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PURPOSE
This study aimed to determine the accuracy of texture analysis in differentiating adrenal lesions on 
unenhanced computed tomography (CT) images.

METHODS
In this single-center retrospective study, 166 adrenal lesions in 140 patients (64 women, 76 men; 
mean age 56.58 ± 13.65 years) were evaluated between January 2015 and December 2019. The 
lesions consisted of 54 lipid-rich adrenal adenomas, 37 lipid-poor adrenal adenomas (LPAs), 56 
adrenal metastases (ADM), and 19 adrenal pheochromocytomas (APhs). Each adrenal lesion was 
segmented by manually contouring the borders of the lesion on unenhanced CT images. A texture 
analysis of the CT images was performed using Local Image Feature Extraction software. First-order 
and second-order texture parameters were assessed, and 45 features were extracted from each 
lesion. One-Way analysis of variance with Bonferroni correction and the Mann–Whitney U test was 
performed to determine the relationships between the texture features and adrenal lesions. Re-
ceiver operating characteristic curves were performed for lesion discrimination based on the tex-
ture features. Logistic regression analysis was used to generate logistic models, including only the 
texture parameters with a high-class separation capacity (i.e., P < 0.050). SPSS software was used 
for all statistical analyses.

RESULTS
First-order and second-order texture parameters were identified as significant factors capable of 
differentiating among the four lesion types (P < 0.050). The logistic models were evaluated to as-
certain the relationships between LPA and ADM, LPA and APh, and ADM and APh. The sensitivity, 
specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of the 
first model (LPA vs. ADM) were 85.7%, 70.3%, 81.3%, 76.4%, and 79.5%, respectively. The sensitivity, 
specificity, PPV, NPV, and accuracy of the second model (LPA vs. APh) were all 100%. The sensitivity, 
specificity, PPV, NPV, and accuracy of the third model (ADM vs. APh) were 87.5%, 82%, 36.8%, 98.2%, 
and 82.7%, respectively.

CONCLUSION
Texture features may help in the characterization of adrenal lesions on unenhanced CT images.

KEYWORDS
Adrenal adenoma, adrenal glands, adrenal mass, computed tomography, texture analysis

Incidental adrenal masses are common lesions, with a rate of detection of 4%–6% using ab-
dominal computed tomography (CT) in patients undergoing abdominal imaging.1 Adrenal 
adenomas are the most common adrenal lesions, with a prevalence up to 9% in the general 

population.2 The rate of adrenal adenomas increases with age.3 Nearly 25% of adrenal ade-
nomas have insufficient intracytoplasmic lipid content for accurate detection using conven-
tional CT, rendering these lesions difficult to differentiate from malignant adrenal lesions and 
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adrenal pheochromocytomas (APhs).3 This 
can ultimately lead to unnecessary surgical 
resection of these benign adrenal lesions. 
Clinical findings and radiological features in 
unenhanced CT images have a limited ability 
to differentiate lipid-poor adrenal adenomas 
(LPAs) from malignant adrenal lesions and 
APhs because they are in the same densi-
ty spectrum range. CT washout imaging 
and magnetic resonance imaging (MRI) are 
non-invasive imaging techniques used for 
the differential diagnosis of adrenal lesions.4-6

Lipid-rich adrenal adenomas (LRAs) can 
be easily recognized in unenhanced CT, with 
homogeneous and relatively low attenua-
tion values [<10 Hounsfield units (HU)], due 
to their high fat content.7 LRAs can also be 
diagnosed through MRI with high sensitivity 
and specificity.1 Most LRAs show a loss of sig-
nal intensity (>20%) in out-of-phase images 
from conventional dual-phase T1-weighted 
imaging and using the Dixon technique due 
to intratumoral microscopic fat content.4 

LPAs, however, may have a diagnostic over-
lap with other lipid-poor adrenal lesions, 
such as adrenal metastasis (ADM) and APhs, 
in unenhanced CT or MRI images.8 Washout 
CT of the adrenal gland is the most reliable 
imaging method for differentiating adrenal 
adenomas from other lesions. Most adrenal 
adenomas show a rapid washout pattern 
after administration of the contrast agent.4 

However, hypervascular ADM, especially 
from hepatocellular carcinoma or renal cell 
carcinoma, may also show a rapid washout 
pattern.9 Therefore, the definitive preopera-
tive diagnosis of adrenal lesions is not always 
possible.

Texture analysis (TA), performed using 
several complex mathematical processes, 
is an objective assessment of the structure, 
gray-level intensity, and pixel position of a le-

sion.10 The TA parameters of the radiological 
images can be divided into first-order and 
second-order statistics. First-order TA param-
eters consist of the uniformity (in gray-level 
dispersion), skewness (histogram asymme-
try), entropy (irregularity in gray-level disper-
sion), kurtosis (histogram flatness), energy 
(uniformity of the distribution), mean/mini-
mum/maximum density, and standard devia-
tion of the gray-level histogram dispersion.11 
Second-order TA, used to assess the spatial 
relationships among pixels, includes the fol-
lowing parameters: gray-level co-occurrence 
matrix (GLCM), neighborhood gray-level 
difference matrix (NGLDM), gray-level run-
length matrix (GLRLM), gray-level zone 
length matrix (GLZLM), and their subgroup 
parameters.12 First-order and second-order 
TA parameters in adrenal lesions may help 
physicians to differentiate subgroup lesions 
based on the underlying histopathological 
composition. This study investigated the role 
of TA in differentiating adrenal lesions in un-
enhanced CT images.

Materials and Methods

Patient selection

The protocol of this retrospective study 
was approved by our institutional review 
board (approval number: 2020/20-31; date: 
2020-08-31), and written informed con-
sent was obtained from each patient. The 
endocrinology department database was 
reviewed to identify patients with LRA, LPA, 
ADM, or APh between January 2015 and 
December 2019. The inclusion criteria were 
age ≥19 years, histopathologically proven 
APh, diagnosis of LRA, LPA, or ADM based 
on radiological features, positron emission 
tomography (PET)–CT features, long-term 
follow-up, histopathological diagnosis, or 
biopsy, and unenhanced CT performed be-
fore resection or during follow-up screening. 
Eligible patients had an adrenal lesion deter-
mined by unenhanced CT or PET–CT to be 
ADM (for those with known primary tumors 
with standardized uptake value (SUV)max ra-
tio >2.5 [the accepted value for distinguish-
ing between benign and cancerous lesions], 
and SUVmax values of ADM were higher than 
those of normal liver parenchyma), LRA (≤10 
HU in unenhanced CT images), or LPA (diag-
nosis made by histopathological or radiolog-
ical follow-up at least 36 months following 
initial CT).13

Histopathological diagnosis of adrenal 
lesions is made by surgical intervention, and 
adrenal lesion biopsy should only be con-
sidered for making a diagnosis of metastatic 

disease in patients with known or suspected 
non-adrenal cancer.14 The exclusion criteria 
were adrenal lesion <1 cm (n = 18), lack of 
unenhanced CT images (n = 82), CT images 
with severe motion or other artifacts (n = 7), 
and CT imaging performed at another insti-
tution (n = 23). Both lesions of patients with 
bilateral adrenal lesions were included in the 
study. We were unable to confirm a diagnosis 
of adenoma versus ADM histopathologically 
in three patients, and these patients were 
also excluded. After these criteria had been 
applied, a total of 140 patients with 166 ad-
renal lesions were included (Figure 1). All pa-
tients were evaluated through non-contrast 
abdominal CT using the CT devices available 
in our department (Supplementary Table 1).

Endocrinological examinations were 
performed in all cases preoperatively. Meta-
nephrine and normetanephrine were mea-
sured in 24-h urine for a differential diagnosis 
of pheochromocytoma in all patients. Basal 
plasma levels of adrenocorticotropic hor-
mone and serum levels of cortisol, the dexa-
methasone suppression test, plasma renin 
activity, and the aldosterone/renin ratio were 
used to evaluate adrenal adenoma.

Texture analysis

The unenhanced CT images of each pa-
tient were reviewed by three radiologists 
(HAÖ, IBA, and CA) with 4, 15, and 20 years 
of experience in abdominal radiology, re-
spectively. The selected images of all adrenal 
lesions were decided by consensus. For each 
adrenal lesion, a selected axial image was ob-
tained through CT for use in TA. The select-
ed images for the 166 adrenal masses were 
anonymized and exported from Sectra IDS7 
PACS (Sectra AB, Linköping, Sweden). The im-
age selection was made in the largest diame-
ter of the lesion. Reprocessing of the images 
was performed using standardization: (gray 
value-average value)/standard deviation. 
The images were examined and segmented 
using Local Image Feature Extraction (LIFEx) 
software (version 5.1; http://www.lifexsoft.
org) independently by two radiologists (IBA 
and CA) with 15 and 20 years of experience 
in abdominal radiology, respectively. Re-
gions of interest (ROIs) were drawn manual-
ly on each CT image for the measurements  
(Figures 2, 3). To provide uniformity, the num-
ber of gray levels was adjusted to 128 (7 bits). 
Furthermore, to homogenize the voxel sizes 
in the XYZ directions, they were adjusted as 
X, 0.5 mm; Y, 0.5 mm; and Z, 2.5 mm after cal-
culating their mean ± 3 standard deviations. 
First-order and second-order TA features 
were calculated in each adrenal lesion.

Main points

• Adrenal masses are commonly encountered 
in daily practice, and it can be difficult to dis-
tinguish between lipid-poor adenoma and
masses that may require surgical treatment
based on non-contrast computed tomogra-
phy (CT).

• Texture analysis reveals minor differences
in gray levels, which can provide guidance
in the differential diagnosis of visceral neo-
plasms. 

• This study suggests that lipid-poor adeno-
ma, adrenal metastasis, and pheochromo-
cytoma can be distinguished through an
analysis of textural features in non-contrast
CT images
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Statistical Analysis

IBM SPSS software for Windows, version 
24.0 (IBM Corporation, Armonk, NY), was 
used for all statistical analyses. We recorded 
demographic data, including the patient’s 
age, sex, diagnosis, and TA measurements. 
Interobserver variability between the two 
radiologists was evaluated using intra-
class correlation coefficients (0–0.4, poor 
agreement; 0.41–0.6, moderate agreement; 
0.61–0.8, good agreement; 0.81–1, excellent 
agreement). We performed One-Way analy-
sis of variance (ANOVA) with Bonferroni cor-
rection to compare the differences in the TA 
parameters of LRA, LPA, ADM, and APh. The 
non-parametric Mann–Whitney U test was 
performed to detect significant associations 
between the texture parameters and each 
adrenal subgroup. LPAs were excluded from 
the statistical evaluation because they are 
easily recognized in non-contrast CT exam-
inations and do not cause diagnostic difficul-
ties. Receiver operating characteristic (ROC) 
curve analysis was performed to evaluate the 

diagnostic performance of the parameters 
in differentiating among the adrenal lesion 
subgroups by calculating the area under the 
ROC curve (AUC). A P value <0.050 was con-
sidered statistically significant.

Next, we developed three models to iden-
tify texture features predicting LPA, ADM, and 
APh, with P < 0.050 in the univariate analysis. 
A logistic regression model was developed 
based on the qualitative features. In the final 
logistic regression model, statistically signif-
icant texture parameters were used for the 
three comparisons (12 for LPA vs. ADM, 15 
for LPA vs. APh, and 4 for ADM vs. APh). The 
model performance was assessed according 
to sensitivity, specificity, negative predictive 
value (NPV), positive predictive value (PPV), 
and accuracy.

Results
The final study population consisted of 

140 patients (64 men, 76 women; mean age, 
56.58 ± 13.65 years) with 166 adrenal lesions. 

Fifty-four adrenal lesions were diagnosed 
with LRA, 37 were diagnosed with LPA, 56 
were diagnosed with ADM, and 19 were di-
agnosed with APh (Table 1). There were no 
significant differences in age or sex among 
the subgroups. In our series of 91 adrenal 
adenomas, 76% were non-functioning. The 
total interobserver agreement between 
two radiologists (IBA and CA) was κ = 0.73 
in the TA calculation. Due to the high level 
of interobserver agreement and the large 
amount of numerical data, the data of ob-
server 1 are presented in the tables. Twen-
ty-seven texture parameters, consisting of 
11 histogram features, 7 GLCM features, 3 
GLRLM features, 3 NGLDM features, and 3 
GLZLM features, showed statistically sig-
nificant differences. The One-Way ANOVA 
identified 16 second-order texture parame-
ters that were significantly different among 
all adrenal lesion subgroups (Table 2). The 
Mann–Whitney U test identified 12 texture 
parameters that could differentiate between 
LPA and ADM (P = 0.000–0.032), 15 that 

Figure 1. Flowchart of patients with adrenal lesions. CT, computed tomography; MRI, magnetic resonance imaging; PET-CT, positron emission tomography-
computed tomographöy.

Table 1. Imaging characteristics of adrenal lesions 

Imaging characteristics Lipid-rich adenoma (n = 54) Lipid-poor adenoma (n = 37) Metastasis (n = 56) Pheochromocytoma (n = 19)

HUmin −70.57 ± 22.9 −57.12 ± 32.7 −32.90 ± 30.2 −30.67 ± 34.7

HUmean −9.84 ± 13.9 14.60 ± 14.6 30.32 ± 13.9 33.47 ± 11.9

HUmax 49.56 ± 141.2 74 ± 98.9 83.5 ± 26.4 89 ± 19.4

Mean lesion size (cm) 5.4 5.9 7.8 4.9

Mean SUVmax - - 8.6 -

SUVmax, maximum standardized uptake value; HUmin, Hounsfield unit minimum; HUmean, Hounsfield unit mean; HUmax, Hounsfield unit maximum.
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Figure 2. (a) Lipid-rich adenoma in a 49-year-old woman. A well-circumscribed and low-density lesion was observed in the right adrenal gland in axial computed 
tomography (CT) (white arrows). (b) A 37-year-old woman with lipid-poor adenoma diagnosed histopathologically. Axial unenhanced CT showed a lipid-poor right 
adrenal mass (white arrows). The mass with a density of 22–56 Hounsfield unit (HU) had a heterogeneous internal structure. (c) Adrenal metastases were diagnosed 
through surgery in a 56-year-old man with lung cancer. Axial unenhanced CT showed a large, well-defined, homogenous left adrenal mass with a density of 54 HU 
(white arrows). (d) Surgically resected pheochromocytoma in a 32-year-old man. Axial unenhanced CT showed a well-defined, homogenous, spherical left adrenal 
mass with a density of 46 HU (white arrows). 

Figure 3. Segmentation examples of reader 1 (a) and reader 2 (b). (a) Texture analyses of the lipid-rich adrenal adenoma using local image feature extraction (LIFEx) 
software [lesion tagged with a yellow region of interest (ROI)]. (b) Texture analyses of the lipid-poor adrenal adenoma using LIFEx software (lesion tagged with a 
green ROI). (c) Texture analyses of the adrenal metastasis using LIFEx software (lesion tagged with a red ROI). (d) Texture analyses of the adrenal pheochromocytoma 
using LIFEx software (lesion tagged with a pink ROI).
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could differentiate between LPA and APh (P 
= 0.000–0.039), and 7 that could differenti-
ate between ADM and APh (P = 0.002–0.042) 
(Table 3). Texture parameters that were sig-
nificantly different between LPA and ADM, 

between LPA and APh, and between ADM 
and APh were identified by ROC analysis. The 
AUCs for all independent factors distinguish-
ing the lesions in these three comparisons 
were between 0.25 and 0.87. The AUCs, 95% 

confidence intervals, optimal cut-off values, 
sensitivities, and specificities for each of the 
three comparisons are listed in Tables 3-5, 
respectively. Logistic regression analyses 
produced three logistic models. The logis-

Table 3. First-order and second-order radiomic features with significant differences between LRA, LPA, ADM, and APh

First- and second-order texture parameters 1-2* 1-3* 1-4* 2-3* 2-4* 3-4*

HUmin 0.032 <0.001 <0.001 0.001 0.007 0.443

HUmean <0.001 <0.001 <0.001 <0.001 <0.001 0.116

HUstd 0.021 0.995 0.138 0.032 0.003 0.144

HUmax <0.001 <0.001 <0.001 0.027 0.036 0.692

HUQ1 <0.001 <0.001 <0.001 <0.001 <0.001 0.075

HUQ2 <0.001 <0.001 <0.001 <0.001 <0.001 0.144

HUQ3 <0.001 <0.001 <0.001 <0.001 <0.001 0.348

HU-skewness 0.067 0.032 0.028 0.100 0.869 0.635

HU peak sphere 0.5 mL 0.822 0.292 0.013 0.254 0.038 0.002

HU peak sphere 1 mL 0.181 0.306 0.033 0.624 0.206 0.100

GLCM-homogeneity 0.170 0.037 0.497 0.689 0.191 0.073

GLCM-energy 0.539 0.006 <0.001 0.101 0.011 0.095

GLCM-contrast 0.098 0.047 0.327 0.100 0.079 0.040

GLCM-correlation 0.025 0.031 0.346 0.510 0.033 0.053

GLCM-entropy log10 0.545 0.005 <0.001 0.103 0.009 0.093

GLCM-entropy log2 0.545 0.005 <0.001 0.103 0.009 0.093

GLCM-dissimilarity 0.106 0.035 0.365 0.826 0.085 0.040

GLRLM-LRLGE 0.904 0.021 0.315 0.031 0.222 0.407

GLRLM-GLNU 0.704 0.008 <0.001 0.023 0.002 0.042

GLRLM-RLNU 0.765 0.006 <0.001 0.089 0.005 0.062

NGLDM-coarseness 0.314 0.055 <0.001 0.666 0.039 0.008

NGLDM-contrast 0.450 0.002 0.191 0.124 0.697 0.355

NGLDM-busyness 0.359 0.061 <0.001 0.024 0.001 0.005

GLZM-LZLGE 0.790 0.009 0.163 0.031 0.121 0.526

GLZM-GLNU 0.710 0.008 <0.001 0.023 <0.001 0.007
(1) lipid-rich adrenal adenoma, (2) lipid-poor adrenal adenoma, (3) adrenal metastasis, (4) adrenal pheochromocytoma *P < 0.050. LRA, lipid-rich adrenal adenomas; LPA, 
lipid-poor adrenal adenoma, ADM, adrenal metastase; APh, adrenal pheochromocytoma; HUmin, hounsfield unit minimum; HUmean, hounsfield unit mean; HUmax, hounsfield unit 
maximum; GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run-length matrix; GLNU, gray-level non-uniformity; NGLDM, neighborhood gray-level difference matrix.

Table 4. Accuracy of radiomic features for differentiating between lipid-poor adrenal adenoma and adrenal metastasis 

  AUC ± std (95% confidence interval) P value Cut-off value Sensitivity (%) Specificity (%)

HUmin 0.71 ± 0.054 (0.61–0.81) 0.012 −44.61 64.3 64.8

HUmean 0.78 ± 0.051 (0.69–0.88) <0.001 24.00 73.2 72.9

HUstd 0.37 ± 0.058 (0.25–0.48) 0.032 19.16 62.2 37.8

HUmax 0.63 ± 0.060 (0.52–0.75) 0.027 80.32 58.9 59.4

HUQ1 0.78 ± 0.052 (0.68–0.88) <0.001 12.54 73.2 72.9

HUQ2 0.76 ± 0.051 (0.68–0.88) <0.001 23.86 73.2 72.9

HUQ3 0.63 ± 0.052 (0.66–0.86) <0.001 35.75 71.4 70.2

GLRLM-LRLGE 0.63 ± 0.060 (0.51–0.75) 0.031 0.0036 58.9 59.4

GLRLM-GLNU 0.64 ± 0.061 (0.52–0.76) 0.023 10.71 60.7 59.4

NGLDM-busyness 0.64 ± 0.061 (0.52–0.76) 0.024 0.0124 76.8 45.9

GLZLM-LZLGE 0.63 ± 0.059 (0.52–0.75) 0.031 0.0022 76.8 59.5

GLZLM-GLNU 0.64 ± 0.060 (0.52–0.76) 0.023 6.75 76.8 62.2

HUmin, Hounsfield unit minimum; HUmean, Hounsfield unit mean; HUmax, Hounsfield unit maximum; AUC, area under the ROC curve; GLCM, gray-level co-occurrence matrix; GLRLM, 
gray-level run-length matrix; GLNU, gray-level non-uniformity; NGLDM, neighborhood gray-level difference matrix; std, standard.
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tic models were evaluated to ascertain the 
relationships between LPA and ADM, LPA 
and APh, and ADM and APh (Tables 4-6). The 
sensitivity, specificity, PPV, NPV, and accuracy 
of the first model (LPA vs. ADM) were 85.7%, 
70.3%, 81.3%, 76.4%, and 79.5%, respective-
ly (P = 0.050). The sensitivity, specificity, PPV, 

NPV, and accuracy of the second model (LPA 
vs. APh) were all 100% (P < 0.001). The sen-
sitivity, specificity, PPV, NPV, and accuracy of 
the third model (ADM vs. APh) were 87.5%, 
82%, 36.8%, 98.2%, and 82.7%, respectively 
(P = 0.018). We present all values of our logis-
tic regression models in Table 7. The first lo-

gistic model found that HUmean, GLRLM-long 
run low gray-level emphasis (GLRLM-LGE), 
and NGLDM-Busyness were significant fac-
tors differentiating LPA from ADM, with odds 
ratios (ORs) of 3.87, 2.64, and 5.07, respec-
tively. In the second model, GLRLM-gray-lev-
el non-uniformity (GLRLM-GLNU) and HUmean 

Table 5. Accuracy of radiomic features for differentiating between lipid-poor adrenal adenoma and adrenal pheochromocytoma

  AUC ± std (95% confidence 
interval)

P value Cut-off value Sensitivity (%) Specificity (%)

HUmin 0.72 ± 0.079 (0.57–0.88) 0.071 −41.05 68.4 67.5

HUmean 0.86 ± 0.048 (0.77–0.96) <0.001 26.96 78.9 78.4

HUstd 0.25 ± 0.076 (0.10–0.40) 0.003 18.49 31.6 32.4

HUmax 0.67 ± 0.071 (0.53–0.81) 0.040 82.26 63.2 62.1

HUQ1 0.87 ± 0.048 (0.77–0.96) <0.001 15.22 78.9 78.37

HUQ2 0.85 ± 0.051 (0.75–0.95) <0.001 24.42 78.9 78.4

HUQ3 0.83 ± 0.054 (0.72–0.94) <0.001 37.41 78.9 75.6

GLCM energy 0.29 ± 0.072 (0.15–0.43) 0.013 0.00066 36.8 32.4

GLCM correlation 0.32 ± 0.079 (0.17–0.48) 0.030 0.49 36.8 35.1

GLCM-entropy log 10 0.72 ± 0.072 (0.58–0.86) 0.001 3.203 68.4 67.6

GLCM-entropy log 2 0.72 ± 0.072 (0.58–0.86) 0.001 10.63 68.4 67.5

GLRLM-GLNU 0.76 ± 0.070 (0.62–0.89) 0.002 15.19 73.7 72.9

GLRLM-RLNU 0.73 ± 0.072 (0.59–0.87) 0.005 1046.48 73.7 70.2

NGLDM-coarseness 0.33 ± 0.074 (0.18–0.47) 0.040 0.0045 47.4 32.4

NGLDM-busyness 0.78 ± 0.065 (0.65–0.91) 0.001 0.022 78.9 72.9

GLZLM-GLNU 0.81 ± 0.058 (0.69–0.92) <0.001 14.29 78.6 73.9

GLZLM-ZLNU 0.73 ± 0.072 (0.58–0.87) 0.006 896.77 73.7 70.3

HUmin, hounsfield unit minimum; HUmean, hounsfield unit mean; HUmax, hounsfield unit maximum; AUC, area under the ROC curve; GLCM, gray-level co-occurrence matrix; GLRLM, 
gray-level run-length matrix; GLNU, gray-level non-uniformity; NGLDM, neighborhood gray-level difference matrix; std, standard.

Table 6. Accuracy of radiomic features for differentiating between adrenal metastasis and adrenal pheochromocytoma

  AUC ± std (95% confidence 
interval)

P value Cut-off value Sensitivity (%) Specificity (%)

HU peak sphere 0.5 mL 0.68 ± 0.083 (0.51–0.84) 0.023 0.456 89.3 10.7

GLCM-contrast 0.66 ± 0.079 (0.50–0.81) 0.040 462.22 63.2 62.5

GLCM-dissimilarity 0.66 ± 0.078 (0.50–0.81) 0. 040 16.85 63.2 62.5

GLRLM-GLNU 0.66 ± 0.067 (0.52–0.79) 0. 042 20.35 63.2 64.2

NGLDM-coarseness 0.29 ± 0.065 (0.16–0.42) 0.008 0.0030 73.7 19.6

NGLDM-busyness 0.72 ± 0.064 (0.59–0.84) 0.005 0.0249 68.4 64.2

GLZLM-GLNU 0.71 ± 0.059 (0.59–0.82) 0.007 19.16 68.4 64.3

HU, hounsfield unit; AUC, area under the ROC curve; GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run-length matrix; GLNU, gray-level non-uniformity; NGLDM, 
neighborhood gray-level difference matrix; std, standard.

Table 7. Statistical values of logistic regression models 

Model 1* Model 2** Model 3***

Sensitivity (%) 85.7 100 87.5

Specificity (%) 70.3 100 82

Positive predictive value (%) 81.3 100 36.8

Negative predictive value (%) 76.4 100 98.2

Accuracy (%) 79.5 100 82.7

P value 0.050 <0.001 0.018

*, statistical model between lipid-poor adrenal adenoma and adrenal metastasis; **, statistical model between lipid-poor adrenal adenoma and adrenal pheochromocytoma; ***, 
statistical model between adrenal metastasis and adrenal pheochromocytoma).
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were identified as factors differentiating LPA 
from APh, with ORs of 119.09 and 4.98, re-
spectively. An HU peak sphere of 0.5 mL was 
identified as a factor differentiating ADM 
from APh, with an OR of 4.2.

Discussion
We evaluated the performance of CT-

based TA for differentiating adrenal lesions in 
unenhanced CT images. The results indicate 
that TA in unenhanced CT images may help 
to differentiate adrenal lesion subgroups. 
Numerous TA parameters can be useful for 
the differential diagnosis of adrenal lesions. 
GLCM-homogeneity, GLCM-contrast, GL-
RLM-LGE, and NGLDM-contrast are unique 
identifiers for discrimination, demonstrating 
the highest sensitivity and specificity rates 
(Table 1).

Unenhanced CT, CT washout, and adre-
nal MRI have been used to differentiate LRAs 
from other adrenal masses, with high sensi-
tivities and specificities.3,4 However, there are 
occasionally false-positive diagnoses of LPAs 
that mimic ADM or APh.15 Adrenal LRAs are 
easily identified through contrast-enhanced 
CT using a cut-off of 10 HU.3 Washout CT is 
widely used to differentiate LRA and LPA 
from other adrenal lesions. Johnson et al.16 

reported a sensitivity of 88% and specificity 
of 96% for diagnosing adrenal adenomas 
using absolute percentage washout in CT. 
However, Patel et al.17 revealed that LPA and 
APh have a diagnostic overlap with CT at-
tenuation and washout criteria. Seo et al.18 

compared the ability of MRI and washout CT 
to diagnose LPA and reported sensitivities of 
75.7% and 100% and specificities of 60% and 
80%, respectively. Hypervascular metastases 
in the adrenal gland show a rapid washout 
pattern in CT and cannot be differentiated 
from adrenal adenomas.19 Another diagnos-
tic issue is that hepatocellular carcinomas 
and renal cell carcinomas are rich in intracy-
toplasmic fat, resulting in difficult differen-
tiation from LRAs based on chemical-shift 
MRI.19 Therefore, the diagnostic capabilities 
of unenhanced CT, washout CT, and adrenal 
MRI are limited in terms of definitive differen-
tiation among LPA, ADM, and APh.

TA enables the evaluation of a variety of 
image pixels used to describe the relation-
ships among their gray-level intensity posi-
tions within an image.20 To evaluate the inter-
nal architecture of adrenal lesions, TA can be 
used to quantify intratumoral heterogeneity 
based on the distribution of gray-level values 
and the spatial arrangement of the pixels 
within a given region of interest.20 Previous 

studies have demonstrated that TA helps 
distinguish among adrenal lesions. Shi et al.1 
performed TA using CT to distinguish ADM 
from benign adrenal masses; they used sup-
port vector machine modeling and reported 
an AUC of 0.85 ± 0.03 and accuracy of 77% for 
distinguishing metastatic from benign adre-
nal masses. Yi et al.21 used a texture software 
program (MaZda, version 4.6) to analyze CT 
images to differentiate LPA from APh. Their 
logistic regression model based on four tex-
ture parameters differentiated LPA from APh, 
with a sensitivity, specificity, and accuracy 
of 86.2%, 97.5%, and 94.4%, respectively. 
Sensitivity and specificity were higher in the 
present study; the difference may be related 
to the differences in the software used and 
the higher number of second-order param-
eters in our study. Elmohr et al.22 used TA in 
54 cases of adrenal adenomas and carcino-
mas. Using Boruta random forest modeling, 
they achieved a validated accuracy of 82% 
for differentiating benign from malignant 
adrenal lesions. Ho et al.23 performed a mul-
tivariate logistic analysis of 21 texture fea-
tures, which were combined for each modal-
ity, to show that contrast-enhanced CT and 
chemical-shift MRI could identify malignant 
lesions, whereas unenhanced CT could not, 
in 23 patients (malignant adrenal lesions in 
8 and LPAs in 15). We included more patients 
in our study and a significant difference was 
found between adenomas and malignant 
lesions. Torresan et al.24 used a cutoff mean 
densitometry value of 22.5 HU for con-
trast-enhanced CT TA with a sensitivity and 
specificity of 95% and 100%, respectively.

To differentiate LRAs from other adrenal 
lesions (ADMs and APhs) using TA, 10 first-or-
der and 16 second-order texture parameters 
were identified as statistically significant in 
our study. HU-Skewness, GLCM-Homoge-
neity, and NGLDM-Contrast were the most 
significantly different texture parameters 
between LRA and ADM. LRAs are easily dif-
ferentiated from other lipid-poor adrenal 
lesions using conventional adrenal imaging 
techniques.

It is often difficult to differentiate LPA 
from ADM or APh in daily radiological prac-
tice. LPA is a benign condition that does not 
require surgical treatment. In contrast to pre-
vious studies, we focused on comparisons of 
first-order and second-order texture param-
eters to distinguish among LPA, ADM, and 
APh. 

In our study, LPA was significantly differ-
ent from ADM in appearance, based on 12 
texture parameters in unenhanced CT im-

ages, with high sensitivity and specificity of 
85.7% and 70.3%, respectively. The first-order 
texture parameters GLRLM-LGE, GLRLM-GL-
NU, NGLDM-Busyness, GLZLM low gray-level 
zone emphasis, and GLZLM-GLNU calculated 
on enhanced CT images had positive correla-
tions with ADM. Moreover, HUmean (OR: 3.87), 
GLRLM-LGE (OR: 2.64), and NGLDM-Busyness 
(OR: 5.07) were the texture parameters that 
best differentiated LPA from ADM. Our study 
included a sufficient number of cases to eval-
uate TA using 45 parameters and to construct 
a logistic model based on these texture pa-
rameters, allowing us to predict malignancy 
using TA.

We also evaluated the relationship be-
tween LPA and APh. A comparison of our 
results with those in recent studies that 
evaluated CT for the same clinical questions 
revealed higher sensitivity and specificity 
values for our TA results than those identi-
fied by Yi et al.21. In this study, sensitivity and 
specificity for distinction between LPA and 
APh were 86.2% and 97.5%, respectively. In 
addition, our model predicts APh with high 
accuracy using conventional assessment 
methods in unenhanced CT. Moreover, the 
GLRLM-GLNU value in the second-order TA 
was a statistically significant factor differenti-
ating LPA from APh, with a high OR of 119.09.

Finally, we also evaluated the role of TA 
in differentiating ADM from APh in unen-
hanced CT images. Our logistic regression 
analysis identified an HU peak sphere of 0.5 
mL (OR: 4.2) as a more robust factor differen-
tiating these two lesion types compared with 
the other texture parameters. Our study has 
several limitations. First, the retrospective 
study design was potentially subject to bias. 
Previous studies have indicated that the re-
producibility and variability of TA are affect-
ed by the CT device and technique used. To 
overcome these limitations, we included 140 
patients who underwent unenhanced CT us-
ing the same acquisition protocol performed 
by two different CT scanners. Additional 
studies involving a larger number of cases 
and standardized CT acquisition protocols 
will provide more reliable results. Second, we 
did not include any primary malignant adre-
nal tumors. Although malignant adrenal tu-
mors are rare, ADM being the most common, 
the inclusion of malignant adrenal tumors of 
different histopathological types, especially 
adrenocortical cancer, is needed to improve 
the reliability of our results. Another limita-
tion is that we used two-dimensional analy-
sis, which may have resulted in less available 
information during the data transfer com-
pared with three-dimensional analysis.25 Fi-
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nally, our machine learning program used lo-
gistic regression analysis and SPSS software, 
whereas recent studies have used additional 
texture parameters and specialized machine 
learning programs (i.e., random forest, GBM), 
which can improve the results.

In conclusion, TA parameters in unen-
hanced CT images can be used to differenti-
ate among the four most frequently encoun-
tered adrenal tumors, LRA, LPA, ADM, and 
APh. Differences in texture parameters may 
be related to differences in tumor cellularity, 
lipid content, and biological behavior. The 
addition of TA parameters to CT findings may 
improve the ability of radiologists to distin-
guish LPA from ADM or APh. Unenhanced 
CT-based TA has potential for the diagnosis 
of incidental adrenal lesions, leading to accu-
rate diagnoses and preventing unnecessary 
surgical treatment. Further prospective trials 
in larger populations are needed to verify the 
role and performance of TA in patients with 
adrenal masses.
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Supplementary Table 1. Abdominal CT examination protocols used in patients included in the study

CT scanner I CT scanner II

CT scanner brand Brilliance 16; Philips Medical Systems, best the 
Netherlands

Brilliance 64; Philips Medical Systems, best the 
Netherlands

Reconstructed slice thickness in 3 plane 2.0 mm 2.0 mm

Tube voltage 120 120

mA Automatic tube current modulation activated, 
100–350 mA

Automatic tube current modulation activated, 
100–350 mA

Detector configuration 16 x 1.25 64 x 0.625

Detector collimation 4 x 1.25 16 x 0.625

Effective section thickness 1.25 mm 1.24 mm

Reconstruction interval 2 mm 2 mm

Pitch 1.375 1.75

CT, computed tomography.




