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ABSTRACT
With the ongoing revolution of artificial intelligence (AI) in medicine, the impact of AI in radiology is 
more pronounced than ever. An increasing number of technical and clinical AI-focused studies are 
published each day. As these tools inevitably affect patient care and physician practices, it is crucial 
that radiologists become more familiar with the leading strategies and underlying principles of AI. 
Multimodal AI models can combine both imaging and clinical metadata and are quickly becom-
ing a popular approach that is being integrated into the medical ecosystem. This narrative review 
covers major concepts of multimodal AI through the lens of recent literature. We discuss emerging 
frameworks, including graph neural networks, which allow for explicit learning from non-Euclidean 
relationships, and transformers, which allow for parallel computation that scales, highlighting ex-
isting literature and advocating for a focus on emerging architectures. We also identify key pitfalls 
in current studies, including issues with taxonomy, data scarcity, and bias. By informing radiologists 
and biomedical AI experts about existing practices and challenges, we hope to guide the next wave 
of imaging-based multimodal AI research.
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Artificial Intelligence (AI) is revolutionizing everyday life with its advanced capabilities in 
image processing, textual analysis, and more. Though this technology has only recently 
gained widespread public attention, its origins are not new. Research into neural net-

works began in the early to mid-20th century,1 making it surprising that mainstream models, 
such as ChatGPT, which are now frequently cited in scientific literature, have only recently 
captured public interest.2 Comparable to the emergence of computers in the 1940s, modern 
AI possesses a long-standing mathematical foundation but is still in its infancy.

The field of radiology is data-heavy, signal-rich, and technology-focused, making it a prime 
target for building AI applications. Thus, it is crucial that radiologists stay informed about 
methodological and clinical trends in AI. Radiologists routinely review large amounts of sig-
nal-rich data in a multimodal manner, making them well-suited to leverage AI and medical 
data to enhance diagnostic accuracy. At its core, AI is an extremely thorough pattern-detec-
tion system, capable of recognizing patterns beyond human capability for certain tasks. In 
medical imaging, which is nowadays very commonly used and results in work overload for 
practicing radiologists, AI has the potential to be a robust support tool within the radiology 
medical ecosystem. However, the introduction of AI raises ethical dilemmas3 and security con-
cerns,4 including data leakage, automated medical decisions, biased data, and clinical impact.

While there is a growing body of literature on biomedical AI, much remains unexplored, 
particularly in the translation to medical applications. There has been a noticeable shift to-
wards multimodal algorithms that incorporate imaging data with at least one other modality. 
Nevertheless, literature leveraging multimodal imaging data and clinical co-variates remains 
relatively sparse. For this reason, existing reviews on the topic have generally focused on 1) 
unimodal AI for imaging alone5-7 or 2) general multimodal deep learning, which is becoming 
an increasingly heterogeneous field.8-10 This review aims to explore multimodal AI in radiolo-
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gy comprehensively by examining both im-
aging and clinical variables. Throughout, we 
assess the methodology and clinical transla-
tion to inform future directions and organize 
approaches within the field.

Modern frameworks and multi-modality 
fusion techniques

The first focus of this study is the cut-
ting-edge methodologies for multimodal 
AI. These frameworks are increasingly rec-
ognized as impactful approaches in advanc-
ing healthcare analytics due to their ability 
to interpret and integrate disparate forms 
of medical data, similar to the daily tasks of 
physicians. For detailed definitions and ex-
planations of key terminology, a glossary of 
key terms with definitions is provided (Table 
1). Central frameworks aim to model the re-
lationship between data and corresponding 
clinical outcomes. Transformer-based mod-
els and graph neural networks (GNNs) have 
demonstrated remarkable promise in com-
bining clinical notes,11-13 imaging data,14-16 
and genomic information,17-20 enhancing pa-
tient care through personalized and precise 
predictions and recommendations (Figure 1).

Transformers 

Initially conceived for natural language 
processing, transformers have been adapted 
for other unimodal input data, such as imag-
ing and genomics, and now, for multimodal 
tasks in healthcare. These models unique-
ly focus on different data components as 
needed and are adept at handling sequen-
tial data.21 They also employ self-attention 

mechanisms, allowing for the assignment 
of weighted importance to different parts 
of input data, regardless of order. This im-
plementation is especially beneficial for free 
text or genomic sequencing data, where the 
significance of a feature greatly depends on 
its context. These mechanisms have been ex-
tended to consider temporal dependencies 
in electronic health records (EHRs), enabling 
the model to discern which historical medi-

cal events are most predictive of future out-
comes.22

Transformers are particularly revolution-
ary, unlike typical recurrent neural networks, 
in that they employ a parallelized approach, 
which allows for scalable computation.23 Re-
current neural networks are a popular type of 
model that handle information sequentially 
and cannot do so in parallel.24 This founda-

Main points

•	 As multimodal artificial intelligence (AI) 
becomes increasingly integrated into the 
field of radiology, it is imperative that ra-
diologists become familiar with the existing 
frameworks, applications, and analyses of 
such tools.

•	 Conventional approaches to multimodal 
AI integration have shown improvement 
over unimodal approaches in their ability to 
translate accurately to the clinic.

•	 Cutting-edge approaches for multimodal 
biomedical AI applications, such as trans-
formers and graph neural networks, can 
integrate time series and non-Euclidean 
biomedical data. 

•	 Key pitfalls of the multimodal biomedical AI 
landscape include inconsistent taxonomy, 
a lack of foundational models using varied 
large-scale representative data sources, and 
a mismatch between the healthcare arena 
and the necessary curation of data for AI 
models.

Table 1. Glossary of key terminology

Term Our definition

Multimodal AI
AI models that integrate multiple types of data (e.g., imaging, clinical 
notes, genomic data) to improve diagnostic accuracy and patient 
outcomes.

Multichannel AI
AI models that integrate multiple inputs of the same type of data (e.g., 
multiple pathology images, multiple radiology images, multiple genomic 
sequences).

GNN
A type of neural network designed to capture dependencies in data that 
is structured as graphs, useful in settings where data interactions are non-
linear and complex.

Transformers

A model architecture initially developed for natural language processing 
that has been adapted for analyzing various types of data. Known for its 
self-attention mechanism, which helps in understanding the importance 
of different parts of the data.

Machine learning
A method and field in computer science where systems are able to learn 
without deliberate instructions through mathematical pattern recognition 
of data.

AI A broad field describing computer systems which are able to behave in 
ways that would normally require human intelligence.

Fusion techniques

Methods used to integrate multiple types of data in AI models. These can 
be early, joint, or late fusion, depending on when data types are combined 
during the model training process. There are many other statistical 
integration methods.

Parallel computation A strategy in computer science where multiple processes or calculations 
happen simultaneously rather than one at a time.

Non-euclidean
Data that does not fit into traditional Euclidean geometry frameworks, 
such as graph data, which is essential for certain types of medical analyses 
where relationships and connections define data structure.

Clinical metadata
Information accompanying medical data that provides context about the 
health status, treatment, or diagnostics of a patient, crucial for interpreting 
imaging data in AI models.

Data curation
The process of organizing, integrating, and managing data collected 
from various sources to ensure it is accurate, complete, and reliable for AI 
training and analysis.

Self-attention 
mechanism

A component of neural network architectures that allows the model to 
weigh the importance of different parts of the input data differently, 
improving its ability to understand complex patterns.

Sequential data 
processing

In AI, the handling of data that is organized in a sequence (such as time 
series data from patient records), which is critical for understanding 
temporal patterns and dependencies.

Bias mitigation
Strategies and methodologies aimed at reducing bias in AI models 
to ensure fairness and equity, particularly important in healthcare 
applications where biased decisions can have serious implications.

Transfer learning
A machine learning method where a model developed for one task is 
reused as the starting point for a model on a second task, facilitating rapid 
deployment and reducing the need for large amounts of data.

Model generalizability
The ability of an AI model to perform well across different settings or 
populations, not just the ones on which it was trained, which is crucial for 
applications in diverse clinical environments.

AI, artificial intelligence; GNN, graph neural network.



 

Multimodal AI • 305

tional difference has led to transformers be-
ing the basis for large language models, such 
as BERT25 and ChatGPT, but their application 
in medicine remains largely unexplored.25,26 
Literature using transformer-based multi-
modal predictions consistently finds that 
transformer models outperform typical re-
current or unimodal models.27-30 

Despite the success of transformers, most 
literature features single-case applications, 
where a particular transformer architecture 
is optimized for a single clinical outcome.31 A 
good example of an impactful application of 
transformers by Yu et al.32 presents a frame-
work to learn from imaging, clinical, and ge-
netic information to set a new benchmark for 
diagnosing Alzheimer’s disease (area under 
the receiver operator characteristic curve of 
0.993). This work shows how transformers 
may be able to aid in unifying information 
across modalities for comprehensive learn-
ing in a specific disease space.

The literature on their broader optimiza-
tion for various clinical or radiology tasks is 
limited. Khader et al.33 propose a transferra-
ble large-scale transformer approach, show-
ing that it outperforms existing multimodal 
approaches leveraging convolutional neural 
networks (CNNs). They attribute their im-
provement to a novel technical approach, 
which selectively limits interactions between 
data inputs. They demonstrate the general-
izability of their model by showing improve-
ment across various decisions, including 
heart failure and respiratory disease predic-
tion, and domains, including fundoscopy 

images and chest radiographs paired with 
non-imaging data.33 

With the increasing popularity of multi-
modal data and models, there is a need for 
technical approaches that are transferrable 
and widely applicable for clinical use.

Graph neural networks

Although transformer-based models ex-
cel at capturing dependencies in sequential 
data,34 their architecture does not inherently 
account for non-Euclidean structures pres-
ent in multimodal healthcare data.23 This gap 
has led to significant interest in GNNs, which 
model the data in a graph-structured format. 
This is particularly relevant to multimodal 
imaging data, where the relationships and 
dependencies between data points, such as 
between an anatomical structure in imaging 
and a genetic marker or clinical parameters, 
are not inherently grid-like and could be 
more accurately represented by graphical 
connections (Figure 2).

GNNs extend the concept of convolution 
from regular grids to graphs, with convo-
lutional operations that aggregate feature 
information from a node’s neighbors.35 This 
approach captures global structural infor-
mation. Unlike CNNs, where the same filter is 
applied uniformly across an image or matrix, 
GNNs adaptively learn how to weight the in-
fluence of neighboring nodes, making them 
adept at handling irregular data that does 
not conform to a fixed grid.36 

This novelty is rooted in the ability of GNNs 
to learn from non-Euclidean data, which is 

crucial for integrating different types of med-
ical information.37 They can explicitly model 
the complex relationships between modali-
ties, rather than attempting to map them in 
grid-like structures, such as CNNs, which may 
not fully take the structure into account38 
and could introduce biases related to artifi-
cial adjacency in grid formatting. Although 
exciting work has been taking place recent-
ly in medical imaging with GNNs, the bulk 
of multimodal literature continues to focus 
on CNNs, requiring tabular fusion in many 
cases.39 There are several methodologies 
for fusing modalities.40 However, without 
a graphical approach, there is potential for 
misinterpretation of the data’s relationship 
when arbitrarily fused in a tabular format. For 
example, appending an image with a clinical 
parameter could falsely imply that parame-
ters are adjacent to the imaging features. In 
contrast, with a GNN, this relationship can be 
modeled via nodes in a graphical representa-
tion, rather than being appended.

Despite the potential and applicability 
of GNNs, literature leveraging them in the 
medical space is scarce, likely due to their 
novelty and the varying custom methods for 
graphical construction posing a challenge. 
One study in the oncologic radiology space 
used a GNN to predict regional lymph node 
metastasis in esophageal squamous cell car-
cinoma patients.41 In their work, Ding et al.41 

constructed a graph by mapping learned 
embeddings across image features and clin-
ical parameters into a feature space, treat-
ing them each as nodes. They then used a 
graphical attention mechanism to learn the 
weights of the edges connecting the nodes. 
In another study, Gao et al.20 used a com-
pletely different method for construction to 
predict the survival of cancer patients using 
gene expression data. They constructed a 
graph by considering each patient’s primary 
modality encoding (which could be imaging, 
though they did not use imaging) as a node, 
with each gene also as a node. Edge weights 
were then determined by the level of gene 
expression for each patient and connected 
to the primary nodes. In a third study, Lyu et 
al.42 demonstrate a successful GNN for pre-
dicting drug interactions by building graphs 
drawing edges between drugs and drug-re-
lated entities (such as targets or transport-
ers). These three examples illustrate the com-
plexity of graph construction and the custom 
nature of GNN methodology, which may ex-
plain the scarcity of literature on the topic 
despite its promise for relating multimodal 
data and encodings.Figure 1. Multimodal medical artificial intelligence (AI) applications across disease spaces. Simplified 

schematic of the many applications of multimodal medical AI fusing imaging, omics, and clinical data for 
various tasks across disease spaces.
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Modality fusion techniques

Despite the emergence of architectures 
such as GNNs, which can more deliberately 
represent data interactions, almost all med-
ical data, whether imaging, molecular, or 
other signals, can be tabulated. Thus, various 
fusion techniques (methods for concatenat-
ing signals or information) are far more com-
monly used in multimodal literature.9 Fusion 
techniques can broadly be categorized as 
early, intermediate/joint, or late fusion. In 
simple terms, early fusion means that the 
information is combined before learning via 
AI occurs, joint fusion means some learning 
happens before and after combining the two 
modalities, and late fusion means no learn-
ing happens after combining information. 
Therefore, it can be considered that late fu-
sion aggregates learned information from 
the two modalities to make a prediction, 
whereas joint fusion allows for the modalities 
to interact, and for components of each to 
have complex relationships in making a pre-

diction. More technically, early fusion gener-
ally involves concatenating input modalities 
into a single vector before feeding them into 
a model for training. These input modalities 
can be extracted features or raw data. Joint 
or intermediate fusion involves concatenat-
ing independently learned features prior to 
further learning. Late fusion generally refers 
to complete or almost complete learning oc-
curring independently before concatenating 
vectors for a final activation and prediction. 
There has also been an emergence of “sketch” 
fusion, which is similar to early fusion, but 
rather than concatenation, modalities are 
translated to a common space. Schematics 
of early, joint, and late fusion pipelines are 
presented in Figure 3.

There is a rich and growing base of multi-
modal models using fusion to combine tab-
ulated free speech,43 genomic,44,45 or clinical 
covariate data with images for diagnostics. 
Kumar et al.43 combined X-ray images with 
audio data consisting of respiratory sounds 

and coughs for the diagnosis of coronavirus 
disease 2019. As a result, they showed that 
early detection is possible with 98.91% accu-
racy by fusing chest X-ray and cough models. 
There is limited consensus on the optimal 
fusion technique, perhaps due to variations 
in dataset quality, interactions between data 
sources, or the learning architectures. With 
many variables at play, developing a com-
prehensive approach to machine learning 
fusion, even for a single data type or disease 
case, becomes challenging. Each fusion mo-
dality may have advantages or disadvan-
tages depending on the application, data 
set, and model architecture. Often, the best 
approach is to try all three and compare re-
sults. Conceptually, however, the pros and 
cons primarily depend on the concept of 
confounding variables. Consider the exam-
ple of a hypothetical model for lung cancer 
outcome prediction where there are two 
modalities, one being clinical risk factors, 
such as cigarette consumption and obesity, 
and the second being genomic data. If these 
two modalities are believed to be additive 
and independent (non-confounding), the 
requirement may be for the AI to learn from 
them separately. In this case, late fusion may 
be appropriate. If it is believed there is sig-
nificant crosstalk between the variables (the 
relationship between them is confounding), 
early or joint fusion may be more appropri-
ate. Early fusion may be more appropriate 
when using smaller-scale genomic variant 
data that checks for a set of known variants 
that increase risk. Conversely, joint fusion 
may be more appropriate if the model is ex-
pected to learn variants of risk from a large 
amount of genomic sequencing data. Re-
gardless, it is difficult to determine the opti-
mal fusion strategy from the data alone and 
often worth exploring multiple approaches.

Although early fusion appears to be the 
most common fusion type across a variety 
of fields using imaging or imaging features 
combined with other modalities,9,46-51 there 
are also numerous studies using joint52-54 and 
late fusion.55 The optimal fusion technique 
likely depends on the data source, architec-
ture, and other specifics, making consensus 
challenging. It is important that researchers 
explore multiple fusion options when de-
signing a multimodal model because, unfor-
tunately, there are no guidelines for multi-
modal data fusion at this point in the field’s 
development.

In addition to these common concatena-
tion techniques, there are many other exam-
ples of statistical integration methods. When 
it comes to GNNs, these integration methods 

Figure 2. Biomedical data for graph neural networks (GNNs). Example of a hypothetical application of a GNN 
in the prostate cancer space. Here, typical non-graph neural networks (labeled AI) learn features. Spatial 
relationships between these features of histopathology data and magnetic resonance images have the 
potential to be used in graph construction (using distance as the weights of edges and nodes corresponding 
to structures and features of pathology). AI, artificial intelligence.



 

Multimodal AI • 307

can be customized to the relationship be-
tween specific modalities and datasets, as 
previously discussed. There are also many 
more methods outside the scope of this re-
view, particularly pertaining to other omics 
data types. For example, mixOmics is a pop-
ular package for the integration and analysis 
of multi-omics data.56 Other cutting-edge ex-
amples of multi-omics statistical integration 
frameworks include Data Integration Anal-
ysis for Biomarker discovery using Latent 
cOmponents (DIABLO) and xMWAS.57,58 

Current status of multimodal imaging work

The existing literature on multimodal AI 
contains numerous examples of successful 
multimodal integrations boasting impres-
sive degrees of accuracy and proposed clin-
ical translations.59-69 These publications are 
promising and show the potential for multi-

modal AI implementation to improve patient 
outcomes. As the field progresses, there is an 
increase in highly curated large-scale data 
sets, paving the way for foundational mod-
els.29,70 Nevertheless, much of the work in this 
space and its ability to translate to the clinic 
is limited by its siloed application, inconsis-
tent taxonomy, and data scarcity.

Multimodal taxonomy

In the broad field of oncology, it is com-
mon for physicians to utilize multiple imag-
ing channels to visualize abnormalities and 
make decisions. It follows that AI models 
leveraging multiple imaging sequences may 
be useful for tasks such as detection or seg-
mentation. This raises the question: should 
combining two images be considered mul-
timodal? Here, attention is drawn to the 
terms multimodal and multichannel. These 

terms are used in different and overlapping 
contexts across multiple disease spaces. In 
prostate cancer imaging literature, for ex-
ample, the detection and segmentation 
of clinically significant prostate cancer are 
common goals often labeled as “multimodal” 
when merely integrating multiple magnetic 
resonance imaging (MRI) sequences, with-
out incorporating fundamentally different 
data types.71-75 Similar inconsistencies stand 
across the larger oncology field including, 
but not limited to, brain cancer,76 lung can-
cer,77,78 and breast cancer.79 

The authors suggest that a multimodal 
model should combine conceptually different 
modes of information, whereas multichannel 
may be more appropriate for technically dif-
ferent (but categorically equivalent or similar) 
modes, as would be the case in fusing two 
radiologic images, such as multiple MRI se-
quences or computed tomography (CT) and 
MRI. Using this loose idea of “conceptually dif-
ferent images”, one may consider combining 
digital histopathology images with radiomics 
as multimodal,80 but the examples above (of 
fusing two radiologic images) would likely be 
considered multichannel and unimodal. In the 
authors’ work with deep learning in the pros-
tate cancer space, these image fusion models 
have been referred to as multichannel rather 
than multimodal.81,82 With this pattern being 
evident across disease spaces, there is a need 
to clarify the taxonomy as the term “multimod-
al” becomes increasingly imprecise. 

Generalizable models with transferrable 
application

The multimodal AI space is rapidly ex-
panding but remains ultra-specific, hinder-
ing the transition of findings into general 
practices. Building models that translate 
across regions and hospitals without bias 
may be better explored through foundation-
al models that 1) apply to multiple disease 
spaces, 2) inform future methodological de-
cision-making by outlining the evidence for 
engineering decisions or by demonstrating 
that a method is effective beyond a single 
isolated case, and 3) prove multicenter vali-
dation for clinical use with resistance to bias.

This trend is becoming apparent as the 
unimodal clinical AI space becomes increas-
ingly saturated, and the most impactful 
publications focus on foundational models 
through novel technical innovations, such 
as with DINO,83 DINOv2,84 and iBOT,85 increas-
ingly large datasets, and self-supervised 
learning to leverage unannotated data.86 

This generalizability has yet to become com-
monplace in multimodal AI, except for some 

Figure 3. Fusion approaches for multimodal artificial intelligence (AI). Different approaches to training and 
fusion order are shown with examples in biomedical AI. In early fusion, a lung magnetic resonance image 
and tabulated electronic health record data are fused before learning. In joint fusion, one or both modalities 
undergo some learning prior to further learning and prediction. Finally, in late fusion, both modalities 
undergo all or almost all learning prior to fusion, activation, and prediction. There are many statistical 
integration methods beyond concatenation not shown.
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key examples. For instance, Khader et al.29 
provide a compelling case for multimodal 
transformers by analyzing 25 conditions us-
ing imaging and non-imaging patient data 
from the Medical Information Mart for In-
tensive Care (MIMIC), instead of evaluating a 
single disease case. This publication is an im-
pressive example of using up-to-date meth-
odologies (namely, transformers), baseline 
comparison to alternate approaches for the 
same dataset, and analysis of various condi-
tions. They observed improvement through 
multimodal use across all disease cases and 
reported appropriate statistical evaluation. 
Unfortunately, it is not common practice 
for multimodal papers to present statistics 
compared with a baseline unimodal mod-
el or present evidence of value in including 
both modalities. Rather, such papers often 
present a means to an end. Instead, Khader 
et al.29 provided a case for a specific method, 
informing how future researchers should 
proceed while highlighting multiple transla-
tional impacts.

Another example study pushing towards 
generalizable multimodal approaches is 
proposed by Soenksen et al.70 They propose 
and assess a model for Holistic AI in Medi-
cine (HAIM) to support the general develop-
ment and testing of a variety of multimodal 
AI systems. Leveraging the MIMIC database, 
they demonstrate improvement in predict-
ing various healthcare operations including 
lung lesion detection, 48-hour mortality, and 
edema. They find that all multimodal inputs 
improve performance across all predictions. 
However, there is no statistical analysis pre-
sented to inform us which of these tasks 
shows a statistically significant difference. 
This work pushes the medical field towards 
cutting-edge and generalizable multimodal 
work and emphasizes the need to develop a 
standard of comparison in the field.70 

It is noteworthy, but not coincidental, that 
both models discussed above leverage the 
same MIMIC database. The MIMIC database 
is a publicly available repository of EHRs from 
the Beth Israel Deaconess Medical Center.87,88 
Though each publication attempts to draw 
data from multiple sources, this highlights 
the issue of database bias in designing multi-
modal algorithms.

Dataset curation

Database bias can manifest in various 
ways. Based on an analysis of the existing 
terrain, several examples of bias where the 
field may be at risk are discussed. As other 
reviews8,89 and even the original MIMIC-IV 
publication88 have stated, data in hospitals 

today is typically stored in systems not con-
ducive to or able to support research, espe-
cially data science research. Built for security 
and far behind modern standards for user 
interface design, storage, and ease of access, 
it is not uncommon to find scanned versions 
of electronic medical records as PDF-format 
files, equivalent information stored in various 
locations at different hospitals, and logging 
methods varying between physicians. In 
other words, there is a significant mismatch 
between the data format resulting from ex-
isting data collection practices across health-
care facilities and the data format necessary 
for appropriate AI development. These mis-
matches make it quite challenging to curate 
datasets such as MIMIC, which require care-
ful planning, financial investment, and an 
industry-wide shift in how medical data is 
collected and stored. As a result, models are 
at risk of being overtrained on the limited ex-
isting AI-friendly data.

By using a single center or focusing on 
training with the handful of carefully curat-
ed datasets available, models can “learn” to 
treat all patients as they would in those spe-
cific settings and time periods, regardless of 
the quality of care one receives at their own 
institution and the clinical environment of 
which they are a part. Clinical outcomes can 
vary significantly depending on the surgeon, 
environmental exposures, or technology 
available. For example, patients at the best 
hospitals in the country may have different 
outcomes from average hospitals and there-
fore should be treated differently. Beyond 
social determinants of health, from a tech-
nical perspective, considering that MRI or 
CT scanners may differ across the country, 
a model may inadvertently learn that image 
quality is associated with outcomes or be 
unable to accurately assess certain images. 
As with comparing baseline unimodal mod-
els, there is a need for guidelines to assess 
and mitigate bias in AI as it becomes more 
widespread. Although there are examples of 
papers identifying or discussing bias,90-93 few 
propose analytical frameworks to address 
or measure bias in AI.94 Such publications 
are varied, and none have become stan-
dard practice in the field. Few clinical papers 
assess bias in clinically specific AI models. 
Though not multimodal, a machine learning 
approach was proposed by Chandran et al.95 

to predict lung cancer risk using the cross-ar-
ea under the receiver operator characteristic 
curve to measure disparities in performance 
by race and ethnicity. They identify key fail-
ures in the model’s ability to determine risk 
for Asian and Hispanic individuals compared 

with White and non-Hispanic individuals. The 
mismatch between the clinical environment 
and AI-friendly data storage requirements 
results not only in bias but also makes bias 
reduction challenging, as curating “represen-
tative” data from centers across the entire 
country is a huge undertaking. The more 
representative the training data is of the set-
ting in which it is applied, the lower the risk 
of biased decisions. With evidence that mul-
timodal AI may be more accurate for some 
AI applications27,59-69,80,93 and that multimodal 
work is more challenging to curate consis-
tently across institutions, researchers and 
physicians face the decision of how to build 
and employ AI tools when smaller multimod-
al sample sizes promise improved overall ac-
curacy, but smaller sample size may increase 
risk of bias.

This concern is currently pressing and 
needs to be addressed. One systematic re-
view on GNNs based on EHRs reported that 
out of 50 papers reviewed, 23 used MIMIC-III 
and 6 MIMIC-IV.96 With the increasing prev-
alence of AI research and rapid translation 
of tools to the clinic, there is a need for a 
change in how data is stored and collected 
by healthcare providers across the coun-
try. Continuing to develop AI tools on the 
available pool of high-quality curated data-
sets, such as MIMIC,87,88 the UK Biobank,97 
EMBED,98 and the Scottish Medical Imaging 
Archive,99 is risky as tools may be carelessly 
applied to populations with differing clinical 
environments or health outcomes. Further, 
with the medical field being a rapidly chang-
ing ecosystem, models and datasets can 
quickly become less relevant to the current 
medical system.

Considering the dynamic medical envi-
ronment and its quickly changing technolo-
gy and guidelines, AI and the data on which 
it is trained will have to change as quickly as 
the clinic. One must be incredibly mindful of 
the dynamic nature of data when training 
an AI algorithm. Here, “dynamic” can take 
on a double meaning. Data can be dynamic 
in that its surrounding clinical environment 
changes as knowledge and technology 
develop. It can also be dynamic in that the 
information itself changes as a product of 
aging or biological changes. For example, 
considering genomics are stable over time, 
it is unclear what the significance is of their 
integration with dynamic data, such as an 
imaging phenotype or proteomics, which 
can change over a person’s life. Imaging data 
or radiomics data have been integrated both 
with stable omics100 and dynamic omics for 
multimodal AI.101 Regardless of the biomedi-
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cal data and if it is dynamic, a change in how 
the data is collected from, and impacts, the 
clinic may be just as impactful on the cre-
ation of impactful AI as the data itself. 

AI tools have the potential to both com-
bat and exacerbate biases by providing ev-
idence-based recommendations. Radiolo-
gists and other physicians must understand 
emerging and existing methods in the field, 
as well as the importance of data set cura-
tion, as they are often the ones making fi-
nal decisions about how these tools will be 
used and how they will impact the patient. 
By being aware of the potential for AI to ex-
acerbate biases, radiologists are relied upon 
to view these tools as exactly what they are: 
physician support tools. Even if a tool has a 
proven record of being more accurate than 
the average physician at, for example, de-
tecting lesions on a certain type of scan, 
there will still be mistakes, and physicians will 
need to be able to use these AI tools without 
catering to their biases. It is difficult to pre-
dict exactly what the role of radiologists will 
be in the future of using and developing AI, 
but the reality is that it will play a role. The 
greater the degree to which these tools are 
understood is, the easier it will be for phy-
sicians to interact with them in a way that 
improves health. On the flip side, a greater 
understanding among physicians will allow 
them to conduct their clinic in a way that is 
conducive to storing data for training strong 
bias-mitigated models.

Future directions

Multimodal AI will inevitably continue 
to develop and be explored through the 
methodologies, foundational models, and 
translational integrations discussed in this 
review and beyond. Despite exploring highly 
developed architectures, methods, and tech-
niques in image processing AI, such as fusion 
models, transformers, and GNNs, the medical 
field lags in using up-to-date AI innovations 
and struggles with consistency in taxonomy, 
evaluation metrics, and methodology, even 
within the same disease spaces.

The lack of common practices, which will 
develop and change as the field matures, 
severely limits progress and translation. It 
becomes difficult to generalize conclusions 
from one publication to the next and across 
methodologies. Standout publications in 
the multimodal AI space are characterized 
by their ability to generalize as foundational 
models with transferrable applications, in-
corporate physician perspectives with clear 
and broad clinical utility, and carefully eval-

uate baseline models using thorough and 
appropriate evaluation and statistics. 

An even more pressing limitation in de-
veloping multimodal AI tools with biomed-
ical applications is the lack of comprehen-
sive, high-quality data. As discussed, most 
reviewed works rely on either a very small 
set of carefully curated data, which requires 
extensive time, resources, and funding for 
AI development, or they draw from a select 
set of high-quality, open-access datasets. By 
repeatedly using these same high-quality cu-
rated datasets, a suite of AI-based translation-
al tools heavily biased toward the included 
locations, periods, and patient populations 
is being developed. With the clinical setting 
and its outcomes being a constantly chang-
ing ecosystem, it is risky to rely on the same 
datasets. Equitable, bias-free AI will require 
these systems to be dynamic, constantly up-
dated with new data, and capable of adapt-
ing over time with fine-tuning. Technologists 
and clinicians may have to meet somewhere 
in the middle, such that technologists will 
have to build models using less-than-optimal 
data, and clinicians may have to incorporate 
certain practices into their data ecosystem to 
ensure AI models are up to date.

Our narrative review of multimodal AI, 
combining imaging and other clinical meta-
data, aims to propose clarifications for what 
constitutes “multimodal” AI in imaging, iden-
tify up-to-date frameworks with potential for 
enhanced results in future model research, 
comment on a shift toward generalizable 
foundational models, and identify trends and 
concerns in database curation. As the field 
progresses from theory to clinic, it is essen-
tial for radiologists to stay informed about 
the latest developments, methodologies, 
and ethical implications.

The current radiologic landscape is char-
acterized by a transition toward multimod-
al fusion models, with increasing focus on 
transformers and GNNs. However, there is a 
considerable amount of work to be done in 
terms of scientific due diligence regarding 
gaps in methodology and model training 
bias. Moreover, the reliance on the few exist-
ing high-quality curated datasets highlights 
a major risk as AI tools become more com-
mon in the clinical setting. There is an urgent 
need to align the format of data required for 
training AI with that logged by physicians to 
curate comprehensive training databases.

In conclusion, while AI in radiology 
promises significant advancements in the 

field, successful and unbiased integration 
demands a multidisciplinary approach in-
volving continuous education of physicians 
and AI developers alike. By informing radiol-
ogists, we hope to begin bridging the gap 
between technology and the clinic, guiding 
future methodologies, practices for dataset 
curation, and the field as a whole. By harness-
ing the power of AI, appropriate evaluation, 
and physician expertise, we hope to save 
more lives and improve the quality of care 
for patients worldwide.
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