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PURPOSE
To systematically investigate the impact of image preprocessing parameters on the segmenta-
tion-based reproducibility of magnetic resonance imaging (MRI) radiomic features.

METHODS
The MRI scans of 50 patients were included from the multi-institutional Brain Tumor Segmenta-
tion 2021 public glioma dataset. Whole tumor volumes were manually segmented by two inde-
pendent readers, with the participation of eight readers. Radiomic features were extracted from 
two sequences: T2-weighted (T2) and contrast-enhanced T1-weighted (T1ce). Two methods were 
considered for discretization: bin count (i.e., relative discretization) and bin width (i.e., absolute dis-
cretization). Ten discretization (five for each method) and five resampling parameters were varied 
while other parameters were fixed. The intraclass correlation coefficient (ICC) was used for reliability 
analysis based on two commonly used cut-off values (0.75 and 0.90).

RESULTS
Image preprocessing parameters had a significant impact on the segmentation-based reproduc-
ibility of radiomic features. The bin width method yielded more reproducible features than the bin 
count method. In discretization experiments using the bin width on both sequences, according to 
the ICC cut-off values of 0.75 and 0.90, the rate of reproducible features ranged from 70% to 84% 
and from 35% to 57%, respectively, with an increasing percentage trend as parameter values de-
creased (from 84 to 5 for T2; 100 to 6 for T1ce). In the resampling experiments, these ranged from 
53% to 74% and from 10% to 20%, respectively, with an increasing percentage trend from lower to 
higher parameter values (physical voxel size; from 1 x 1 x 1 to 2 x 2 x 2 mm3). 

CONCLUSION
The segmentation-based reproducibility of radiomic features appears to be substantially influ-
enced by discretization and resampling parameters. Our findings indicate that the bin width meth-
od should be used for discretization and lower bin width and higher resampling values should be 
used to allow more reproducible features.
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Radiomics is a field of medical image analysis that enables the digital decoding of im-
ages into high-throughput quantitative features.1 Medical images may contain hidden 
patterns, indicating the underlying pathophysiology of the examined tissue. Based on 

this assumption, radiomic features derived from these images might help characterize tis-
sues and guide clinical decision-making.1,2 Support for this notion has arisen from numerous 
studies that have addressed the capability of radiomics in making predictions regarding dif-
ferent clinical endpoints.3 There has been an exponential increase in publications related to 
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radiomics, with a yearly growth rate of 19.6% 
and a doubling time of 3.9 years.4 However, 
reproducing and validating published stud-
ies is still challenging due to a lack of stan-
dardized definitions, parameter settings, and 
inadequate reporting.5-9

Before implementing radiomics in clin-
ical practice, it is necessary to have a thor-
ough understanding of the reproducibility 
of radiomic features. Many previous publi-
cations have emphasized the dependency 
of radiomic features on different factors, 
such as temporal variability,10,11 scanning 
parameters,12-14 delineation uncertainty,15,16 
reconstruction algorithms,17 preprocessing,8 
and organ motion.18 The absolute value 
and statistical distribution of the radiomics 
features are considerably affected by the 
aforementioned determinants, which in turn 
affects the robustness and generalizability of 
any subsequent analysis derived from these 
features. To overcome this divergence, the 
Image Biomarker Standardization Initiative 
(IBSI) attempted to standardize the radiomic 
feature extraction process, focusing on the 
issues of repeatability, reproducibility, and 
validation in quantitative image analysis and 
radiomics.5 According to this initiative, stan-
dardized image processing should be per-
formed before radiomic feature extraction.5 
Nonetheless, no specific processing param-
eter settings have been published to date, 
which underlines the requirement for addi-
tional research.8,19,20

One of the most important steps in the 
radiomic pipeline that affects reproducibility 
is segmentation or delineation.21,22 For exam-
ple, a feature might be highly reproducible in 
a test–retest setting, but there is no guaran-

tee that this feature will be robust after seg-
mentation. Segmentation-based reproduc-
ibility analysis is extensively used to reduce 
the high dimensionality of radiomics data as 
a data handling step for subsequent predic-
tive modeling procedures.2,23 However, only 
a limited number of studies have focused on 
the impact of preprocessing settings on seg-
mentation-based feature reproducibility.24,25 
Duron et al.24 studied magnetic resonance 
imaging (MRI)-based radiomic features of 
lachrymal gland tumors and breast lesions 
with a focus on discretization techniques. 
Lu et al.25 investigated positron emission to-
mography/computed tomography (PET/CT)-
based radiomic features in patients with na-
sopharyngeal carcinoma, again with a focus 
on discretization. No research has specifically 
assessed the impact of both image voxel res-
ampling and gray-level discretization on the 
segmentation-based reproducibility of the 
radiomic features. However, these two pre-
processing methods are frequently encoun-
tered in radiomic feature extraction software 
tools.

The purpose of this study was to sys-
tematically investigate the effect of image 
preprocessing parameters on the segmen-
tation-based reproducibility of radiomic fea-
tures from MRI and to recommend reason-
able parameter settings for achieving highly 
reproducible features.

Methods
Figure 1 depicts the key study steps to 

help readers understand the methodology.

Dataset

In this study, we used the Brain Tumor 
Segmentation (BraTS) 2021 public glioma 
dataset,26-28 which does not require local ethi-
cal approval. The MRI data for the BraTS 2021 
challenge were collected using various clin-
ical protocols and scanners from a variety of 
data-contributing institutions. There were 
four MRI sequences in the dataset: T1-weight-
ed (T1), T2-weighted (T2), contrast-enhanced 
T1-weighted (T1ce), and fluid-attenuated in-
version recovery (FLAIR). All BraTS MRI scans 
underwent standardized preprocessing, which 
included the conversion of Digital Imaging and 
Communications in Medicine-format files to 
Neuroimaging Informatics Technology Initia-
tive format, co-registration to the same ana-
tomical template (SRI24),29 isotropic voxel res-
ampling (1 x 1 x 1 mm3), and skull-stripping.30

For this reproducibility study, 50 patients 
with gliomas were randomly selected. Pa-
tient identifiers are provided in the Supple-
mentary Table S1. Readers who performed 
the segmentation used all four sequences. 
Only two sequences-T2 and T1ce-were used 
for the preprocessing experiments to assess 
the dependency of the results on the differ-
ent sequences; the use of more sequences 
may have become unfeasible considering 
the workload and complexity of the study. 
The T2 sequence was selected to represent 
the outermost boundary of the tumor, and 
T1ce was used to evaluate the radiomic fea-
tures on a different image contrast, consider-
ing the relatively homogeneous appearance 
of glial tumors in T2 compared with T1ce.

Main points

•	 Variations of image preprocessing param-
eters, regarding discretization and resa-
mpling, have a significant impact on the 
segmentation-based reproducibility of ra-
diomic features.

•	 The bin width method yields more repro-
ducible features than the bin count method 
for discretization. 

•	 Using lower bin width values and higher re-
sampling values could help produce more 
reproducible features. 

•	 The optimal preprocessing parameters 
should be determined within the radiomic 
pipeline.

•	 To allow replication, preprocessing param-
eters should be transparently reported in 
radiomic publications due to their impor-
tance.

Figure 1. Key study steps and segmentation approach. 3D, three-dimensional; ICC, intraclass correlation 
coefficient; T1, T1-weighted; T2, T2-weighted; T1ce, contrast-enhanced T1-weighted; FLAIR, fluid-attenuated 
inversion recovery; 3D-seg, three-dimensional segmentation. aResampling fixed to 1 x 1 x 1 mm3. 
bDiscretization fixed to a bin count of 32.
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Segmentation

The glial tumors were manually segment-
ed using 3D Slicer software v4.11. The patho-
logical high signal intensity that appears in 
T2 and FLAIR sequences was used to seg-
ment the entire tumor volume. Readers were 
also free to use any of the four sequences 
available in the dataset to determine tumor 
borders (T1, T2, FLAIR, and T1ce). Figure 1 
also illustrates the segmentation approach.

The segmentation process involved eight 
readers (three radiologists and five radiology 
residents), with two readers (one radiology 
specialist and one radiology resident) for 
each patient. All of the specialists worked 
in the neuroradiology division. Two of these 
had ≥3 years and one had ≥1 years of experi-
ence in neuroimaging as a specialist. During 
the study, all of the residents were in their 
second or third year in radiology and on their 
first neuroradiology rotation. 

Preprocessing

All images were normalized to a scale of 
100 based on the mean and standard devi-
ation (SD) of voxel intensity values. To avoid 
negative values, the voxel arrays were shifted 
by 300.

Experiments were conducted by chang-
ing the discretization and resampling pa-
rameters. For discretization, two methods 
were considered: bin count (i.e., relative 
discretization) and bin width (i.e., absolute 
discretization). The following preprocessing 
parameters were used for bin count: 8, 16, 
32, 64, and 128. For the bin width method, 
the following preprocessing settings were 
used for T1ce: 6, 13, 25, 50, and 100; for T2: 5, 
11, 21, 42, and 84. The bin width values were 
determined based on the first-order range 
in the dataset to get an approximately equal 
number of gray levels compared with the bin 
count approach. When experimenting with 
the above-mentioned two discretization 
approaches, the resampling parameter was 
fixed to 1 x 1 x 1 mm3. For resampling, the 
physical voxel sizes were rescaled to 1 x 1 x 
1, 1.25 x 1.25 x 1.25, 1.5 x 1.5 x 1.5, 1.75 x 1.75 
x 1.75, and 2 x 2 x 2 mm3. When performing 
the resampling experiments, the discretiza-
tion parameter was fixed to a bin count of 32.

Feature extraction

Three-dimensional radiomic features, in-
cluding shape and texture, were extracted 
in batch mode using the PyRadiomics open-
source software environment (PyRadiom-
ics v3.0.1; NumPy v1.23.5; SimpleITK v2.3.0; 

PyWavelet v1.4.1; Python 3.10.12).31 The 
total number of features in each sequence 
was 1.106. Original, Laplacian of Gaussian 
(LoG)-filtered, and wavelet-transformed im-
ages were used in the feature extraction. The 
LoG filtering was performed with sigma val-
ues of 2, 4, and 6 mm, corresponding to fine, 
medium, and coarse patterns. The main fea-
ture classes were shape, first order, gray-lev-
el co-occurrence matrix, gray-level size 
zone matrix, gray-level run-length matrix, 
gray-level dependence matrix, and neigh-
boring gray-tone difference matrix.

Statistical analysis

The R v4.3 (rstatix v0.7.2) and Python v3.7 
(pingouin v0.5.2) software packages were 
utilized to conduct statistical analyses. To 
measure feature reproducibility, the intra-
class correlation coefficient (ICC) was esti-
mated based on two-way random effects, 
absolute agreement, and single measure-
ment, under the Shrout and Fleiss conven-
tion.32 The interpretation scale for the ICC 
was as follows: ICC <0.50, poor; 0.50≤ ICC 
<0.75, moderate; 0.75≤ ICC <0.90, good; and 
ICC ≥0.90, excellent.33 Two thresholds-0.75 
and 0.90-were used to report the percent-
ages of reproducible features. The normality 
of the ICC values was determined using the 
Shapiro–Wilk test. Depending on the group 

distributions, paired tests, notably the one-
way repeated measures analysis of variance 
(ANOVA) and the student t-test, were used to 
evaluate statistical differences in continuous 
variables for all and pair-wise comparisons, 
respectively. McNemar’s test was utilized to 
compare the distribution of categorical vari-
ables (i.e., reproducible vs. non-reproducible 
features based on ICC cut-off values). Sta-
tistical results were considered significant if 
P values were ≤0.05. Multiple comparisons 
were subjected to multiplicity correction us-
ing the Tukey test or Bonferroni correction as 
appropriate. In these comparisons, statistical 
significance was determined based on ad-
justed or unadjusted but corrected P values, 
for the Tukey test and Bonferroni correction, 
respectively.

Results
Figure 2 presents the distribution of the 

ICC estimates for various preprocessing 
processes, including discretization with bin 
count, discretization with bin width, and vox-
el resampling. Detailed descriptive statistics 
of the ICC estimates based on preprocessing 
processes are presented in Table 1. As the bin 
width was reduced in the experiments, the 
mean ICC values increased. In experiments 
involving the bin count, the mean ICC val-

Figure 2. Distribution of the intraclass correlation coefficient (ICC) estimates for different preprocessing 
steps. Experiments with bin count (a, b), bin width (c, d), and voxel resampling (e, f) on contrast-enhanced 
T1-weighted (T1ce) and T2-weighted (T2) sequences. The filled circle and bar inside the violin represent the 
mean and standard deviation, respectively.
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ues increased as the bin count increased. 
Both tests revealed that an increase in the 
number of gray levels led to an increase in 
the mean ICC values and, in turn, the seg-
mentation-based reproducibility of radiomic 

features. The mean ICC values were statisti-
cally significantly different and higher in the 
bin width group (for T1ce, mean ± SD, 0.855 
± 0.158; for T2, mean ± SD, 0.818 ± 0.169) 
than in the bin count group (for T1ce, mean 

± SD, 0.729 ± 0.196; for T2, mean ± SD, 0.713 
± 0.180) on both of the T1ce [t(2,764) = −28.2, 
P < 0.001] and T2 [t(2,764) = −22.3, P < 0.001] 
sequences. For the resampling, the mean ICC 
values improved as the resampled physical 
voxel size increased.

Table 2 presents the ANOVA findings for 
parameter differences across experimental 
groups. Although the effect sizes were mi-
nor (range: 0.002–0.029), all comparisons for 
all three preprocessing experiments were 
statistically significant (P < 0.001 for all ex-
periments in both sequences). The statisti-
cally significant pairs following the post-hoc 
Tukey test are summarized in Table 3. Con-
sidering all evaluations based on sequence 
and preprocessing experiments, there were 
statistically significant differences at least be-
tween all minimum and maximum numeric 
values of the preprocessing parameters (e.g., 
bin count of 8 vs. 128; resampling 1 x 1 x 1 vs. 
2 x 2 x 2 mm3).

Figures 3 and 4 depict the percentages of 
features with good and excellent reproduc-
ibility in the discretization and resampling 
experiments, based on two typical ICC cut-
off values (0.75 and 0.90). In the discretiza-
tion experiments with bin count on both 
sequences, taking the ICC cut-offs of 0.75 
and 0.90 into account, the rate of reproduc-
ible features was 36%–69% and 9%–19%, 
respectively, with an increasing percentage 
trend from lower parameter values to higher 
parameter values. In the discretization ex-
periments with bin width on two sequenc-
es, with the ICC cut-off values of 0.75 and 
0.90, the rate of reproducible features was 
70%–84% and 35%–57%, respectively, with 
an increasing percentage trend as parameter 
values decreased. In resampling experiments 
on both sequences, with the ICC cut-off val-
ues of 0.75 and 0.90, the rate of reproduc-
ible features was 53%–74% and 10%–20%, 
respectively, with an increasing percentage 
trend from lower to higher parameter values.

Given a fixed first-order range in a se-
quence calculated based on the dataset, the 
bin width experiments outperformed the re-

Table 1. Descriptive statistics of intraclass correlation coefficients for preprocessing 
experiments

Sequence Preprocessing method Preprocessing parameter
ICC estimate

Mean SD

T1ce Bin count 8 0.678 0.206

16 0.707 0.203

32 0.740 0.188

64 0.757 0.187

128 0.765 0.182

Bin width 6 0.864* 0.165

13 0.859* 0.165

25 0.858* 0.160

50 0.852* 0.149

100 0.840* 0.149

Resampling 1 x 1 x 1 mm3 0.740 0.188

1.25 x 1.25 x 1.25 mm3 0.760 0.178

1.5 x 1.5 x 1.5 mm3 0.782 0.161

1.75 x 1.75 x 1.75 mm3 0.784 0.160

2 x 2 x 2 mm3 0.791 0.147

T2 Bin count 8 0.637 0.216

16 0.705 0.172

32 0.728 0.163

64 0.743 0.160

128 0.752 0.158

Bin width 5 0.834* 0.170

11 0.826* 0.169

21 0.818* 0.170

42 0.816* 0.160

84 0.796* 0.175

Resampling 1 x 1 x 1 mm3 0.728 0.163

1.25 x 1.25 x 1.25 mm3 0.731 0.157

1.5 x 1.5 x 1.5 mm3 0.752 0.154

1.75 x 1.75 x 1.75 mm3 0.743 0.155

2 x 2 x 2 mm3 0.749 0.157

*Top 10 values. ICC, intraclass correlation coefficient; SD, standard deviation; T1ce, contrast-enhanced T1-weighted; 
T2, T2-weighted.

Table 2. One-way repeated measures analysis of variance results of intraclass correlation coefficients

Preprocessing method Sequence dfN dfD F Generalized eta-squared P

Bin width T1ce 1 5528 14.722 0.003 <0.001

T2 1 5528 29.810 0.005 <0.001

Bin count T1ce 1 5528 105.387 0.019 <0.001

T2 1 5528 163.082 0.029 <0.001

Resampling T1ce 1 5528 62.761 0.011 <0.001

T2 1 5528 12.780 0.002 <0.001

T1ce, contrast-enhanced T1-weighted; T2, T2-weighted; dfN, degrees of freedom in the numerator; dfD, degrees of freedom in the denominator.
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spective bin count (e.g., for T1ce, a bin count 
of 128 vs. a bin width of 6) in terms of the per-
centages of features with good (ICC ≥0.75) 
and excellent (ICC ≥0.90) reproducibility in 
all comparisons, with statistically significant 
distributional differences (Table 4).

Figures 5 and 6 for the T1ce sequence and 
Supplementary Figures S1 and S2 for the T2 
sequence depict the reproducibility of radio-
mic features according to the feature classes 
and image types from which they were ex-
tracted. In the qualitative evaluation of these 
bar charts, there was no major trend devia-
tion other than the original image against 
the general trend.

Discussion
In this study, we systematically investigat-

ed the influence of image preprocessing pa-
rameters (i.e., discretization and resampling) 
on the segmentation-based reproducibility 
of MRI radiomic features and found a signif-
icant impact. The bin width method yielded 
more reliable features than the bin count 
method. Using lower bin width values and 
higher resampling values produced more re-
producible features.

Several studies have evaluated the influ-
ence of preprocessing and segmentation in-
dependently,34 neglecting their influence on 

each other to a large extent. To our knowl-
edge, very few studies have focused on the 
impact of preprocessing settings on seg-
mentation-based reproducibility.24,25 Addi-
tionally, no research has specifically assessed 
the impact of both image voxel resampling 
and gray-level discretization on the segmen-
tation-based reproducibility of radiomic fea-
tures. 

Duron et al.24 studied two independent 
MRI datasets of lachrymal gland tumors and 
breast lesions from two different centers, 
with two-dimensional delineations for each 
dataset. They evaluated six absolute (i.e., 
fixed bin width method) and eight relative 

Table 3. Statistically significant pairs after post-hoc Tukey test for one-way repeated measures analysis of variance

Preprocessing method Sequence
Preprocessing parameters

Estimate 95% CI lower 95% CI upper Adjusted P
Group#1 Group#2

Bin width T1ce 6 100 −0.024 −0.042 −0.006 0.004

13 100 −0.019 −0.038 −0.001 0.032

T2 5 84 −0.038 −0.058 −0.018 <0.001

11 84 −0.030 −0.050 −0.011 <0.001

21 84 −0.022 −0.042 −0.003 0.016

42 84 −0.020 −0.040 <0.001 0.044

Bin count T1ce 8 16 0.029 0.006 0.051 0.005

8 32 0.062 0.040 0.085 <0.001

8 64 0.079 0.056 0.101 <0.001

8 128 0.087 0.064 0.109 <0.001

16 32 0.034 0.011 0.056 <0.001

16 64 0.050 0.028 0.072 <0.001

16 128 0.058 0.035 0.080 <0.001

32 128 0.024 0.002 0.047 0.028

T2 8 16 0.068 0.047 0.088 <0.001

8 32 0.091 0.071 0.111 <0.001

8 64 0.106 0.086 0.126 <0.001

8 128 0.115 0.094 0.135 <0.001

16 32 0.023 0.003 0.044 0.016

16 64 0.038 0.018 0.059 <0.001

16 128 0.047 0.027 0.067 <0.001

32 128 0.024 0.003 0.044 0.013

Resampling1 T1ce 1 1.25 0.020 <0.001 0.039 0.047

1 1.5 0.042 0.022 0.061 <0.001

1 1.75 0.044 0.025 0.063 <0.001

1 2 0.051 0.031 0.070 <0.001

1.25 1.5 0.022 0.003 0.041 0.017

1.25 1.75 0.024 0.005 0.044 0.006

1.25 2 0.031 0.012 0.051 <0.001

T2 1 1.5 0.024 0.006 0.043 0.003

1 2 0.021 0.003 0.039 0.014

1.25 1.5 0.021 0.003 0.039 0.016
1Performed with isotropic fashion. One dimension (mm) of the voxel is presented. CI, confidence interval; T1ce, contrast-enhanced T1-weighted; T2, T2-weighted.
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(i.e., bin count method) discretization pa-
rameters and studied the distribution and 
highest number of replicable features for 
each technique. In addition, they utilized 
computer-generated delineations that were 
indicative of inter-observer variability. They 
observed that the discretization approach 
had a direct impact on feature repeatability, 
independent of observers, software, or meth-
od of delineation (simulated vs. human). Ab-
solute discretization (i.e., the fixed bin width 
method) was recommended because it con-

sistently produced statistically considerably 
more reproducible features than relative 
discretization. Large bin numbers or narrow 
bin widths produced the highest number of 
repeatable features in all experiments. They 
also underlined that, regardless of the select-
ed method, detailed documentation is vital 
so that results can be replicated. Although 
the tumors and range of parameters were 
completely different in our study from those 
of Duron et al.24, we observed similar trends 
in discretization experiments that confirmed 

and supported each other. Conversely, the 
most recent guidelines released by the IBSI,5 
and a recent seminal phantom study,8 rec-
ommend relative discretization techniques 
(i.e., the bin count method) across disparate 
acquisitions. Despite the recommendations, 
some other studies have shown that the rel-
ative discretization method might not be the 
optimal technique.24

Lu et al.25 investigated the robustness of 
PET/CT-based radiomic features in terms 
of segmentation and discretization and 
conducted experiments to study them in 
patients with nasopharyngeal carcinomas. 
In total, 50%–63% of their features had an 
ICC ≥0.8 for the segmentation experiments, 
whereas 21%–23% of features showed an 
ICC ≥0.8 for the discretization experiments. 
However, only 6 of 57 features (11%) had an 
ICC ≥0.8 for the simultaneous evaluation of 
both segmentation and discretization ex-
periments. Although Lu et al.25 used a meth-
odology that was quite different from ours, 
their study was indeed successful in showing 
the impact of discretization on the segmen-
tation-based reproducibility of the radiomic 
features.

Unlike the above-mentioned studies, we 
additionally experimented with resampling 
parameters and discovered that increasing 
resampling size resulted in improved seg-
mentation-based reproducibility rates. This 
additional finding on resampling is con-
tradictory to the studies on the phantom 
experiments regarding the reproducibility 
of radiomic feature values. For instance, in 
a very recent phantom study, Wichtmann 
et al.8 recommended that resampled voxels 
should not be too far from the original voxel 
size regarding feature reproducibility. 

Our experiments and previous studies 
indicate that both discretization and resa-
mpling parameters significantly impact the 
segmentation-based reproducibility of ra-
diomic features, and the optimal parameters 
to achieve high reproducibility in feature val-
ues and segmentation-based reproducibil-
ity seem contradictory. For this reason, care 
should be taken to find the optimal parame-
ters to achieve both feature value reproduc-
ibility and segmentation-wise reproducible 
features within the radiomic pipeline.

This study has several differences when 
compared with previous studies. First, the 
number of features was higher than that of 
previous studies and was as high as those 
in radiomics research publications that had 
a clinical purpose. Second, the analysis was 
not limited to discretization but included ex-

Figure 3. Percentage of features with good (ICC ≥0.75) and excellent (ICC ≥0.90) reproducibility based 
on experiments with discretization parameters. Experiments with bin count (a, b) and bin width (c, d) 
on contrast-enhanced T1-weighted (T1ce) and T2-weighted (T2) sequences. ICC, intraclass correlation 
coefficient.

Figure 4. Percentage of reproducible features based on experiments on resampling parameters, using 
ICC cut-off values of 0.75 (a) and 0.90 (b) for good and excellent reproducibility, respectively. Experiments 
were performed on contrast-enhanced T1-weighted (T1ce) and T2-weighted (T2) sequences. ICC, intraclass 
correlation coefficient.
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periments regarding resampling. These two 
preprocessing options commonly appear 
in open-source feature extraction software 
programs. Third, the experiments were per-
formed in a different pathology (i.e., glioma), 
expanding the knowledge of the impact of 
preprocessing on segmentation-based re-
producibility of radiomic features.

The public annotation dataset of BraTS 
2021 was not used in the reproducibility ex-
periments of this study because those data 
were based on a fusion of resultant annota-
tions from several automated methods, first 
using the simultaneous truth and perfor-
mance level estimation algorithm, followed 
by corrections applied by experts.28 It would 
be difficult to perform and replicate the re-
producibility experiments based on the pub-
lic dataset, which may also not be representa-
tive of radiomics publications in general (not 
specifically those on gliomas) because those 
papers assessing segmentation reproducibil-
ity generally include at least two individual 
readers. For this reason, we segmented the 
dataset included in this study ourselves us-
ing the whole tumor volume to truly repre-
sent the segmentation-based reproducibility 
step of the radiomic studies.

Our experiments provided several prac-
tical points that might be considered in ra-
diomic pipelines, associated publications, 
and clinical applications. First, image pro-
cessing including discretization and voxel 
resampling has a considerable impact on 
the segmentation-based reproducibility of 
radiomic features; this should be considered 
as a means of improving the reproducibility 
of radiomic features that will be input to the 
following modeling stages. Second, the bin 
width method provided more reliable fea-
tures than the bin count method in terms 
of segmentation-based reproducibility. 
Therefore, the bin width method should be 
favored in clinical studies. Third, using lower 
values for the bin width and higher values for 
the resampling provided more reproducible 
features. Given that there has been a lack of 
standardized preprocessing settings for dis-
cretization and resampling in the literature, 
these findings might provide guidance for 
end-users of the radiomic feature extraction 
tools. Fourth, due to their influence on the 
generation of reproducible inputs for mod-
eling, our findings indicate that the prepro-
cessing methods and their parameters must 
be defined in detail in published articles for 
radiomics models to be reliable.35 According 
to a recent study, these essential radiomic 
parameters have been usually poorly report-
ed in publications.7 The recently published 

Table 4. Comparison of reproducible features between different discretization techniques

ICC cut-off Sequence Bin count vs. bin width Statistic1 df P2

0.75 T1ce 128 vs. 6 104.4 1 <0.001

16 vs. 50 270.7 1 <0.001

32 vs. 25 182.6 1 <0.001

64 vs. 13 114.2 1 <0.001

8 vs. 100 293.5 1 <0.001

T2 128 vs. 5 120.5 1 <0.001

16 vs. 42 242.0 1 <0.001

32 vs. 21 152.5 1 <0.001

64 vs. 11 124.3 1 <0.001

8 vs. 84 307.8 1 <0.001

0.90 T1ce 128 vs. 6 398.1 1 <0.001

16 vs. 50 365.0 1 <0.001

32 vs. 25 380.7 1 <0.001

64 vs. 13 386.7 1 <0.001

8 vs. 100 325.4 1 <0.001

T2 128 vs. 5 322.7 1 <0.001

16 vs. 42 321.8 1 <0.001

32 vs. 21 338.4 1 <0.001

64 vs. 11 337.0 1 <0.001

8 vs. 84 300.0 1 <0.001
1McNemar’s chi-squared. 2In all comparisons, bin width was superior to bin count in terms of proportions of 
reproducible features. ICC, intraclass correlation coefficient; T1ce, contrast-enhanced T1-weighted; T2, T2-weighted; 
df, degrees of freedom.

Figure 5. Percentage of features with good (ICC ≥0.75) and excellent (ICC ≥0.90) reproducibility by feature 
classes. Experiments with bin count (a, b), bin width (c, d), and resampling (e, f) on contrast-enhanced T1-
weighted (T1ce) sequence. ICC, intraclass correlation coefficient; GLCM, gray-level cooccurrence matrix; 
GLSZM, gray-level size zone matrix; GLRLM, gray-level run-length matrix; GLDM, gray-level dependence 
matrix; NGTDM, neighboring gray-tone difference matrix.



 

Influence of image preprocessing on reproducibility of radiomic features • 159

Checklist for Evaluation of Radiomics Re-
search has also drawn attention to the same 
reporting issues.9

Our findings in this study should be inter-
preted with the following limitations. 

First, the protocol for the acquisition of 
the BraTS 2021 challenge is not entirely clear. 
It is necessary to conduct research into the 
influence of the acquisition protocol (e.g., 
scanner type or acquisition settings) on im-
age properties to gain a deeper comprehen-
sion of the behavior of radiomic features. 

Second, our research was limited to a sin-
gle imaging modality, two sequences, manu-
al three-dimensional segmentation, a single 
tumor pathology, and gross tumor volume to 
remain manageable, considering the num-
ber of experiments conducted. However, we 
should acknowledge that every one of the 
aforementioned limitations may hamper the 
generalizability of the findings. We could also 
have added other alternatives to this study; 
however, that may have unnecessarily in-
creased the complexity and workload, which 
was already high. This study aimed primar-
ily to bring the attention of the radiomics 
community to the sensitivity of segmenta-
tion-based reproducibility to slight changes 

in two common preprocessing methods and 
offer reasonable settings. Alternative factors, 
such as different tumors, other MRI sequenc-
es, and different segmentation techniques, 
should be investigated as part of ongoing 
research. 

Third, although significant and recom-
mended by the IBSI guidelines,5 the pre-
processing techniques utilized in this study 
were only representative of a subset of the 
available options. However, the methods 
we used are available on the user interface 
of nearly all open-source radiomic feature 
extraction tools. The issue of standardization 
in radiomic studies may also involve scanner 
performance, acquisition protocols, acquisi-
tion sequence parameters, and data analysis 
techniques. However, we believe that the re-
sults of our study could be a step toward the 
standardization of radiomics. 

Fourth, in our resampling experiments, 
the bin count was fixed. In light of the pair-
wise comparison experiments that were con-
ducted with the final number of gray levels 
fixed, we anticipate observing a similar pat-
tern when employing the bin width method. 
Additionally, when resampling images, we 
performed downsampling, as there has been 

no clear evidence on whether upsampling or 
downsampling methods are preferable.2,5,8 
However, although we considered the use of 
upsampling to be counterintuitive due to the 
addition of new voxels, it should be further 
explored in future experiments. 

Fifth, the optimal settings for image 
processing to achieve the highest propor-
tion of reproducible features were specific to 
the configuration used in this study. Our ob-
jective was not to identify absolute optimal 
values for all combinations of preprocessing 
settings. Consequently, no definitive conclu-
sions should be drawn regarding the abso-
lute best parameters (because, for example, 
they may be beyond the range of parameters 
used in the experiments) or the optimal se-
quence and discriminative performance. 

Sixth, we did not test semi-automated or 
automated procedures in this study. Even 
with such techniques, a human touch or con-
sensus segmentation is usually needed for 
correction, necessitating an analysis of fea-
ture reproducibility for segmentation, and 
supporting the need for conducting such a 
study.

In conclusion, to improve and standard-
ize radiomic applications, every potential 
dependency of radiomic features on vari-
ous parts of the radiomic workflow should 
be considered while developing a clinical 
or research project. In this study, the effect 
of image preprocessing parameters on the 
segmentation-based reproducibility of ra-
diomic features from MRI was investigated 
systematically. Variations of image process-
ing parameters related to discretization 
and resampling had a significant impact on 
the segmentation-based reproducibility of 
radiomic features within the scope of this 
study, regardless of MRI sequences. In terms 
of segmentation-based reproducibility, the 
bin width method yielded more reliable 
features than the bin count method. Using 
lower bin width values and higher resam-
pling values produced more reproducible 
features. We recommend that these process-
ing parameters be determined within the ra-
diomic pipeline and transparently reported 
in radiomic publications. We anticipate that 
the implementation of our recommenda-
tions may facilitate the selection of more 
reproducible features and enhance the 
translation and generalizability of radiomics 
analyses. Considering the radiomics repro-
ducibility crisis, extensive reproducibility 
studies are required before radiomics can 
be reliably implemented in routine clinical 
practice.

Figure 6. Percentage of features with good (ICC ≥0.75) and excellent (ICC ≥0.90) reproducibility by image 
types. Experiments with bin count (a, b), bin width (c, d), and resampling (e, f) on contrast-enhanced T1-
weighted (T1ce) sequence. ICC, intraclass correlation coefficient.
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Supplementary Table S1. Patient identifiers
# Identifier # Identifier

1 BraTS2021_00134 26 BraTS2021_01028

2 BraTS2021_00138 27 BraTS2021_01089

3 BraTS2021_00147 28 BraTS2021_01161

4 BraTS2021_00167 29 BraTS2021_01180

5 BraTS2021_00221 30 BraTS2021_01251

6 BraTS2021_00233 31 BraTS2021_01254

7 BraTS2021_00247 32 BraTS2021_01302

8 BraTS2021_00271 33 BraTS2021_01357

9 BraTS2021_00306 34 BraTS2021_01359

10 BraTS2021_00316 35 BraTS2021_01360

11 BraTS2021_00317 36 BraTS2021_01365

12 BraTS2021_00364 37 BraTS2021_01380

13 BraTS2021_00373 38 BraTS2021_01426

14 BraTS2021_00446 39 BraTS2021_01447

15 BraTS2021_00453 40 BraTS2021_01465

16 BraTS2021_00514 41 BraTS2021_01476

17 BraTS2021_00557 42 BraTS2021_01479

18 BraTS2021_00575 43 BraTS2021_01491

19 BraTS2021_00577 44 BraTS2021_01537

20 BraTS2021_00612 45 BraTS2021_01578

21 BraTS2021_00744 46 BraTS2021_01585

22 BraTS2021_00758 47 BraTS2021_01610

23 BraTS2021_00836 48 BraTS2021_01613

24 BraTS2021_01000 49 BraTS2021_01614

25 BraTS2021_01003 50 BraTS2021_01626
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Supplementary Figures S1. Percentage of features with good (ICC ≥0.75) and excellent (ICC ≥0.90) 
reproducibility by radiomic feature classes. Experiments with bin count (a, b), bin width (c, d), and 
resampling (e, f) on T2-weighted (T2) sequence. ICC, intraclass correlation coefficient; GLCM, gray-level 
cooccurrence matrix; GLSZM, gray-level size zone matrix; GLRLM, gray-level run-length matrix; GLDM, gray-
level dependence matrix; NGTDM, neighboring gray-tone difference matrix.

Supplementary Figures S2. Percentage of features with good (ICC ≥0.75) and excellent (ICC ≥0.90) 
reproducibility by image types. Experiments with bin count (a, b), bin width (c, d), and resampling (e, f) on 
T2-weighted (T2) sequence. ICC, intraclass correlation coefficient.




