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A R T I F I C I A L  I N T E L L I G E N C E  A N D  I N F O R M AT I C S
I N V I T E D  R E V I E W

Radiomics is a recent field that uses “an automated high-throughput extraction of large 
amounts of quantitative features of medical images.”1-3 The method “converts imaging 
data into a high dimensional mineable feature space using a large number of automati-

cally extracted data-characterization algorithms.”4

The above definition may seem complex, but it can be succinctly summarized. Similar to 
how clinical routine involves characterizing a patient using parameters such as age, weight, 
and hemoglobin levels, radiological images can be analyzed to extract analogous parameters 
(also called features) that ideally describe the pathology of interest. For example, in the case 
of a tumor lesion, features such as its volume and diameter can be measured. A critical aspect 
of radiomics is the extraction of not only morphological features but also the distribution of 
intensity and texture. This includes, for instance, assessing whether the lesion has high bright-
ness and a homogeneous or coarse texture, and identifying the presence of bright spots. 
Radiomics involves the extraction of hundreds to thousands of such features to accurately 
represent the lesion. These features are subsequently used to train a classifier, that, based on 
the characteristics of a new lesion, can determine, for example, whether the lesion is benign. 

The main expectation of radiomics is that these features can serve as surrogates for bio-
markers, and thus aid clinical decision making. Radiological imaging could reflect the under-
lying biological processes, allowing for indirect conclusions. For example, while necrotic cells 
are not directly observable in computed tomography (CT) scans, their presence may result in 
the appearance of a hypodense lesion (Figure 1). Thus, measuring the overall intensity of a 
lesion could be used as an indicator of cell necrosis.

Although radiomics as a field only emerged in the 2010s,1,5 the idea can be traced back 
much further. In a seminal paper published in 1978, Harlow et al.6 introduced concepts that 
are strikingly similar. Later, specifically in the 1990s, similar techniques were introduced as 
texture analysis.7 This is no coincidence, since the underlying idea of applying machine learn-
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ing to imaging is the same and dates back to 
the 1960s.

The primary purpose of radiomics is to 
support clinical decisions. Ideally, the ex-
tracted features provide insights that hu-
mans cannot see or systematically process, 
allowing clinicians to answer questions using 
this hidden information. Radiomics has also 
been used to non-invasively identify genetic 
alterations or gene expression patterns that 
can be used to predict the outcome or sur-
vival risk of patients with cancer.8-10

In this review, the basic concepts of radio-
mics are first introduced, followed by a de-
tailed discussion of the two major reproduc-
ibility issues that persist in the current field. 
Subsequently, radiomics based on deep 
neural networks is briefly outlined and the is-
sues involved in their application examined. 
Finally, strategies for avoiding these issues 
are discussed.

The radiomics pipeline

As with any study, the first step in a ra-
diomics model is to define patient cohorts, 
applying reasonable inclusion and exclusion 
criteria that reflect the target population, 
and defining an outcome of clinical interest.

The application of radiomics to data is 
technical but relatively straightforward (Fig-
ure 2).11 Images are first acquired and the re-
gion of interest (ROI) is segmented. This can 
be a tumor lesion or an entire organ, such 
as the whole prostate. The ROI plays a criti-
cal role in directing the analysis to relevant 
areas, thereby preventing other unrelated 
regions from potentially confounding the 
analysis.

The images are then pre-processed de-
pending on the use case. For example, mag-
netic resonance imaging may require a nor-
malization step, and CT may be thresholded 
to a Hounsfield units range of interest. In ad-

dition, preprocessing filters are applied. For 
instance, smoothing filters can reduce noise 
that may adversely affect features, whereas 
wavelet filters can decompose the image 
into high-frequency and low-frequency 
components that may carry different infor-
mation, aiding subsequent analysis. 

Next, features are extracted from the ROI. 
This is a central step, and there are three 
main types of generic features that are ex-
tracted: morphological features, such as vol-
ume or sphericity; intensity features, which 
measure the distribution of values, such as 
mean brightness; and texture features that 
reflect the co-occurrence of intensity values.

However, feature extraction will often 
generate large numbers of features, and 

many of them will be irrelevant (i.e., they will 
not help to solve the problem). Many will 
also be redundant, that is, their information 
is already present in other features. There-
fore, a feature selection step is applied that 
retains only the relevant features; for exam-
ple, a t-test can be used to filter out those 
that are not significant.

These features are then fed into a clas-
sifier, which functions in terms of making a 
prediction after receiving a set of features. 
This classifier is trained on the data using ma-
chine learning techniques. In other words, 
following the input of data, the algorithm 
identifies relevant patterns to make accu-
rate predictions on new data. This model can 
then be tested and applied to new data, such 
as routine clinical data.

Main points

• Radiomics is impeded by imaging and sta-
tistical reproducibility issues.

• Machine and deep learning modeling are 
complicated and require extensive valida-
tion.

• Radiomic features found to be predictive in 
modeling often do not correspond to bio-
markers due to high correlation, limiting 
their interpretability.

• Standardization practices and larger, more 
diverse datasets are important to improve 
reproducibility.

Figure 1. Radiomics aims to identify biomarkers by measuring them indirectly through radiological imaging. 
Much of the information in the pathological scan (top) is lost in the radiological image (bottom). Features 
are extracted from the segmented region-of-interest to recover the information of interest (the pathology 
image is part of the PROSTATE-MRI dataset).75 MRI, magnetic resonance imaging.
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The radiomics pipeline appears pretty 
straightforward, but in each step, good prac-
tices must be maintained to avoid biased or 
false-positive results.12 

Reproducibility issues

Although the pipeline may seem fairly rig-
id, the key issue is reproducibility. This term 
describes the requirement that similar find-
ings should be observed when conditions do 
not change significantly. For example, scan-
ning the same patient twice within a very 
short time frame should yield similar radio-
mic features and lead to similar predictions. 
Non-reproducible studies are essentially ran-
dom and erratic and cannot be trusted. They 
may also lead to false positives, which would 
prevent clinical use.

Reproducibility in radiomics can be divid-
ed into two areas: imaging reproducibility 
and statistical reproducibility. The term “im-
aging reproducibility” refers to the acquisi-
tion of scans and the extraction of features, 
whereas “statistical reproducibility” refers to 
modeling using machine learning. Of course, 
if the imaging is not reproducible, no model-
ing can correct it (following the well-known 
“garbage in, garbage out” rule).13,14 Nonethe-
less, the focus will be mainly on statistical re-
producibility.

Imaging reproducibility

Imaging reproducibility refers to issues 
in the acquisition process resulting from 
variations in imaging parameters and tech-
niques, vendor differences, and similar fac-
tors.15 Since radiomic features are extracted 
from the acquired images, parameters such 
as voxel size and reconstruction techniques 

can have a significant impact on these fea-
tures.16,17 The effect is also non-linear, which 
can render images highly non-reproduc-
ible.18 Post-hoc harmonization can mitigate 
the problem, but only to a limited extent.19,20

Even if the imaging were reproducible, 
the segmentations are usually sensitive to in-
tra- and inter-rater variability, and these dif-
ferences can also have a large impact on the 
extracted features,21 making them partially 
non-reproducible. The same is true for the 
definition of the features themselves. Even 
simple features, such as sphericity, can show 
variations depending on the formulas used 
to calculate them. Accordingly, the Image 
Biomarker Standardisation Initiative (IBSI) 
was launched to standardize these features 
and assess their reproducibility.22 However, 
not all software programs are IBSI-compliant, 
and even the standardized features may still 
exhibit some differences.23

Another source of variability is the use 
of preprocessing filters. Although standard-
ization has recently been considered by the 
IBSI,24 it is unknown whether preprocessing 
helps at all, and if so, which filters should 
be applied. Therefore, these preprocessing 
filters are applied in parallel to increase the 
predictive power of the resulting features.25 
However, this leads to statistical problems.

Statistical reproducibility

The data generated will often have two 
characteristics that distinguish it from many 
other datasets: it will be high-dimensional, 
meaning that there are more features than 
samples, and it will be highly correlated. In 
radiomics, there are two main reasons for 
this. First, the total sample size is often limit-

ed due to the time and resources required for 
annotation, the rarity of the disease in ques-
tion, or privacy concerns. Second, the numer-
ous preprocessing filters extract information 
that is highly similar. For example, two levels 
of smoothing will produce features that are 
very alike. This results in the generation of 
highly correlated features.

The presence of such data presents signif-
icant challenges, as the search for predictive 
features and patterns becomes exponen-
tially more difficult and resembles “finding a 
needle in a haystack.”26 Therefore, the risk of 
identifying spurious patterns and producing 
false-positive results is significantly increased 
in such data. While methods such as regular-
ization can help overcome this problem, the 
issue remains unresolved.

 Therefore, radiomics often employs a 
feature selection step, where the goal is to 
retain only the relevant features and remove 
all others, thereby reducing the dimensional-
ity of the data. However, several methods of 
varying complexity are currently in use.11,27,28 
Simpler methods, such as Spearman correla-
tion or t-tests, typically operate by consid-
ering each variable on its own. These meth-
ods are computationally efficient but may 
overlook dependencies between variables, 
potentially leading to suboptimal feature 
selection. More complex methods, such as 
the least absolute shrinkage and selection 
operator method,29 the minimum redun-
dance maximum relevancy method,30 or the 
Boruta method,31 are able to account for such 
dependencies but are more computationally 
demanding. While it may be intuitive to as-
sume that more complex methods perform 
better, it has been shown that for many data-

Figure 2. Brief overview of the radiomics pipeline. MR, magnetic resonance; CT, computed tomography.
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sets, the differences may not be significant. 
However, simpler methods tend to be more 
robust, and therefore more reproducible.27 
In addition, many of the feature selection 
methods do not select relevant features 
but merely score them, leaving open the 
decision regarding how many of the high-
est-scoring features to retain, which reduces 
their reproducibility.

Accordingly, feature selection is not a 
complete solution to the problem since the 
task of dealing with the high-dimensional 
space is merely transferred from the classifi-
er. Feature selection is also subject to failure 
and may even underperform, especially giv-
en the inherent instability of selection meth-
ods and their dependence on the specific 
data sample.27 For example, the removal of a 
few samples can have a significant impact on 
the set of features considered relevant.

Subsequent classifiers are also affected 
by high dimensionality, either directly or in-
directly, if irrelevant features have been se-
lected. Furthermore, many classifiers make 
assumptions about the data that may not 
be true, regardless of whether feature selec-
tion has been applied. These assumptions 
are often controlled by hyperparameters; for 
example, a regularization variable may re-
flect the amount of noise present in the data. 
Therefore, the only option is to test many dif-
ferent parameters, which is extremely expen-
sive in terms of computational resources. As 
a result, studies only test a limited number of 
parameters, and it remains unclear whether 
a significantly more effective model could 
have been obtained by optimizing the hy-
perparameters.

Validation issues

Any model requires extensive testing, 
the main reason for this being that models 
could either memorize the data or find spu-
rious instead of predictive patterns. Such a 
model would perform well during training, 
but worse on test data and would not gen-
eralize. This problem is called overfitting, and 
the risk is higher for high-dimensional data, 
where more patterns can fit the given data.

To avoid this problem, validation is per-
formed first. Unlike testing, validation is 
mainly used for model selection, specifically 
to determine good values for the hyperpa-
rameters, or to identify which feature selec-
tion or classifier method performs better on 
the given data. Ideally, validation should be 
performed on a second independent data-
set, but alternatively, a portion of the data 
can be set aside. Certain common schemes 

are often employed in radiomics, includ-
ing simple splitting, cross-validation, and 
bootstrapping. In simple splitting, a portion 
of the data (e.g., 70%) is used for training, 
whereas the remainder is used exclusively 
for validation. While this method is concep-
tually simple and computationally fast, it 
does not utilize all available data for train-
ing. Additionally, the results can be highly 
dependent on the specific split, leading to 
potential variability; that is, there is a risk 
that results may be good, or bad, by chance. 
To mitigate this, the method can be repeat-
ed several times and the results averaged. 
Cross-validation provides a more systematic 
approach by splitting the data into k subsets 
and iteratively training on k-1 subsets while 
using the remaining subset for validation. 
Although computationally more expensive, 
this method ensures that all data is used for 
both training and validation, providing a 
more reliable estimate of the performance. 
Nested cross-validation further refines this 
by applying cross-validation twice: once to 
the entire data for performance estimation 
and once on the training data for hyperpa-
rameter tuning. This scheme provides an un-
biased evaluation and is considered a gold 
standard. Bootstrapping, on the other hand, 
uses resampling with replacement to create 
training and validation sets. Since samples 
can occur multiple times in the training set, 
this approach simulates different weights for 
each sample and can thus lead to better es-
timates. However, to obtain these estimates, 
a large number of repetitions (e.g., 1,000) is 
generally required, making it computational-
ly highly expensive.

However, in all cases, the golden rule of 
machine learning must be followed: training 
and test sets must be kept strictly separate. 
Failure to follow this rule will lead to data 
leakage, meaning that the classifier has al-
ready seen some aspects of the test data 
and could adapt to it, leading to false posi-
tives.32,33

Another issue is the variability of the data. 
Choosing a homogeneous cohort (e.g., from 
a single scanner) increases the likelihood of 
obtaining a working model since the predic-
tive patterns seen during training are likely to 
be present in the test data. At the same time, 
however, the model will be highly specific 
and may not generalize beyond the collect-
ed data. The opposite, collecting heteroge-
neous data, is also critical, because the classi-
fier may not be able to identify any predictive 
patterns at all, especially with small sample 
sizes, and there will be no relevant model to 

test. However, if such a model is successful, 
its clinical applicability will be much higher, 
which is the ultimate goal.34

Deep radiomics

Deep learning has recently shown great 
success in other fields,35 and it is natural 
to apply deep learning to radiomics. Deep 
learning is based on artificial neural net-
works, which, in a simplistic way, try to mimic 
the human brain, and date back to the early 
days of machine learning in the 1950s. Con-
ceptually, in the simplest case, a network 
consists of multiple layers, each of which can 
be understood as a feature generation step. 
Layer by layer, the input is transformed into 
the desired output, and the training data is 
used to determine the parameters of the lay-
ers (Figure 3).

Applying deep learning to radiomics, 
which is termed deep radiomics, can, in 
contrast to the generic radiomics discussed 
above, mitigate two major drawbacks. First, 
it can potentially reduce the need for seg-
mentation because the network can, at least 
potentially, determine the ROI itself. Equally 
important, the network can extract optimal 
features that are specific to the problem at 
hand. It can also consider more global fea-
tures of the data, whereas most generic fea-
tures are based on local textures. Both can 
lead to models that perform much better 
than generic models. While deep learning 
has only recently gained importance, neural 
networks have been applied to radiological 
data since the 1990s.36,37

Issues with deep radiomics

Deep radiomics does not magically by-
pass the reproducibility problems. For ex-
ample, changes in acquisition parameters 
have been shown to have a strong effect 
on predictive performance, thus affecting 
generalizability.38 Much is unknown about 
the stability of deep radiomics models, such 
as whether a different training sample will 
yield different features, or whether features 
from different networks are highly correlat-
ed. Robustness to image noise and slightly 
different segmentations has also not been 
systematically investigated, which is compli-
cated by the fact that many different archi-
tectures exist.

Sample size is an even bigger issue in 
deep radiomics. Learning directly from data 
usually requires many more samples to be 
successful.39 As a result, deep radiomics is 
currently not as successful as it could be. 



 

Reproducibility and interpretability in radiomics: a critical assessment • 325

Consequently, several mitigation strate-
gies have been developed.40,41 However, they 
all have their own drawbacks. For example, 
studies often resort to using image slices for 
training, which not only increases the sam-
ple size but also allows for the use of small-
er networks.42,43 Nonetheless, this approach 
partially loses the spatial information, which 
reduces the potential benefit. 

A more common strategy is transfer 
learning. Here, the network is first trained 
on a dataset from another domain, most 
commonly ImageNet, a collection of pho-
tographs.44 This pre-trained network is then 
fine-tuned (i.e., it is trained on the radiomic 
data, often at lower learning rates) to slightly 
adjust the network. This approach can work 
because there is a remarkable similarity be-
tween the low-level features of the human 
eye and the network; at lower levels, both 
appear to operate with filters comparable 
to Gabor filters.39 Thus, fine-tuning can focus 
on training the higher layers and perform-

ing better with fewer samples. However, the 
use of non-medical data for pre-training is 
again suboptimal, and larger medical data 
corpora have been introduced only recently, 
although the extent to which these can help 
in radiomics remains unclear, as they are usu-
ally far smaller than ImageNet.45

Since training a deep network involves 
many hyperparameters (e.g., learning rate, 
learning schedule, choice of loss function) 
and can be relatively complicated, anoth-
er alternative is to bypass any training and 
instead use only pre-trained networks as 
feature extractors (Figure 3),46 which allows 
more versatile classifiers, such as boosting, to 
perform better, especially with smaller sam-
ple sizes.47 However, since no training is per-
formed in this approach, the disadvantage is 
again that the features may be less optimal, 
although fusing them with generic radiomics 
can still prove helpful.48,49

Finally, the hope that deep radiomics can 
dispense with segmentation may be in vain 

due to the small sample size. In addition, 
without a proper validation method, deep ra-
diomics is also prone to bias due to over-en-
gineering. In fact, a recent review found no 
clear advantage of deep radiomics.50

Interpretability issues

A key point in radiomics is to identify fea-
tures that can potentially serve as biomark-
ers, just as the volume of a lesion indicates its 
malignancy. However, radiomics attempts to 
establish such a correspondence “in reverse,” 
using the coarser and noisier radiological 
images, where much information is already 
lost during acquisition. Radiomics seeks to 
capture the underlying information by mak-
ing multiple measurements (in the form of 
different features). These are often correlat-
ed, as they can be understood as noisy and 
incomplete versions of the inaccessible infor-
mation. There is no guarantee that the infor-
mation can be recovered from the extracted 
features, nor that the observed predictivity 
of a feature actually corresponds to a bio-
marker. 

Given a set of features, radiomics can only 
identify those that are statistically associated 
with the outcome. Such an association is not 
causal and could only be the basis of a sub-
sequent statistically sound test. This problem 
is exacerbated by the high-dimensionality of 
the data, where the intuition from the low-di-
mensional setting that features have a clear 
meaning and their importance can be easily 
measured fails.51 In fact, the very concept of 
distance becomes somewhat incomprehen-
sible in higher dimensions, often termed the 
curse of dimensions, and is demonstrated 
by the fact that in higher dimensions, most 
of the volume of a unit sphere is near its sur-
face.52

In fact, the use of feature importance as 
a surrogate has been shown to be question-
able because essentially every step in the 
radiomics pipeline affects the importance of 
features in the resulting model. Even seem-
ingly unimportant preprocessing steps, such 
as the choice of discretization method23 
and data normalization, which is performed 
to obtain the data on a uniform scale, can 
strongly influence the set of features and 
thus the interpretability.53 This influence is 
more evident in the feature selection step, 
where different methods will emphasize dif-
ferent aspects and thus gain different impor-
tance.27 Not only does the subsequent classi-
fier affect interpretation but the selection of 
the final model can also have a great impact, 
as often several models will perform very 

Figure 3. In simple terms, the network can be thought of as a set of layers that transform an input image into 
a set of output images. Each layer of the network has many parameters that are optimized using the training 
data. Networks usually do not use segmentation, but can be modified to use it. The network can be used as a 
feature generator by extracting features from the output of an appropriate layer. For example, in the figure, 
each of the 64 small images output by the second-to-last layer at the top could be averaged, resulting in 64 
numerical features for the given input.
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closely but will select different sets of fea-
tures as important.51,54 In a systematic review, 
Tohidinezhad et al.55 identified 23 models 
that predict the effect of radiation on brain 
health. None of these models used exactly 
the same features, and the models differed 
widely in the factors that were significantly 
associated with outcome.

Moreover, even if such an identification 
were possible, most radiomic features are 
not interpretable by themselves. For exam-
ple, it is unclear what semantic meaning a 
feature such as wavelet-LHL_glrlm_GrayLev-
elNonUniformityNormalized carries, and 
how to see the difference from a highly cor-
related feature that is slightly less predictive. 
It is unlikely that a radiologist would be able 
to relate the measured values of such a fea-
ture to the scan. Feature maps may be help-
ful for visualization,56 but they are currently 
only a tool and cannot be used to base an 
interpretation on. In addition, radiomic mod-
els are rarely based on a single feature, and a 
meaningful interpretation of a model using 
multiple features is barely possible. Para-
doxically, radiomics was invented precisely 
because humans cannot describe textural 
patterns well.

The potential for highly correlated fea-
tures to cause interpretation problems is il-
lustrated by a recent study by Welch et al.,57 
who reexamined the model that Aerts et 
al.4 used in their seminal work on patients 
with non-small cell lung cancer. The authors 
showed that volume alone is as predictive 
as the radiomic model, and moreover, that 
three of the four texture features found by 
Aerts et al.4 are highly correlated with vol-
ume. 

Recently, post-hoc interpretations, such as 
Explainable AI (XAI) methods, have been ap-
plied.58 However, these are also problematic. 
Since there are several different XAI meth-
ods, it is likely that the resulting meanings 
will also differ.59 Alternatively, explainable 
classifiers could be used, which generally 
involves a trade-off between the complexi-
ty (and thus interpretability) of the classifier 
and its predictive performance.60 However, 
even if these methods are successful, they 
only address the classifier and do not miti-
gate the problems in the overall pipeline. 

The situation is similar for deep radiom-
ics. While the pipeline itself is less complex, 
training is more difficult, and there are many 
more choices regarding the architecture. It is 
highly likely that different choices will lead 
to vastly different features. In addition, the 
deep features do not have a mathematical 

formula, making any direct interpretation 
difficult. To remedy this situation, Cho et al.61 
correlated deep features with radiomic fea-
tures. However, since radiomic features are 
not fully interpretable by themselves, this 
approach is limited in scope. 

Discussion
Currently, radiomics suffers from both im-

aging and statistical reproducibility issues, 
both of which affect the interpretability and 
applicability of the models. This affects the 
entire radiomics pipeline, and even feature 
normalization can lead to reproducibility is-
sues.

Neither of these problems can be easily 
avoided. Image reproducibility could possi-
bly be mitigated by strict standardization of 
imaging protocols, but this is all but impossi-
ble to implement in practice across multiple 
centers. Statistical reproducibility is also not 
easily mitigated. Methodological differenc-
es aside, different research groups will often 
reach different conclusions given the same 
data.62 Although such studies have not been 
conducted in radiomics, the impact is ex-
pected to be even greater, as there is gener-
ally less code and data sharing in the health 
domain.63

One major problem is small sample siz-
es. Radiomics studies need to include larger 
and more diverse datasets to have a chance 
of success. This is illustrated by current mod-
els that use deep learning to diagnose chest 
X-rays, or mammograms that have been 
shown to perform especially well.64,65 These 
models are often trained on datasets that 
reach tens of thousands of scans. Howev-
er, they are not radiomic in the sense that 
they do not require segmentations. The 
abundance of data makes segmentations 
unnecessary, as the network can identify 
the relevant regions on its own. Although it 
is virtually impossible to obtain such large 
sample sizes for rare cancers, more data 
would potentially reduce the dimensionality 
of the data and thus increase reproducibility. 
Nonetheless, radiomics seems to have made 
no progress since the seminal work of Harlow 
et al.6 in 1976, where sample sizes of around 
300 are reported. Small sample sizes are gen-
erally unable to reflect heterogeneity. This is 
even true for within-patient heterogeneity. 
For example, suppose two features are mea-
sured in a single patient at two time points, 
as in a test-retest scenario, and their sum is 
predictive. Then, the two features may vary 
greatly between the two time points such 
that neither is reproducible; but provided 

their sum remains the same, this would not 
pose any problem for their predictive value. 
However, if the model was not trained on 
such data, it would not find that pattern and 
would fail on new data. Nevertheless, large 
sample sizes are useless if the images do not 
carry the necessary information and such 
predictive patterns do not exist. Hence more 
data is not always helpful.

Non-reproducible studies may also result 
from a failure to follow best practices, which 
can be ensured by adhering to proper guide-
lines.66,67 For example, the study must be de-
scribed in full detail in a manner that enables 
replication by others. Code should always be 
shared, and data should be shared if possi-
ble. Best practices encompass every step of 
the study; for example, it must be ensured 
that the data selection is appropriate and 
unbiased relative to the study’s objective.12,68 
The outcome should also be compared with 
current standards where applicable, for ex-
ample, if a clinical scoring system is in current 
use (e.g., the Prostate Imaging Reporting and 
Data System), the radiomics model should be 
compared against it.69 Statistical tests (e.g., 
permutation tests) can be used to ensure 
that the resulting model is different from a 
random guess, which is crucial when sample 
sizes are small. While statistical significance 
should be computed, the clinical signifi-
cance should also be considered to evaluate 
the impact of the model. Furthermore, the 
overall study design must be methodologi-
cally sound to avoid reporting false-positive 
results. In addition, reporting must be clear 
and complete to ensure reproducibility.70 

In a seminal paper, Ioannidis argued that 
around 60% of all medical studies contain 
false-positive results.71 Studies with such 
obvious false positives should therefore be 
retracted, but this almost never happens in 
radiomics. On the contrary, such studies are 
frequently cited.72 In addition, methodologi-
cally correct studies will fare relatively worse 
and may appear as “negative” studies that 
may not be considered for publication.73 To 
mitigate this, a far more rigorous review pro-
cess with mandatory code or data sharing 
would be required, as it could help in iden-
tifying potentially biased results before their 
publication. Currently, such studies are often 
only identified following publication, mak-
ing it difficult to address the issue. Ensuring 
that publications rigorously follow reporting 
guidelines could be another way to reduce 
the problem.66,67,70

It is easy to overlook the fact that image 
processing has gone through a similar evo-
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lution in the past. The field started with the 
manual extraction of many features (which is 
the origin of the texture features used today), 
progressed to the extraction of more compli-
cated features such as Fisher vectors,74 be-
fore the advent of deep learning made these 
steps obsolete. In fact, the interpretability of 
deep networks is at the semantic level of im-
ages, not features, for example, to answer the 
question of whether the network takes the 
tail of a dog into account when predicting its 
race. This is not easily possible in radiomics, 
where a visualization of the important areas 
of a tumor lesion would not help a radiolo-
gist understand what the network is doing. 
Furthermore, in current machine learning, a 
model is accepted if it generalizes well, not 
necessarily if the model is interpretable. A 
similar strategy may be viable for radiomics, 
where the applicability of models is validated 
on large datasets.

In conclusion, radiomics currently faces 
substantial challenges related to imaging 
and statistical reproducibility that severely 
impact interpretability and clinical applica-
bility. These problems are difficult to mitigate 
because imaging standardization is largely 
impractical and statistical variability is inher-
ent in high-dimensional datasets. As a result, 
the potential for clinical integration remains 
uncertain and questionable. A shift toward 
rigorous data and code sharing practices and 
the development of large, representative 
datasets would be required to partially ad-
dress these challenges.
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