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PURPOSE
Spread through air spaces (STAS) is a unique metastatic pattern of pulmonary cancer closely asso-
ciated with patient prognosis. This study evaluates the application of radiomics in the diagnosis of 
pulmonary cancer STAS through meta-analysis and explores its clinical significance and potential 
limitations.

METHODS
We systematically searched the PubMed, Embase, and Cochrane Central Register of Controlled Tri-
als databases for relevant studies between inception and April 1, 2024. The main evaluation indi-
cators included sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and area 
under the curve (AUC). A total of 18 studies, covering 6,642 lung cancer cases, were included in the 
systematic review.

RESULTS
In the development cohort, the sensitivity of radiomics for diagnosing STAS was 0.80 [95% confi-
dence interval (CI): 0.75–0.84; P < 0.001; I2: 72.8%], and the specificity was 0.79 (95% CI: 0.71–0.85; P 
< 0.001; I2: 93.4%). In the validation cohort, the sensitivity was 0.81 (95% CI: 0.75–0.86; P < 0.001; I2: 
45.8%), and the specificity was 0.74 (95% CI: 0.68–0.80; P < 0.001; I2: 65.0%). The summary AUC for 
both cohorts was 0.85 (95% CI: 0.82–0.88). Deeks’ funnel plot analysis showed no significant publi-
cation bias in either cohort (P values: 0.963 and 0.106, respectively).

CONCLUSION
Radiomics analysis demonstrates important clinical significance in the diagnosis of pulmonary 
cancer STAS, with promising sensitivity and specificity results in both development and validation 
cohorts.

CLINICAL SIGNIFICANCE
While radiomics analysis offers valuable diagnostic insights for STAS in pulmonary cancer, its lim-
itations must be carefully considered. Future research should focus on addressing these limitations 
and further exploring the application prospects of radiomics in lung cancer diagnosis and treat-
ment.
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Received 14 May 2024; revision requested 09 June 2024; 
last revision received 26 September 2024; accepted 17 
November 2024. Lung cancer is a highly lethal disease with significant implications for patients’ quality of 

life and lifespan.1 In addition to its high incidence and mortality, lung cancer also exhibits 
diverse invasive patterns, including a particularly unique metastatic mode termed spread 

through air spaces (STAS).2 First proposed by Kadota et al.2 and definitively defined by the 
World Health Organization (WHO) in 2015, STAS refers to the invasion of tumor micropapillary 
clusters, solid nests, or single cells beyond the tumor edge into the air spaces of surrounding 
lung parenchyma.3 This form of invasion complicates the diagnosis, treatment, and prognosis 
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of lung cancer. Before the concept of STAS, 
research in peritumoral radiomics primari-
ly focused on the tumor microenvironment 
and its interactions, which play a critical role 
in tumor progression and metastasis. The 
presence of STAS often suggests a higher 
risk of postoperative recurrence and a poorer 
prognosis compared with traditional modes 
of lung cancer metastasis.4 Therefore, accu-
rate diagnosis and assessment of STAS in pa-
tients with lung cancer are of paramount im-
portance. Studies have shown that patients 
with lung cancer with positive STAS typically 
require more extensive surgical resection, 
reflecting their poorer prognosis.5,6 The pres-
ence of STAS is also associated with tumor re-
currence, metastasis, and chemotherapy ef-
ficacy.7 Thus, understanding and evaluating 
the manifestation and impact of STAS in lung 
cancer are crucial for devising personalized 
treatment strategies and improving patient 
prognosis.

Traditional imaging parameters, such as 
tumor size and morphological features, al-
though important indicators for evaluating 
lung cancer, rely on subjective judgments of 
physicians and have certain limitations. Tra-
ditional imaging parameters may lack suffi-
cient accuracy and sensitivity, particularly in 
identifying tiny STAS lesions. Moreover, due 
to the complex and diverse imaging manifes-
tations of lung cancer, visual estimation alone 
often cannot fully leverage the potential of 
imaging in lung cancer diagnosis. The emer-
gence of radiomics fills this gap by utilizing 
both machine learning (ML) and deep learn-
ing (DL) methods to perform quantitative 

analysis of lung cancer images, extracting 
a wealth of implicit information, including 
hand-crafted features such as shape, gray-
scale, texture, and wavelet characteristics, as 
well as deep radiomics features derived from 
advanced neural networks. This approach 
provides more comprehensive, objective, 
and accurate information for early diagnosis, 
staging, and prognostic evaluation of lung 
cancer.8 In recent years, radiomics has made 
significant progress in the field of lung cancer 
diagnosis. Many studies have shown that an-
alyzing lung cancer images using radiomics 
analysis can significantly improve the accura-
cy and sensitivity of diagnosis, and can even 
detect tiny STAS lesions.9 This provides clini-
cians with more reliable information to help 
formulate personalized treatment plans and 
improve patient survival rates and quality of 
life. However, despite a few individual stud-
ies, there still lacks a systematic and compre-
hensive meta-analysis to provide a thorough 
and objective assessment of radiomics in the 
diagnosis of lung cancer STAS.

With the continuous development of ML 
technology and the application of radiomics, 
there is a unique opportunity to leverage 
big data and intelligent algorithms to en-
hance the identification and evaluation of 
STAS in patients with lung cancer. This study 
systematically evaluates the performance of 
radiomics analysis in detecting STAS lesions, 
specifically focusing on the capability to 
identify small STAS manifestations that may 
be missed by traditional imaging methods. 
We hypothesize that integrating advanced 
radiomic features, both hand-crafted and 
DL-derived, will significantly improve the ac-
curacy and sensitivity of STAS detection. By 
providing robust evidence-based insights, 
this study seeks to inform clinical deci-
sion-making and improve patient outcomes 
in lung cancer management.

Methods
This meta-analysis followed the Preferred 

Reporting Items for Systematic Reviews and 
Meta-Analyses of Diagnostic Test Accuracy 
Studies guidelines.10 The detailed protocol is 
accessible in INPLASY (INPLASY2024100103). 
As this meta-analysis did not involve human 
or animal participants, ethics approval was 
not required. 

Search strategy and literature selection

We systematically searched three ma-
jor electronic databases, namely PubMed, 
Embase and the Cochrane Central Register 
of Controlled Trials databases, between in-

ception and April 1, 2024, without language 
restrictions. The search strategy combined 
MeSH or Emtree terms with free terms to en-
sure comprehensive results. Keywords were 
set to search in the title and abstract mode 
for greater accuracy. Additionally, reference 
lists of relevant studies or reviews were 
manually searched to retrieve potentially 
missed literature. The search topics includ-
ed radiomics, artificial intelligence (AI), ML, 
lung cancer, and airway spread. These terms 
were combined using Boolean operators to 
ensure comprehensive coverage of relevant 
studies (Supplementary File 1). The search 
process was conducted independently by 
two researchers, and records were import-
ed into reference management software for 
automatic removal of duplicates and sub-
sequent manual exclusion. Disagreements 
were resolved through consultation with a 
third researcher. 

Inclusion and exclusion criteria

Based on the Population, Intervention, 
Comparator, Outcome, Study design prin-
ciple, studies meeting the following crite-
ria were included: 1) the study population 
comprised patients with lung cancer; 2) the 
intervention involved AI-assisted radiomics; 
3) histopathology was used as the reference 
standard; 4) the primary outcome was pul-
monary cancer airway spread; and 5) the 
study design was either a cohort study or 
case-control study. Studies meeting the fol-
lowing criteria were excluded: 1) irrelevant 
study types, such as animal studies, case re-
ports, or conference papers; 2) studies with 
incomplete data; and 3) studies that did not 
report predefined outcomes or did not ad-
here to the intervention and control settings.

Data extraction and risk of bias assessment

Two researchers independently extracted 
data using a pre-designed form from the in-
cluded studies, including author names, pub-
lication dates, study designs, sample sizes, lo-
cations of conduct, characteristics of patient 
populations (e.g., age and gender), model 
validation methods, algorithms used for 
modelling, imaging equipment parameters, 
use of clinical information, primary inclu-
sion variables, and diagnostic performance. 
Quantitative data in 2 × 2 tables, including 
true positives, true negatives, false positives, 
and false negatives, were collected. The 
methodological quality of included studies 
was assessed using the Quality Assessment 
of Diagnostic Accuracy Studies-2 tool, which 
covers patient selection, index test, reference 
standard, flow, and timing, among other as-

Main points

• Radiomics employs both machine learn-
ing and deep learning methods to quan-
titatively analyze lung cancer images and 
extract rich hidden information. This in-
cludes hand-crafted features such as shape, 
grayscale, texture, and wavelet, as well as 
features derived from deep radiomics tech-
niques. By integrating these diverse fea-
tures, radiomics provides more comprehen-
sive, objective, and accurate information for 
the early diagnosis of lung cancer, as well as 
for staging and prognostic assessment.

• This study explores the performance of ra-
diomics analysis in the diagnosis of lung 
cancer spread through air spaces (STAS) 
through a systematic review and meta-anal-
ysis, providing reliable evidence-based sup-
port for clinical practice.

• Analyzing lung cancer images using radio-
mics analysis can significantly improve the 
accuracy and sensitivity of diagnosis, and 
can even detect tiny STAS lesions.
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pects. Disagreements were resolved through 
consultation with a third researcher.

Statistical analysis

Data analysis in this study was performed 
using RevMan 5.4 and Stata SE 15.0 software. 
Sensitivity and specificity were calculated 
based on 2 × 2 table data and presented 
graphically, with squares representing val-
ues and horizontal lines representing corre-
sponding confidence intervals (CIs). Summa-
ry receiver operating characteristic curves 
were used to represent the performance of 
diagnostic tests. The approximate classifica-
tion criteria for area under the curve (AUC) 
values were as follows: 0.50–0.60 = inad-
equate, 0.60–0.70 = poor, 0.70–0.80 = fair, 
0.80–0.90 = good and 0.90–1 = excellent. 
Additionally, summary statistics of positive 
likelihood ratio, negative likelihood ratio and 
diagnostic odds ratio, along with their 95% 
CIs, were calculated. Heterogeneity of results 
was assessed using Cochran’s Q test and the I2 
statistic test, and meta-analysis was conduct-
ed using either fixed-effects or random-ef-
fects models accordingly. The possibility of 
publication bias was assessed using Deeks’ 
funnel plot analysis, and sensitivity analysis 
was performed to evaluate the stability of 
the results. Fagan’s nomogram was used to 
evaluate the clinical utility of radiomics and 
calculate the post-test probability of STAS.

Results

Literature search

The flowchart of the literature search 
process for this meta-analysis is depicted in 
Figure 1. Initially, 125 records were identified 
from the databases, and an additional 2 re-
cords were manually retrieved from other 
sources. After removing duplicates, 97 re-
cords remained. Subsequently, based on 
screening of titles and abstracts, 70 irrelevant 
records were excluded, leaving 27 articles for 
full-text assessment. Finally, a total of 18 ar-
ticles11-28 were included in the systematic re-
view, with data from 13 articles used for the 
meta-analysis.

Characteristics of included studies

The basic characteristics of the included 
studies are presented in Table 1. All studies 
were retrospective in design, with the major-
ity (66.7%) being single-center studies and 
only 6 being multi-center studies. Among 
the 18 included studies, 14 were conducted 
in China, 2 in Japan, and 1 each in Italy and 
South Korea. Most studies focused on pa-

tients with lung adenocarcinoma, with sam-
ple sizes ranging from 92 to 681 and mean/
median ages ranging from 53.1 to 70 years. 
The proportion of men ranged from 31.3% to 
58.9%. External validation was performed in 
8 studies.

Details of the radiomics predictive models 
included in the studies are summarized in Ta-
ble 2. Common ML algorithms used included 
the least absolute shrinkage and selection 
operator, random forest, and decision tree 
algorithms. Although a variety of imaging 
equipment manufacturers were involved, all 
models were based on chest computed to-
mography. In addition to radiomics, 6 stud-
ies incorporated clinical information such as 
gender, age, smoking status, and tumor size 
in model construction. The definition of STAS 
was generally consistent across studies, pri-
marily based on WHO criteria (i.e., micropap-
illary clusters, solid nests, or single cells be-
yond the edge of the tumor extending into 

the air spaces in the surrounding lung paren-
chyma). The AUC values of the constructed 
models ranged from 0.66 to 0.99.

Risk of bias assessment

Understanding risk of bias is crucial for 
evaluating the reliability of study findings. 
Bias can be introduced at various stages of a 
study, including patient selection, index test 
application, and reference standards. High 
or unclear risk of bias can affect the internal 
validity and generalizability of the study re-
sults.

The methodological quality of the 18 in-
cluded studies is detailed in Figure 2. One 
study was at high risk of bias in the “patient 
selection” domain due to a case-control 
study design, and another study had an 
unclear risk due to insufficient description. 
Additionally, 12 studies had unclear risks of 
bias in the “index test” and “reference stan-

Figure 1. PRISMA flow diagram of study selection. PRISMA, Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses.
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Table 1. Main characteristics of the included studies

Author, year Design Sites Country Population Sample 
size

Age, years Men, % Validation 
approach

Bassi et al.11, 2022 Retrospective Single-center Italy Patients with resected 
lung adenocarcinoma 149 68.0 (61.5–74.0); 69.0 

(61.0–73.8) 57.0 External 
validation

Chen et al.12, 2020 Retrospective Multi-center China
Patients with stage 

I invasive lung 
adenocarcinoma

345 60 (35–82); 60 (34–76) 43.2 External 
validation

Chen et al.13, 2022 Retrospective Multi-center China Patients with lung 
adenocarcinoma 327 58.9 (25–85) 40.1 External 

validation

Gong et al.14, 2023 Retrospective Single-center China Patients undergoing 
surgery for lung cancer 537 62 (56–67); 62 (55–67) 49.3 Random 

splitting

Han et al.15, 2022 Retrospective Single-center China Patients with stage AI 
lung adenocarcinoma 395 59 ± 10 52.4 Random 

splitting

Jiang et al.16, 2020 Retrospective Single-center China Patients with lung 
adenocarcinoma 462 Mean: 58.06 44.6 Random 

splitting

Jin et al.17, 2023 Retrospective Multi-center China Patients with primary 
lung cancer 674 Mean: 57.8–61.5 38.6 External 

validation

Liao et al.18, 2022 Retrospective Single-center China

Patients with 
pathologically 

confirmed invasive 
clinical stage I lung 

adenocarcinoma who 
accepted surgical 

resection

256 60.7 ± 10.7; 59.5 ± 10.9 47.7 Random 
splitting

Lin et al.19, 2024 Retrospective Multi-center China

Patients with lung 
adenocarcinoma who 
underwent complete 

lung resection

681 56.9 ± 11.2 31.3 External 
validation

Liu et al.20, 2022 Retrospective Single-center China

Patients with stage AI 
lung adenocarcinoma 

who underwent surgical 
resection

92 53.1 ± 10.9; 56.9 ± 7.6 40.2 N/A

Onozato et al.21, 
2021 Retrospective Single-center Japan

Patients who underwent 
surgical resection of 

lung cancer
226 70 (39–88); 68 (38–89) 54.4 Cross-

validation

Qi et al.22, 2021 Retrospective Single-center China

Patients with primary 
lung adenocarcinoma 
confirmed by surgical 

resection and pathology

216 56 ± 11 58.9 External 
validation

Suh et al.23, 2024 Retrospective Single-center South 
Korea

Patients who 
underwent surgical r 

section for clinical stage 
AI (tumor size ≤3 cm) 
lung adenocarcinoma

521 Mean: 61.2–66.6 45.5 Temporal 
validation

Takehana et al.24, 
2022 Retrospective Single-center Japan

Patients with 
pathologically 

confirmed lung 
adenocarcinoma

339 67 (61–73) 47 Random 
splitting

Tao et al.25, 2022 Retrospective Single-center China Patients with non-small 
cell lung cancer 203 59.6 ± 9.8; 61.3 ± 8.6 55.2 Random 

splitting

Wang et al.26, 2024 Retrospective Multi-center China Patients with confirmed 
lung adenocarcinoma 602 Mean: 56.69–60.48 46.7 External 

validation

Wang et al.27, 2024 Retrospective Multi-center China
Patients with clinical 

stage AI non-small cell 
lung cancer

405 ≥65 years: 31.9% 49.4 External 
validation

Zhuo et al.28, 2020 Retrospective Single-center China Patients with confirmed 
lung adenocarcinoma 212 58.84 ± 9.92 42.92 Random 

splitting

Age was expressed as mean ± standard deviation or median (25th quartile–75th quartile). AI, artificial intelligence; N/A, not available.



 

Radiomics in the diagnosis of lung cancer • 219

Table 2. Characteristics of radiomics-based prediction models

Author, year Algorithms Imaging equipment Clinical 
information

Included variables Reference standard of STAS AUC

Bassi et al.11, 
2022 NB, k-NN, RF, LR Unlimited No

Radiomics, 
radiological features 
and mixed features

The presence of a rim of 
normal lung surrounding the 
entire tumor circumference

0.66–
0.79

Chen et al.12, 
2020 NB

SOMATOM Definition AS scanner (64 
× 0.625 mm detector, 1.0 pitch) or 

Brilliance 40 scanner (40 × 0.625 mm 
detector configuration, 0.4 pitch)

No

Radiomics 
(sphericity, 90 

percentile, gray level 
variance, cluster 

tendency, gray level 
variance)

Tumor cells emerging in 
paracarcinoma normal 

alveolar spaces, which are 
far from the main tumor 

and appear in the form of 
micropapillary clusters, small 
solid tumor nests, or single 

cells

0.69

Chen et al.13, 
2022 NR

GE (LightSpeed Pro 32, LightSpeed 
Pro 16, BrightSpeed, and Revolution 
EVO), Philips (iCT 256, Brilliance and 
Ingenuity), Siemens (Definition AS+, 
Emotion 16 and Sensation 64), and 

Toshiba (Aquilion ONE)

No

Radiomics on the 
basis of “near-pure” 
subtype data using 
patch-wise analysis 

within a tumor 
border area

Tumor cells within air spaces 
in the lung parenchyma at a 

distance of at least 1 alveolus 
away from the main tumor

0.81, 0.83

Gong et al.14, 
2023 NR

Spiral CT scanners (Siemens 
SOMATOM Definition AS+ and 

Siemens SOMATOM Drive)
No 44 radiomics 

features

Tumor cells in airspaces 
outside the main tumor 

boundary

0.802–
0.834

Han et al.15, 
2022 LASSO, LR

Multislice spiral CT scanners 
(SOMATOM Definition AS+ and 

Siemens Healthineers, Germany)
Yes Sex, age, smoking, 

size, radiomics

Tumor cells were found in 
the lung air spaces beyond 

the edge of the primary 
tumor

0.812, 
0.850

Jiang et al.16, 
2020 RF

A 16-detector CT scanner (Philips 
Brilliance 16, Philips Medical 

Systems)
Yes Age and 12 

radiomics features

The discovery of tumor cells 
in the lung air spaces beyond 
the edge of the main tumor

0.754

Jin et al.17, 
2023 Deep CNN NR No Radiomics

Micropapillary clusters, solid 
nests, or single cells beyond 

the edge of the tumor 
extending into the air spaces 

in the surrounding lung 
parenchyma

0.84, 0.94

Liao et al.18, 
2022 LASSO NR No Radiomics

Tumor cells within air gaps 
in paracarcinoma normal 

alveolar spaces beyond the 
margin of the primary tumor

0.871, 
0.869

Lin et al.19, 
2024 DL

CT: Toshiba (Tokyo, Japan), Philips 
(Best, The Netherlands), GE 

(Waukesha, Wisconsin, USA), and 
Siemens (München, Germany)

No Radiomics

Tumor cells emerging in 
paracarcinoma normal 

alveolar spaces, which are 
far from the main tumor 

and appear in the form of 
micropapillary clusters, small 
solid tumor nests, or single 

cells.

0.80, 0.82

Liu et al.20, 
2022 RF Shanghai United Imaging uCT550 

multislice spiral Yes Sex, age, and 
radiomics NR NR

Onozato et 
al.21, 2021 XGBoost

Aquilion Prime (Canon Medical 
Systems Corporation, Tochigi, Japan), 

Aquilion ONE (CANON), Alexion 
(CANON), Activion16 (CANON), and 

Aquilion64 (CANON)

No Radiomics

Micropapillary clusters, solid 
nests, or single cells beyond 

the edge of the tumor 
extending into the air spaces 

in the surrounding lung 
parenchyma

0.77

Qi et al.22, 
2021 AdaBoost

General Electric (LightSpeed 
VCT; Waukesha, Wis) or Siemens 

(Definition Flash, Erlangen, Germany)
No Radiomics

Micropapillary clusters, solid 
nests, or single cells spread 

within the air spaces beyond 
the edge of the main tumor

0.909, 
0.907, 
0.897

Suh et al.23, 
2024 LASSO, LR NR Yes

Lesion type on CT, 
solid portion size on 
CT, male, radiomics

Tumor cells within the 
air spaces in the lung 

parenchyma, beyond the 
edge of the main tumor

0.815–
0.878
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dard” domains due to unreported blinding. 
Notably, all studies had low risks in the “flow 
and timing” domain and overall showed few 
concerns.

Meta-analysis

Meta-analysis was conducted separately 
for data from development/internal valida-
tion and external validation/random split-
ting, and the results are shown in Figure 3. 
The figure presents forest plots illustrating 
the diagnostic performance of radiomics for 
predicting STAS in both training and vali-
dation cohorts. Forest plots are commonly 
used in meta-analyses to provide a visual 
representation of the results from individual 
studies and the overall summary effect. Each 
study’s estimate of sensitivity and specificity 
is displayed as a square, with the size of the 
square reflecting the weight of the study in 
the meta-analysis. The horizontal lines repre-
sent the CIs for each estimate. The diamond 
at the bottom of each plot represents the 
pooled estimate of sensitivity and specificity, 
providing a combined result from all studies.

In the development/internal validation 
cohort (Panel A of Figure 3), as the forest plot 

shows, the sensitivity of radiomics for diag-
nosing STAS was 0.80 (95% CI: 0.75–0.84), 
and the specificity was 0.79 (95% CI: 0.71–
0.85), with the presence of substantial het-
erogeneity (P < 0.001, I2: 72.8% for sensitivity 
and P < 0.001, I2: 93.4% for specificity).

In the external validation/random split-
ting cohort (Panel B of Figure 3), the forest 
plot showed similar performance, with a 
sensitivity of 0.81 (95% CI: 0.75–0.86) and a 
specificity of 0.74 (95% CI: 0.68–0.80) (hetero-
geneity: P = 0.040, I2: 45.8% for sensitivity and 
P < 0.001, I2: 65.0% for specificity).

As shown in Figure 4, the pooled AUC was 
0.85 (95% CI: 0.82–0.88) for both develop-
ment/internal validation and external valida-
tion/random splitting cohorts.

Publication bias and sensitivity analysis

Publication bias occurs when the out-
come of the research influences the deci-
sion whether to publish it. This can lead to 
an overestimation of the effect in published 
studies. Sensitivity analysis assesses how the 
results vary with changes in the data or ana-
lytical methods. Both publication bias analy-

sis and sensitivity analysis are critical for un-
derstanding the robustness and reliability of 
the meta-analysis findings.

Deeks’ funnel plot analysis revealed no 
significant publication bias in either cohort 
(P = 0.963 and 0.106, respectively), as shown 
in Figure 5. Sensitivity analysis indicated that 
the exclusion of individual studies did not 
significantly affect the pooled results, indi-
cating the stability of the study findings.

Clinical utility

In the development/internal validation 
cohort (Panel A of Figure 6), the Fagan plot 
indicated that when the pretest probability 
of STAS was positive, the post-test probabil-
ity increased significantly from 20% to 48% 
after applying the radiomics test. Conversely, 
when the pretest probability was negative, 
the post-test probability decreased to 6%, 
indicating a low likelihood of STAS when the 
test result is negative.

In the external validation/random split-
ting cohort (Panel B of Figure 6), similar 
trends were observed. As the Fagan plot 
shows, the use of radiomics increased the 
post-test probability from 20% to 44% when 

Table 2. Continued

Author, year Algorithms Imaging equipment Clinical 
information

Included variables Reference standard of STAS AUC

Takehana et 
al.24, 2022 LASSO, LR

A 64-detector-row CT scanner 
(Aquilion 64, Canon Medical Systems, 

Otawara, Japan) or a 320-detector-
row scanner (Aquilion ONE, Canon 

Medical Systems)

No Peritumor radiomics
Tumor aggregates floating 
in the air cavity at least one 

alveolus away
0.76, 0.79

Tao et al.25, 
2022

CNN, LR, DT, 
LDA, SGD, PSVM, 
SPSVM, XGBoost, 

AdaBoost

A single-source, 64-multidetector 
CT scanner (Brilliance CT, Philips 

Healthcare)
No Radiomics

Tumor cells in the lung air 
spaces beyond the edge of 

the primary tumor
0.80, 0.93

Wang et al.26, 
2024

Squeeze-and-
excitation 
attention 

module with 
the ResNet50 
architecture

No Radiomics

Micropapillary clusters, solid 
nests, or single cells spread 

within the air spaces beyond 
the edge of the main tumor

0.783, 
0.806, 
0.933

Wang et al.27, 
2024 LR, mRMR, LASSO

Toshiba Aquilion16 row, GE Light 
Speed VCT64 row, Philips Ingenuity 

64 row, and Brilliance iCT 128 row CT, 
American Light Speed 16, and Dutch 

Philips iCT 256-row CT, SOMATOM 
Definition Flash and SOMATOM Drive 

64-row CT machines

Yes

Sex, CEA, CTR, 
density type, 

distal ribbon sign, 
radiomics

Micropapillary clusters, solid 
nests, or single cells spread 

within the air spaces beyond 
the edge of the main tumor

0.901, 
0.875, 
0.878

Zhuo et al.28, 
2020 LASSO

SOMATOM Force (Siemens, 
Germany), Aquilion One/320 

(Toshiba, Japan), and uCT128 (UIH, 
China)

Yes

The maximum 
diameter of the 

solid component, 
mediastinal 

lymphadenectasis, 
radiomics

Micropapillary clusters, solid 
nests, or single cells beyond 
the edge of the tumor into 

air spaces in the surrounding 
lung parenchyma

0.98, 0.99

STAS, spread through air spaces; AUC, area under the curve; NB, naïve bayes; RF, random forest; LR, logistic regression; NR, not reported; LASSO, the least absolute shrinkage 
and selection operator; CNN, convolutional neural network; DL, deep learning; DT, decision tree; LDA, linear discriminant analysis; SGD, stochastic gradient descent; PSVM, 
poly support vector machine; SPSVM, sigmoid poly support vector machine; mRMR, maximal redundancy minimal relevance; CEA, carcinoembryonic antigen; CT, computed 
tomography; CTR, consolidation-to-tumor ratio.
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the pretest probability was positive, and de-
creased it to 6% when the pretest probability 
was negative. 

Discussion

Main findings

This study comprehensively analyzed the 
diagnostic value of radiomics analysis for 
lung cancer STAS by synthesizing multiple 
recent studies. The main findings are as fol-
lows: 1) regardless of whether it was in the 
development or validation cohorts, radiom-
ics showed good sensitivity and specificity 
in diagnosing lung cancer STAS; 2) radiomics 
demonstrated good discriminative ability 
for diagnosing lung cancer STAS, accurately 
distinguishing between two patient groups; 
and 3) no significant publication bias was 
found in the included studies, although 
methodological quality assessment indicat-
ed uncertain risk of bias in some studies. The 
results of this study confirm the potential 

clinical utility of radiomics analysis, providing 
new insights and methods for the diagnosis 
of lung cancer STAS and promoting the de-
velopment of imaging and AI in this field.

Importance of spread through air spaces in 
lung cancer diagnosis and treatment

As a unique mode of metastasis, STAS 
plays a crucial role in the diagnosis and treat-
ment of lung cancer. First, the presence of 
STAS is closely related to the prognosis of 
patients with lung cancer. Multiple studies 
have shown that patients with positive STAS 
generally have poorer prognosis, with sig-
nificantly increased rates of postoperative 
recurrence and distant metastasis, as well as 
significantly shortened survival periods.5,6,29 
In addition to STAS, peritumoral radiomics, 
which analyzes the regions surrounding the 
tumor, and the tumor microenvironment, in-
cluding immune cells, blood vessels, and the 
extracellular matrix, are also critical factors 
in lung cancer progression and prognosis. 

These elements provide additional insights 
into tumor behavior and help refine lung 
cancer classification, aiding in more accurate 
prognostication and personalized treatment 
planning. Second, the detection of STAS 
also provides important references for clin-
ical treatment decisions. Depending on the 
extent and range of STAS, physicians can 
more accurately assess the invasiveness and 
metastatic risk of lung cancer and formulate 
corresponding treatment plans. For exam-
ple, for patients with lung cancer with posi-
tive STAS, more extensive surgical resection 
is often required to ensure complete tumor 
clearance and reduce the risk of postopera-
tive recurrence.30 Therefore, accurate iden-
tification and assessment of the presence 
of STAS are of great significance for guiding 
the scope and depth of surgery, improving 
the thoroughness of surgery and treatment 
outcomes.

Application of machine learning and ra-
diomics in diagnosing lung cancer spread 
through air spaces 

ML algorithms have increasingly been 
applied in the diagnosis and treatment of 
lung cancer, revolutionizing the field by en-
abling more accurate and efficient analysis 
of complex datasets. Techniques such as 
convolutional neural networks and recur-
rent neural networks have shown significant 
promise in enhancing the accuracy of lung 
cancer detection, prognostication, and clas-
sification. While the broader scope of AI in 
lung cancer therapeutics includes applica-
tions such as drug discovery and treatment 
personalization, this discussion specifically 
focuses on the role of radiomics in improv-
ing diagnostic accuracy and clinical deci-
sion-making.

A comprehensive review highlighted 
the critical role of AI in analyzing extensive 
clinical datasets to improve patient manage-
ment strategies.31 These advancements can 
optimize therapeutic approaches and po-
tentially enhance patient outcomes in lung 
cancer care.32 However, the specific applica-
tion of radiomics—defined as the extraction 
of quantitative features from medical imag-
ing—plays a pivotal role in distinguishing 
between various tumor characteristics and 
predicting clinical outcomes.

The present study’s findings on the diag-
nostic value of radiomics analysis for lung 
cancer STAS align well with these broader 
applications of ML in oncology. Specifical-
ly, our results demonstrate that radiomics, 
powered by ML algorithms, exhibits good 

Figure 2. Methodological evaluation of the included studies.
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sensitivity and specificity in diagnosing lung 
cancer STAS. This capability is critical as it en-
ables accurate distinctions between patient 
groups, facilitating the formulation of per-
sonalized treatment plans.

By employing advanced feature engineer-
ing techniques, as utilized in this study, radio-
mics can extract and analyze intricate imag-
ing features that are otherwise imperceptible 
to human observers.33 These features include 
tumor shape, grayscale variations, texture 
patterns, and wavelet transformations, 
which collectively contribute to accurate-
ly predicting STAS status. For example, this 

study observed AUC values ranging from 
0.66 to 0.99 for different models, reflecting 
the robust discriminative ability of radiomics 
in diagnosing lung cancer STAS.

Integrating clinical information, such as 
age, gender, smoking status, and tumor size, 
into radiomics models enhances their predic-
tive performance. This approach aligns with 
the review’s emphasis on leveraging large, 
multifaceted datasets to improve treatment 
recommendations and outcomes.31 Future 
research should focus on addressing current 
limitations, such as selection bias and lack of 
blinding, to further validate and enhance the 

clinical applicability of ML techniques in lung 
cancer diagnosis and treatment.

The synergy between ML algorithms, 
comprehensive datasets, and sophisticated 
feature engineering techniques holds great 
promise for advancing lung cancer diagnos-
tics and therapeutics. The present study con-
tributes to this growing body of evidence, 
underscoring the potential of radiomics in 
accurately diagnosing lung cancer STAS and 
supporting personalized treatment strate-
gies. Radiomics analysis can help clinicians 
more accurately identify patients with pos-
itive STAS, thereby assisting in assessing 
patient prognosis more effectively and for-
mulating rational treatment plans. Addition-
ally, radiomics can provide crucial reference 
points for surgical planning, helping physi-
cians determine the scope and depth of sur-
gery while reducing the risk of postoperative 
recurrence. Furthermore, radiomics offers 
objective and accurate indicators for fol-
low-up and prognosis assessment, enabling 
timely detection and intervention for chang-
es in patient condition, thereby improving 
treatment effectiveness and patient survival 
rates.

Novelty and future directions

To the best of our knowledge, this study 
is the first meta-analysis of radiomics in the 
diagnosis of lung cancer STAS. By integrat-
ing data from multiple relevant studies, 
we obtained the most comprehensive and 
comprehensive data, allowing us to provide 
a more reliable and objective evaluation of 
the effectiveness of radiomics in diagnosing 
STAS. A comprehensive summary of the cur-
rent research on radiomics in the diagnosis 
of lung cancer STAS provide important ref-
erences and inspiration for further research 
in this field. First, with the continuous devel-
opment and improvement of radiomics anal-
ysis, we can further explore how to improve 
its accuracy and reliability in diagnosing 
STAS. It is possible to endeavor to combine 
more imaging parameters and clinical data 
to build more complex and comprehensive 
predictive models, thereby improving the 
diagnostic accuracy of STAS. In addition, 
the fusion and integration of multi-modal 
imaging data can be explored to further im-
prove the diagnostic ability of STAS through 
various imaging techniques.34 Second, the 
application of radiomics in the treatment of 
lung cancer STAS can be further studied. In 
addition to diagnosis, radiomics analysis can 
also be used to evaluate patients’ treatment 

Figure 3. Forest plots of radiomics for prediction of STAS in training (a) and validation (b) cohorts. STAS, 
spread through air spaces. 

a

b



 

Radiomics in the diagnosis of lung cancer • 223

response and prognosis, guiding the formu-
lation and adjustment of treatment plans. As 
such, future research can focus on the appli-

cation of radiomics in the treatment deci-
sion-making and efficacy evaluation of lung 
cancer STAS. In addition, the combined ap-

plication of radiomics with other fields, such 
as genomics and transcriptomics, can be fur-
ther explored. By integrating various omics 
data, a multi-angle and comprehensive eval-
uation of lung cancer STAS can be achieved, 
providing more comprehensive and person-
alized treatment plans for clinical practice.35 
Finally, larger-scale, longer-term prospective 
studies can be conducted to verify the effec-
tiveness and clinical application prospects of 
radiomics in the diagnosis and treatment of 
lung cancer STAS. These studies will provide 
important scientific evidence and clinical 
support for the further promotion and appli-
cation of radiomics analysis in the diagnosis 
and treatment of lung cancer.

Although this study provides important 
insights and inspiration for the diagnosis of 
STAS via radiomics, there are also some po-
tential limitations that need to be consid-
ered. First, all studies included in this study 
were retrospective in design. Although this 
is a common design in radiological research, 
there may still be a risk of selection bias. 
Due to the characteristics of retrospective 
studies, the study results may be affected 
by patient selection and data collection and 
may not fully represent the entire popula-
tion. Second, many studies did not set up 
blinding when analyzing images or patholo-
gy. The lack of blinding may lead to subjec-
tive bias of observers, affecting the accuracy 
and reliability of the study results. To reduce 
the risk of bias, future studies should adopt 
double-blind or single-blind designs to en-
sure that researchers are unaware of the data 
analysis. In addition, more than half of the 
included studies were conducted in China, 
and the universality of the results may be 
limited by geographical restrictions, and it 
is uncertain whether they are applicable to 
other populations. Therefore, future research 
should diversify the selection of study sam-
ples to ensure the reliability and universality 
of the study results.

In conclusion, this study confirms the po-
tential clinical utility of ML-assisted radiomics 
for diagnosing STAS of lung cancer. Our anal-
ysis reveals that radiomics analysis achieves 
good sensitivity, specificity, and discrimina-
tive ability across multiple cohorts. Although 
publication bias was not significant, some 
studies showed uncertain risk of bias, which 
should be addressed in future research. Ra-
diomics analysis offers a valuable tool for 
clinical decision-making in STAS diagnosis, 
but limitations such as selection bias, lack 
of blinding, and geographical restrictions 
must be carefully considered. Future studies 
should focus on mitigating these limitations 

Figure 6. Fagan plots of radiomics for prediction of STAS in training (a) and validation (b) cohorts. STAS, 
spread through air spaces.

Figure 5. Funnel plots of radiomics for prediction of STAS in training (a) and validation (b) cohorts. STAS, 
spread through air spaces.

Figure 4. Summary receiver operating curves of radiomics for prediction of STAS in training (a) and validation 
(b) cohorts. STAS, spread through air spaces.
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to improve the robustness and generalizabil-
ity of radiomics in clinical settings.
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Search strategy

PubMed

((radiomics[MeSH] OR radiomics) AND (artificial intelligence[MeSH] OR AI OR artificial intelligence OR machine learning[MeSH] OR ML OR 
machine learning) AND (lung cancer[MeSH] OR lung neoplasms OR pulmonary cancer) AND (spread through air spaces[MeSH] OR STAS OR 
airway spread))

Embase

(‘radiomics’/exp OR radiomics) AND (‘artificial intelligence’/exp OR AI OR ‘artificial intelligence’ OR ‘machine learning’/exp OR ML OR ‘ma-
chine learning’) AND (‘lung cancer’/exp OR ‘lung neoplasms’ OR ‘pulmonary cancer’) AND (‘spread through air spaces’/exp OR STAS OR ‘airway 
spread’)

CENTRAL

((radiomics OR “radiomics”) AND (artificial intelligence OR AI OR “artificial intelligence” OR machine learning OR ML OR “machine learning”) 
AND (lung cancer OR “lung neoplasms” OR “pulmonary cancer”) AND (spread through air spaces OR STAS OR “airway spread”))
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