain and contrast-enhanced brain 
MRI scan at a 3.0 T scanner (Signa hDXt, ge 
healthcare) within 2 weeks of chest CT scan. 
Plain and contrast-enhanced brain MRI were 
performed as a routine follow-up examina-
tion every 3 months or when patients had 
neurologic symptoms. The detailed parame-
ters of brain MRI are described in Supplemen-
tary Material 1.

Tumor segmentation, features extraction, 
selection and radiomics model building

ITK-SnaP software (version 3.6.0; www.
itksnap.org) was utilized to segment vol-
ume of interest (VOI) from the lung lesions. 
To avoid the influence of adjacent normal 
tissue or secondary changes (i.e., atelecta-
sis or postobstructive pneumonitis), con-
touring was delineated manually around 
the lesions carefully slice by slice in the 
cross-sectional images of plain CT by two 
board-certified radiologists (reader 1 and 
2, with 5 and 10 years of experience in lung 
disease, respectively), using contrast-en-
hanced images as references. Reader 1 
performed VOI segmentation of lesions in 
all 371 patients. after one month washout 
period to eliminate recall bias, reader 1 and 
reader 2 re-segmented VOI independently 
in 40 patients who were randomly chosen 
from the 371 patients. We selected the dedi-
cated artificial Intelligence Kit program (aK, 

Main points

• a radiomics analysis based on non-con-
trast-enhanced thoracic CT can be useful to 
predict the risk of synchronous brain metas-
tasis (SBM) in patients with lung cancer at the 
initial diagnosis. 

• Our study selected two clinicoradiologic fac-
tors and integrated them with the radiomics 
model to construct a nomogram presenting 
better performance than the radiomics mod-
el or clinicoradiologic model alone for pre-
dicting the risk of SBM.

• The radiomics model can also help identify 
oligometastatic (1-3 lesions) or multiple (>3 
lesions) brain metastases.
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Version: 3.2.0.R, ge healthcare) to extract 
radiomics features. To eliminate the influ-
ence of different scanning parameters and 
scanners, resampling strategy (voxel size of 
1×1×1 mm using a linear interpolation al-
gorithm) was adopted in images and VOIs 
before feature extraction. all features of 
radiomics were standardized with Z-score 
normalization. The inter- and intra-observer 
consistency of feature extraction was evalu-
ated using inter- and intra-class correlation 
coefficients (ICCs). The features with ICCs 
>0.8 were considered to be good consis-
tency, and entered into the least absolute 
shrinkage and selection operator (laSSO) 
algorithm for feature dimension reduction. 
Then univariate logistic regression was 
performed to choose the features with P < 
.05. The radiomics model was built in the 
training set with the retained features using 
multivariable logistic regression and 5-fold 
cross-validation. Subsequently, the model 
was validated in an independent testing 
set. The score of the radiomics model (Rad-
score) was computed for all 371 patients 
based on the selected features and weight-
ed by their corresponding coefficients. SBM 
and non-SBM were entered into the model 
as 1 and 0, respectively. Mann-Whitney U 

test was performed to analyze the statisti-
cal differences of Rad-score between the 
two sets as well as the two groups (i.e., SBM 
group and non-SBM group) in each set. 

Clinicoradiologic model construction
Baseline clinical and CT characteristics of 

patients were interpreted retrospectively 
by reader 1 and 2 independently blinded 
to clinical and pathological results. In cases 
where the two radiologists could not reach 
a consensus, a third experienced chest ra-
diologist (19 years of experience) gave the 
final diagnosis. T and n stages were as-
signed according to the 8th edition of aJCC 
for lung cancer. In the training set, the differ-
ences of clinicoradiologic factors between 
lung cancer patients with and without SBM 
were analyzed, and the characteristics with 
P < .05 were selected into the multivariable 
logistic regression to analyze and construct 
a clinicoradiologic model. This model was 
then validated in the testing set.

Combined model and nomogram  
establishment and validation

Rad-score and clinicoradiologic charac-
teristics (P < .05 in the univariate analyses) 
were selected as inputs. Multivariable lo-

gistic regression analysis was used to con-
firm the independent predictors and build 
a combined model for predicting SBM in 
the training set. The discriminative abilities 
of the three models were analyzed by area 
under the receiver operating characteristic 
curve (aUC). The performances and gener-
alizability of the models were validated in 
the testing set. To differentiate SBM from 
non-SBM more conveniently, a nomogram 
derived from the combined model was de-
veloped in the training set. The calibration 
curves were used to evaluate the agree-
ment between the predictions of SBM and 
the actual outcomes. The goodness-of-fit 
of the nomogram was evaluated using the 
hosmer-lemeshow test. The net benefits 
and clinical usefulness of the nomogram 
at different threshold probabilities were as-
sessed by decision curve analysis (DCa). 

Analysis based on the number of BMs in 
the SBM, MBM, and total groups

according to the number of metastatic 
brain lesions, BMs were divided into oligo-
metastatic (1-3 lesions) and multiple BMs 
(more than 3 lesions).13,22 Furthermore, the 
prediction ability of the aforementioned ra-
diomics model, clinicoradiologic model, and 
combined model in differentiating oligo-
metastatic from multiple BMs were analyzed 
based on patients in the SBM, MBM, and to-
tal (SBM and MBM) groups, respectively. 

Statistical analysis
Statistical analysis and graphics were 

performed in SPSS 22.0 (IBM Corp.) and R 
software (open-source version 3.0.1, http://
www.Rproject.org). Continuous variables 
were compared with Mann-Whitney U test 
or Student t test. Chi-square test was used 
to compare the categorical variables. The 
aUC was implemented to analyze the dis-
crimination ability of the models. The differ-
ences in aUC values between models were 
evaluated using the Delong test. lasso was 
performed using the “glmnet” package. 
nomogram and calibration curve were de-
veloped using the “rms” package. DCa was 
drawn using the “rmda” package. a two-sid-
ed P < .05 was deemed to be a statistically 
significant difference.

Results
In total, 371 patients were included in our 

study (female: male, 115: 256; mean age, 
63.15 ± 9.65 years; range, 34-90 years) and 
were classified into the SBM group (n=147) 

Figure 1. Workflow of this study. BM, brain metastasis; SBM, synchronous brain metastasis; MBM, 
metachronous brain metastasis.

lung cancer confirmed by biopsy or surgery (n=681)

enrolled patients (n=371)

Testing set (n=113)Training set (n=258)

SBM
(n=102)

non-SBM
(n=68)

SBM
(n=45)

non-SBM
(n=156)

exclulison criteria (n=310):
1. biopsy or therapy before CT scan (n=18);
2. ro definite pathological resilts (n=23);
3. no head MRI scan (n=123) or plain scan only 
(n=82);
4. insufficient CT quality (n=21) or lesion <1 cm 
(n=43)
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and non-SBM group (n=224). The clinico-
pathological and radiological characteris-
tics of patients in the training and testing 
sets are presented in Table 1. There were 
no statistically significant differences in the 
two sets. associations of these characteris-
tics between the SBM and non-SBM groups 
in two sets are summarized in Table 2. 

Through the reproducibility assessment, 
1088 of 1322 radiomics features with ICCs 
> 0.8 were identified. Features dimension 
reduction was performed using the laS-
SO algorithm in the training set, and the 
most distinguishable 19 features were left 
(Supplementary Figure S1). eventually, 6 
features with P < .05 were selected after 
univariate logistic regression analysis. The 
multivariate logistic regression was per-
formed to build the radiomics model. The 
Rad-score was obtained by computing the 
6 selected features via a linear formula for 
all 371 patients and presented as follows: 

Rad-score = −0.9535 + 0.3296 × wave-
let-hlh_gldm_large Dependence low gray 
level emphasis + 0.1915 × wavelet-lhh_
gldm_large Dependence low gray level 
emphasis – 0.8466 × lbp-3D-m2_gldm_De-
pendence Variance + 0.1163 × log-sigma-3-
0-mm-3D_firstorder_Maximum – 1.3012 × 
wavelet-llh_glszm_Small area emphasis + 
1.7032 × wavelet-hlh_glszm_Zone entropy.

The Rad-score showed significant associ-
ation with the risk of SBM in whole set (me-
dian, 0.56 for SBM group vs. -1.79 for non-
SBM group, P < .001). SBM patients had a 
higher Rad-score than non-SBM in both sets 
(median, 0.64 vs. -1.87 and median, 0.56 vs. 
-1.42, both P < .001) (Table 2). The Rad-score 
demonstrated good predictive ability in dif-
ferentiating SBM from non-SBM with aUCs 
of 0.870 (95% CI 0.828, 0.911) in the training 
set and 0.824 (95% CI 0.750, 0.898) in the 
testing set (Figure 2, Table 3). 

Pathological subtype (adenocacinoma 
vs. non-adenocacinoma), CT reported T 
staging, and CT reported n staging (short 
axis of lymph node of hilar of pulmonary 
and/or mediastinum >1 cm was defined 
as positive) had significant difference be-
tween the two groups, SBM was more fre-
quently observed in adenocarcinoma than 
in non-adenocarcinoma subtypes of lung 
cancer patients in both sets (P = .010 and  
P = .030, respectively). Patients with SBM 
had an incidence of higher CT reported T 
and n staging than without SBM in two sets 
(P = .006, P = .040 in CT reported T staging, 
and P < .001, P = .012 in CT reported n stag-
ing, respectively). after multivariable logistic 

Table 1. Baseline characteristics of patients in training and testing set (n = 371)

Characteristics Training set (n = 258) Testing set (n = 113) P

Clinical characteristics

Sex, n (%) (Male / Female) 173 (67.1) / 85 (32.9) 83 (73.5) / 30 (26.5) 0.20

age (years)a 62.51 ± 9.44 64.59 ± 9.99 0.056

nSClC / SClC, n (%) 222 (86.1) / 36 (13.9) 94 (83.2) / 19 (16.8) 0.48

Pathological subtype, n (%) 0.45

   adenocarcinoma 168 (65.1) 69 (61.1)

   non-adenocarcinoma 90 (34.9) 44 (38.9)

Radiographic characteristics

   Size (cm, range) 3.19 (1.08, 9.00) 3.44 (1.04, 8.22) 0.24

   Plain CT scan values (hU)a 33.48 ± 7.77 34.98 ± 7.24 0.082

CT-reported T staging  
(T1§ / T2 / T3 / T4)

75 / 115 / 34/ 34 28 / 47 / 24 / 14 0.26

CT-reported n staging  
(n0 / n1 / n2 / n3)

130 / 20 / 67 / 41 42 / 15 / 36 / 20 0.084

Central / peripheral lung cancer,  
n (%) 

111 (43.1) / 147 (56.9) 57 (50.4) / 56 (49.6) 0.19

lobulation, n (%) (Yes / no) 207 (80.2) / 51 (19.8) 93 (82.3) / 20 (17.7) 0.64

Spiculation, n (%) (Yes / no) 119 (46.1) / 139 (53.9) 54 (47.8) / 59 (52.2) 0.77

Pleural indentation, n (%) (Yes / no) 111 (43.1) / 147 (56.9) 48 (42.5) / 65 (57.5) 0.92

Pleural effusion, n (%) (Yes / no) 61 (23.6) / 197 (76.4) 24 (21.2) / 89 (78.8) 0.61

SBM, n (%) 0.96

   With-SBM 102 (39.5) 45 (39.8)

   Without- SBM 156 (60.5) 68 (60.2)

Rad-score, median (IQR) −0.59 (−2.29, 0.70) −1.71 (−2.33, 0.58) 0.79

nomo-score, median (IQR) −0.81 (−2.92, 0.95) −0.42 (−3.06, 1.24) 0.75

SClC, small cell lung cancer; nSClC, non-small cell lung cancer; SBM, synchronous brain metastasis; Rad-score, 
radiomics score; nomo-score, the score of nomogram derived from the combined model; hU, hounsfield unit. 
aData were presented as mean ± standard deviation; T1§ (T1b+T1c).

Figure 2. a, b. Receiver operating characteristic (ROC) curves of the clinicoradiologic model, 
radiomics model, and combined model in the training set (a) and testing set (b). The predictive 
performance of the radiomics model and the combined model for synchronous brain metastasis 
were better than the clinicoradiologic model in both sets, and the combined model presented the 
best predictive performance in both sets.

a b
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regression analysis, CT reported n staging 
and pathological subtype were confirmed 
as independent predictive factors. The clini-
coradiologic model was constructed in the 
training set (aUC = 0.712) and validated in 
the testing set (aUC = 0.692).

By incorporating Rad-score and the se-
lected clinicoradiologic features (pathologi-
cal subtype and CT reported n staging), the 
combined model displayed good prediction 
efficacy in both sets (Figure 2, Table 3). The 
Delong test revealed that there was no dif-
ference between the radiomics model and 
the combined model (P = .12 and P = .49 in 
two sets, respectively), but both models pre-
sented better predictive ability for SBM than 
the clinicoradiologic model (both P < .001 in 
the training set; P = .038 for radiomics model 
vs. clinicoradiologic model and P = .006 for 
combined model vs. clinicoradiologic mod-
el in the testing set) (Supplementary Table 

Table 2. Comparison of baseline characteristics of patients in training and testing set between SBM group and non-SBM group (n=371)

Training set (n = 258) Testing set (n = 113)

SBM (n=102) non-SBM (n=156) P SBM (n=45) non-SBM (n=68) P

Clinical characteristics

Sex (M/F), n (%) 68 (66.7)/ 34 (33.3) 105 (67.3)/ 51 (32.7) .83 29 (64.4)/ 16 (35.6) 54 (79.4)/ 14 (20.6) .078

age (years), mean±SD 63.00 ± 8.75 62.19 ± 9.88 .50 63.87 ± 9.13 65.07 ± 10.57 .53

nSClC or SClC, n (%) .17 .82

nSClC 84 (82.4) 138 (88.5) 37 (82.2) 57 (83.8)

SClC 18 (17.6) 18 (11.5) 8 (17.8) 11 (16.2)

Pathological subtype, n (%) .010a .030a

adenocarcinoma 76 (74.5 92 (59.0) 33 (73.3) 36 (52.9)

non-adenocarcinoma   26 (25.5) 64 (41.0) 12 (26.7) 32 (47.1)

Radiographic characteristics

Size (cm), median (range) 3.42 (1.50, 9.00) 3.07 (1.08, 7.94) .085 3.56 (1.43, 8.22) 3.26 (1.04, 7.82) .31

Plain CT scan values (hU), mean±SD 33.56 ± 8.05 33.43 ± 7.61 .89 34.36 ± 8.21 35.39 ± 6.56 .46

CT-reported T staging (T1§/T2/T3/T4) 26/38/16/22 49/77/18/12 .006a 8/16/11/10 20/31/13/4 .040a

CT-reported n staging (n0/n1/n2/n3) 34/7/32/29 96/13/35/12 < .001b 12/4/15/14 30/11/21/6 .012a

Central or peripheral lung cancer, n (%) .59 .16

Central 46 (45.1) 65 (41.7) 19 (42.2) 38 (55.9)

Peripheral 56 (55.9) 91 (58.3) 26 (57.8) 30 (44.1)

Pleural effusion, n (%) 26 (25.5) 35 (22.4) .57 9 (20.0) 25 (36.8) .79

lobulation, n (%) 85 (83.3) 122 (78.2) .31 38 (84.4) 55 (80.9) .63

Speculation, n (%) 52 (51.0) 67 (42.9) .21 25 (55.6) 29 (42.6) .18

Pleural indentation, n (%) 51 (50.0) 60 (38.5) .067 22 (48.9) 26 (38.2) .26

Rad-score, median (IQR) 0.64 (−0.05, 1.69) −1.87 (−3.64, −0.30) < .001b 0.56 (−0.25, 1.21) −1.42 (−4.45, 0.09) < .001b

nomo-score, median (IQR) 1.31 (0.08, 2.70) −2.47 (−4.72, −0.83) < .001b 1.24 (−0.09, 2.34) −2.24 (−5.07, −0.26) < .001b

T1§ (T1b+T1c); aP < .05; bP < .001. 
SClC, small cell lung cancer; nSClC, non-small cell lung cancer; SBM, synchronous brain metastasis; Rad-score, radiomics score; nomo-score, the score of nomogram derived 
from the combined model.

Figure 3. The nomogram for the prediction of SBM in lung cancer patients. The nomogram 
was constructed by incorporating the CT reported n staging, pathological subtype (0, non-
adenocarcinoma; 1, adenocarcinoma) and Rad-score. The sum of the scores on the scoring ruler 
corresponding to the three predictors is the total score, and the scale values of the upper ruler 
corresponding to the total score are the risk of SBM. 
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S1). The combined model was visualized as a 
nomogram in the training set (Figure 3). The 
nomo-score was obtained by calculating the 
formula of the combined model for all 371 
patients, and presented significant associ-
ation with the risk of SBM (median, 1.26 vs. 
-2.39, P < .001). SBM patients had a higher 
nomo-score than non-SBM in the training 
set (median, 1.31 vs. -2.47, P < .001), which 
was verified in the testing set (median, 1.24 
vs. -2.44, P < .001). 

The calibration curves of the nomogram 
presented good agreement between pre-
dicted and actual probability of SBM in both 
sets (Figure 4). The hosmer-lemeshow test 
demonstrated no difference in both sets (P = 
.71 and P = .53, respectively), indicating that 
there were no departure from a perfect good-
ness-of-fit. The DCas for the three models 
were graphically displayed in Figure 5, which 
indicated that the combined model and the 
radiomics model added more net benefits to 
predict SBM status than the clinicoradiologic 
model and treat-all or none scheme.

Overall, 147 patients were confirmed with 
SBM at the initial diagnosis of lung cancer. 
eighty-nine patients were confirmed MBM in 
149 non-SBM patients during follow-up, and 
median time from diagnosis of lung cancer 
to MBMs was 12 months (3-70 months). The 
median follow-up was 45 months (36-72 
months) for 60 patients who did not have 
MBMs. Totally, 75 cases were lost to follow-up 
after the initial diagnosis. The number of BM 
patients in the total group was 236. The dis-
tribution of oligometastatic and multiple 
BMs in three groups were presented in Table 
4. The Rad-score of oligometastatic BM pa-
tients were higher than the multiple ones in 
all the three groups (all P < .05) (Supplemen-
tary Figure S2). The clinicoradiologic model 
and nomo-score of the combined model 
showed no statistical differences in all three 
groups (P = .42, P = .19 and P = .20, and P = 
.10, P = .12 and P = .17, respectively)

Discussion
In our study, we constructed and tested a 

radiomics model based on non-contrast-en-
hanced thoracic CT for prediction of SBM in 
lung cancer patients at the initial diagnosis, 
which presented good discrimination per-
formance and clinical utility. By integrating 
the Rad-score and two clinicoradiologic risk 
factors (adenocarcinoma histology subtype 
and CT reported n staging), the combined 
model demonstrated more discrimination 
ability than the radiomics and clinicoradio-

Figure 4. a, b. Calibration curves of the nomogram in the training set (a) and testing set (b). The 
calibration curves show the calibration of the nomogram in terms of agreement between the 
predicted probability of SBM and actual outcomes. The 45° line indicates perfect prediction, and the 
curve lines indicate the predictive performance of the nomogram. The closer the lines, the better 
predictive accuracy of the nomogram. 

a

b

Table 3. Predictive performance of the clinicoradiologic, radiomics, and combined models for the 
risk of SBM in the training and testing sets 

Variables aUC (95% CI) accuracy Sensitivity Specificity

CR model Training set 0.712 (0.648-0.776) 0.643 0.647 0.641

Testing set 0.692 (0.592-0.792) 0.602 0.689 0.544

Radiomics model Training set 0.870 (0.828-0.911) 0.787 0.735 0.821

Testing set 0.824 (0.750-0.898) 0.708 0.711 0.706

Combined model Training set 0.912 (0.879-0.945) 0.833 0.882 0.801

Testing set 0.859 (0.793-0.925) 0.814 0.844 0.676

SBM, synchronous brain metastasis; aUC, area under the receiver operating characteristic curve; CI, 
confidence interval; CR model, clinicoradiologic model.
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logic models alone. The nomogram derived 
from the combined model can be used easily 
as a visualized and effective tool to predict 
the risk of SBM for a newly diagnosed lung 
cancer patient. Furthermore, we tried to use 
the abovementioned models to distinguish 
oligometastatic BMs from multiple ones, 
and found that only the radiomics model 
presented statistically significant differences. 

Timely and accurate detection of SBM 
may alter the therapeutic strategy for lung 
cancer and enable timely therapy or cure of 
the BM. The presence of SBM means poor 
prognosis,10,11 and needs more aggressive 
therapeutic methods for patients with lung 
cancer.9,23 Radiomics can extract and analyze 
quantitative features from digital medical im-
ages and transform them into mineable data, 

which can assess heterogeneity of tumors. By 
analyzing these data, we can select the most 
useful radiomics features to improve the 
ability of diagnosis, prediction, stage, and so 
on.24-26 Chen et al.27 analyzed the maximum 
region of interest (ROI) of tumor in 89 cate-
gory T1 lung adenocarcinoma patients and 
constructed the radiomics model with four 
selected features derived from pretreatment 
CT images. The model demonstrated good 
prediction ability for SBM (aUC = 0.847). But 
that model was only validated internally with 
a 10-fold cross-validation approach, with-
out independent testing set because of the 
limited sample size. also, some brain scans 
were performed with CT, which may lead to 
missed diagnosis of occult brain metastat-
ic lesions. In our study, we used radiomics 
features derived from the 3D VOI of tumor 
to predict SBM in 371 lung cancer patients. 
Compared with 2D ROI, the 3D VOI can reflect 
the inherent heterogeneity of tumors more 
comprehensively and provide morpholog-
ical information more completely. We built 
the radiomics model with 5-fold cross-valida-
tion in the training set (aUC = 0.870), and an 
independent testing set was used to validate 
the reproducibility and generalization of the 
model (aUC = 0.827). In our study, all pa-
tients underwent cranial MRI, as suggested 
by guidelines of aJCC and nCCn. Xu et al.28 
analyzed radiomics features extracted from 
lesions of pretreatment CT in 132 stage III-IV 
alK positive nSClC patients and confirmed 
only one feature can be used to predict SBM 
with aUC of 0.682 in the training set and 0.642 
in the testing set. however, that research had 
a small sample size (only 27 cases had SBM in 
132 patients) and modest predictive efficien-
cy. Compared with that study, the radiomics 
model in our study was built with 6 selected 
radiomics features and showed higher risk 
prediction for SBM with aUCs of 0.870 and 
0.824 in two sets. This may indicate that mul-
tiple features contain more characteristics of 
heterogeneity of tumor and the correspond-
ing radiomics model is more suitable for SBM 
risk prediction of lung cancer. Therefore, it is 
more reliable to associate the heterogeneity 
and complex biological behavior of tumors 
with multi-features in radiomics studies.

In this study, we analyzed a set of clini-
coradiologic factors that might help predict 
SBM of lung cancer patients. Only adenocar-
cinoma histology and CT reported n stag-
ing were finally selected as independent 
predictors to establish the clinicoradiolog-
ic model. adenocarcinoma histology has 

Figure 5. a, b. Decision curve analysis for the three models in the training set (a) and testing set 
(b). The net benefit versus the threshold probability was plotted. The thin gray and bold gray lines 
represent the hypothesis that all lung cancer patients and no patients had synchronous brain 
metastasis, respectively. The net benefits of the combined model (blue line) and radiomics model 
(green line) were higher than the clinicoradiologic model (red line) across most ranges of threshold 
probability. CR, clinicoradiologic model.

a

b
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been reported to be one of the important 
independent risk factors for SBM.29,30 In our 
study, the presence of adenocarcinoma his-
tology was correlated closely with SBM of 
lung cancer, which was similar to previous 
studies.29,30 Our study demonstrated that 
patients with higher CT reported n staging 
were more likely to have SBM. This might 
be interpreted as the risk of hematogenous 
metastasis of lung cancer being markedly 
related with increased lymph node stage, 
which means more aggressive biological 
characteristic.31,32 however, our clinicora-
diologic model only presented moderate 
discriminative ability, which may manifest 
that basic radiologic and clinicopathologic 
factors have inadequate predictive value 
and additional tools are needed to improve 
predictive ability of SBM in lung cancer.

By incorporating Rad-score, pathologi-
cal subtype and CT reported n staging, the 
combined model was built and presented 
the best predictive efficiency in predicting 
SBM in three models in both the training 
and testing sets, which were confirmed by 
Delong test. Compared with the radiomics 
model, the combined model had relatively 
lower specificity in both sets, but its higher 
sensitivity was helpful to identify true SBM 
patients, and this was our main purpose, so 

the relative lower specificity was acceptable. 
The nomogram, which was derived from the 
combined model, could be utilized to help 
doctors to identify high risk patients with 
SBM who need a detailed examination of the 
brain. Calibration curves were established 
to show the performance of the nomogram 
for the differentiation of SBM and non-SBM. 
The curves presented favorable agreement 
between the observed and predicted values 
in both sets. DCa was utilized to evaluate the 
added value of the nomogram and the ra-
diomics model in predicting SBM. It showed 
that the combined model can gain the most 
significant benefit in the three models in pre-
dicting SBM in lung cancer patients at most 
threshold probabilities, and the radiomics 
model had more net benefit than the clini-
coradiologic model as well.

It is also important to identify oligomet-
astatic or multiple BMs because of the dif-
ferent treatment strategies and prognoses. 
Patients with higher numbers of BMs have 
worse overall survival.33 Oligometastatic BMs 
are associated with better response to sur-
gical resection or stereotactic radiosurgery 
and better prognosis in selected patients.9,20 
But these treatments may not be suitable 
for multiple BMs, particularly diffuse lesions, 
which usually need whole-brain irradiation 

or target treatment. From the results of our 
study, we additionally found that the Rad-
score can be used not only in evaluating the 
risk of SBM but also in predicting oligomet-
astatic or multiple BMs synchronously and 
metachronously in lung cancer patients. So 
the radiomics model can act as a convenient 
indicator in clinical practice of management 
in lung cancer patients with BMs. But the 
clinicoradiologic model and the combined 
model were not useful in differentiating oli-
gometastatic from multiple BMs in all three 
groups. The possible reason could be that 
the micro-environment and heterogeneity of 
lung cancer are different between the oligo-
metastatic and multiple BMs. The clinicora-
diologic factors cannot identify these intan-
gible differences, but radiomics can interpret 
images more detailed and objective, and 
demonstrate quantitative information and 
heterogeneity of the tumor at a cellular level.

Our study has certain limitations. First, 
the research was a single-institution, ret-
rospective analysis, and the sample size of 
cases was relatively small, which may lead 
to bias in patient selection and model insta-
bility. a larger sample size and multicenter 
study should be carried out in the future. 
Second, the features of radiomics were 
only extracted from the images of non-con-
trast-enhanced CT, which may cause the 
loss of some information compared with 
contrast-enhanced CT. But the unenhanced  
CT scan is the routine and cost-effective 
method in clinical practice of lung cancer 
diagnosis, and variability of different acqui-
sition time or different phases from con-
trast-enhanced scan can be avoided. Third, 
some diagnoses of BM were not confirmed 
by pathological results but by typical radio-
logical features and follow-up; however, this 
was considered reasonable and reliable in 
clinical practice.29 Finally, considering that 
the brain is the most frequently metastatic 
organ of lung cancer and that BM has the 
most obvious influence on the prognosis 
and quality of life of the patients, our study 
only focused on patients who had BMs. The 
study of extracranial metastases should be 
included in future research.

In conclusion, the non-contrast-en-
hanced thoracic CT radiomics-based mod-
els can be utilized as cost-effective and 
noninvasive tools to assist clinicians in 
predicting the risk of SBM in lung cancer 
patients at initial diagnosis, especially in 
underdeveloped countries, and certain 
patients who are contraindicated for MRI 
examination. Furthermore, the radiomics 

Table 4. The comparison of oligometastatic and multiple BMs in the SBM, MBM, and total groups of 
the three models

CR model Rad-score nomo-score

SBM

   Oligo- BM (n=52) −0.327 (−0.796, 0.530) 0.829 (−0.016, 2.667) 1.767 (0.258, 3.258)  

   Multiple BM (n=95) 0.284 (−0.796, 0.530) 0.480 (−0.255, 1.240) 1.086 (−0.094, 2.488)

   z −0.810 −2.005 −1.641

   P .42 .045* .10

MBM

   Oligo- BM (n=33) −0.796 (−1.924, −0.688) −0.553 (−3.778, 0.870) −1.696 (−4.833,−0.285)   

   Multiple BM (n=56) −0.796 (−0.796, −0.327) −2.442 (−4.250,−0.915) −3.024 (−5.038,−1.037)    

   z −1.220 –2.149 −1.512

   P 0.19 0.022* 0.12  

Total

   Oligo- BM (n=85) −0.688 (−0.796, 0.440) 0.106 (−0.710, 1.312) 0.448 (−1.603, 2.127)   

   Multiple BM (n=151) −0.688 (−0.796, 0.530) −0.051 (−1.535, 0.852) 0.101 (−2.055, 1.659)    

   z −1.285 −2.166 −1.383

   P .20 .030* .17   

Data were presented as median (interquartile range). 
BM, brain metastasis; SBM, synchronous brain metastasis; MBM, metachronous brain metastasis; CR model, clini-
coradiologic model; Rad-score, radiomics score; nomo-score, the score of nomogram derived from the combined 
model; Oligo-, oligometastatic; Total, SBM+MBM. 
*P < .05.
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model can also help to identify oligomet-
astatic or multiple BMs, which may help in 
treatment decision-making.
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Supplementary Material 1. The detailed parameters of MRI for head examination.
MR images were acquired with 3.0 T scanner (Signa hDXt, ge healthcare) using a 8-channel phase-array head coil in the supine position, and consisted of 

six sequences including axial T2-weighted imaging (T2WI), T1 Fluid-attenuated inversion-recovery (FlaIR), T2 FlaIR, diffusion-weighted imaging (DWI) with 
two b-factors (0 and 1000 s/mm2). Contrast-enhanced T1-weighted imaging (T1 WI) were performed in the axial, sagital and coronal planes. The detailed 
parameters of MRI sequences: T1 FlaIR, TI 800~900 ms, TR 2000~2500 ms, Te 20~25 ms; T2WI, TR 4000~4500 ms, Te 100~110 ms; T2 FlaIR, TI 2000~2100ms, 
TR 8000~8600 ms, Te 150~170 ms, FOV 240 mm × 240 mm, slice thickness 6 mm, slice interval 2 mm, matrix 256 × 256; DWI, TR 4500~5500 ms, Te 70~80ms, 
FOV 240 mm × 240 mm, slice thickness 6 mm, slice interval 2 mm, matrix 160 × 160. Contrast-enhanced scans were performed after injection of 0.01mmol/
kg of gd-DTPa contrast agent (gadobutrol, Bayer-Schering Pharma) at a rate of 2.0 ml/s with a pump injector (Ulrich CT Plus 150, Ulrich Medical) through the 
antecubital vein, followed by a saline flush (20 ml). The parameters of contrast-enhanced MRI sequences: sagittal high-resolution T1W1 3D BRaVO, TR 8.1 ms, 
Te 2.8 ms, Fa 12°, slice thickness 0 mm, thickness 1 mm, 175 slices, voxel size 1 mm × 1 mm × 1 mm. T1 FlaIR, TI 800~900ms, TR 2000~2500ms, Te 20~25ms.

Supplementary Figure S1.  laSSO path plot in the training set. Features dimension reduction was 
performed using the least absolute shrinkage and selection operator (laSSO) algorithm in the 
training set, and the most distinguishable 19 features were left.
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Supplementary Figure S2. a-c. The Rad-score of each patient in SBM group (a), MBM group (b), and total group (c). The Mann-Whitney U test was used to 
evaluate the difference between the oligometastatic and multiple brain metastases. SBM, synchronous brain metastasis; MBM, metachronous brain metastasis; 
Total, SBM+MBM; Rad-score, radiomics score; *, P < .05.

a b c

Supplementary Table 1. Comparison of aUC values between models using Delong test in the training and testing sets

CR model Radiomics model Combined model

aUC (95% CI) aUC (95% CI) aUC (95% CI) P

Training set (n=258) 0.712 (0.648-0.776) 0.870 (0.828-0.911) - <.001a

0.712 (0.648-0.776) - 0.912 (0.879-0.945) <.001a

- 0.870 (0.828-0.911) 0.912 (0.879-0.945)  .12

Testing set (n=113) 0.692 (0.592-0.792) 0.824 (0.750-0.898) - .038b

0.692 (0.592-0.792) - 0.859 (0.793-0.925) .006b 

- 0.824 (0.750-0.898) 0.859 (0.793-0.925) .49

CR model, clinicoradiologic model; aUC, area under the receiver operating characteristic (ROC) curve; CI, Confidence interval.
ªP < .001; bP < .05.
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