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R E V I E W

Bias in artificial intelligence for medical imaging: fundamentals, 
detection, avoidance, mitigation, challenges, ethics, and prospects

ABSTRACT
Although artificial intelligence (AI) methods hold promise for medical imaging-based prediction 
tasks, their integration into medical practice may present a double-edged sword due to bias (i.e., 
systematic errors). AI algorithms have the potential to mitigate cognitive biases in human inter-
pretation, but extensive research has highlighted the tendency of AI systems to internalize bias-
es within their model. This fact, whether intentional or not, may ultimately lead to unintentional 
consequences in the clinical setting, potentially compromising patient outcomes. This concern 
is particularly important in medical imaging, where AI has been more progressively and widely 
embraced than any other medical field. A comprehensive understanding of bias at each stage of 
the AI pipeline is therefore essential to contribute to developing AI solutions that are not only less 
biased but also widely applicable. This international collaborative review effort aims to increase 
awareness within the medical imaging community about the importance of proactively identifying 
and addressing AI bias to prevent its negative consequences from being realized later. The authors 
began with the fundamentals of bias by explaining its different definitions and delineating various 
potential sources. Strategies for detecting and identifying bias were then outlined, followed by a 
review of techniques for its avoidance and mitigation. Moreover, ethical dimensions, challenges 
encountered, and prospects were discussed.
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Bias, with its various definitions depending on the context, often denotes systematic er-
rors due to existing inappropriate models, whether intentional or unintentional.1 Exten-
sive studies of bias in human cognition have included the field of radiology and medical 

imaging, addressing biases at both personal (e.g., bias during reporting) and societal levels.2 
It is typically linked to conscious or subconscious cognitive preconceptions that may arise 
during clinical practice, particularly in rapid decision-making scenarios.3,4

Advances in artificial intelligence (AI) related to medical imaging, particularly in radiology, 
present new avenues to enhance patient care across different stages of the patient journey, 
such as triage, selecting imaging modalities, image quality improvements, risk assessment, 
diagnosis, and prognostication.5-7 However, increasing integration of AI into clinical practice 
comes with new challenges for radiologists, who may not be accustomed to potential bias-
es or systematic errors introduced into their workflow, thereby risking the integrity of out-
comes.8-13

Medical publication trends indicate a growing interest in bias in AI (Figure 1). This interna-
tional collaborative review effort aims to provide readers with the fundamental knowledge 
and potential tools or strategies necessary to navigate bias when dealing with AI for medical 
imaging, thus mitigating negative impacts on patient management. This study comprehen-
sively reviews bias in AI for medical imaging, covering its fundamentals, detection techniques, 
prevention strategies, mitigation methods, encountered challenges, ethical concerns, and 
prospects.
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Definition of bias in artificial intelligence 

The concept of bias in machine learn-
ing (ML) research and more generally in the 
field of predictive modeling is intrinsical-
ly tied to the concept of variance.14 In this 
context, bias can be defined as the distance 
(or error) between the prediction and the 
actual target variable, whereas variance sig-
nifies the dependence of predictions on the 
randomness in the training data sampling  
(Figure 2).15 Hypothetically, a predictive model 
can present any combination of high or low 
bias and variance. From a statistical point of 
view, the sum of bias (squared) and variance 
is represented by the mean squared error 
metric.16 Interestingly, the concepts of bias 
and variance are not limited to the domain 
of statistical or ML modeling alone, but they 
also affect human learning and have been ex-
tensively studied in cognitive sciences.15

From a mathematical point of view, noise 
(the joint probability distribution between 
training and test/inference samples), bias, 
and variance are the three components that 
lead to model performance degradation 
and negatively affect generalization to new 
data.17 Given the somewhat irreducible na-
ture of noise, ML has focused mostly on ad-
dressing bias and variance when optimizing 
model performance during the hyperparam-
eter tuning process. However, it should be 
made clear that these two entities are inter-
dependent, and reducing one (e.g., variance) 
typically comes at the expense of increasing 
the other (i.e., bias), which gives birth to the 
concept of a bias-variance tradeoff. In recent 

years, the technical evolution of ML models, 
and especially the rise of large neural net-
work architectures, has begun to challenge 
the traditional approach of validation (or 
cross-validation) error minimization as the 
ideal strategy to optimize the bias-variance 
tradeoff during model training.17-20

Types and sources of bias

One way to comprehend imaging AI bias 
is by examining sources of bias related to 
fundamental components of the AI life cycle: 
study design and dataset (formulating the 
research question, collection, annotation, 

Main points

•	 In the medical artificial intelligence (AI) 
context, “bias” refers to systematic errors 
leading to a distance between prediction 
and truth, to the potential detriment of all 
or some patients.

•	 AI in medical imaging is at risk of being com-
promised by several types of biases, which 
could adversely affect patient outcomes.

•	 Understanding that medical imaging AI sys-
tems are prone to biases in various forms is 
key for their successful incorporation into 
real-world clinical settings, with greater sat-
isfaction of end-users.

•	 Proactively identifying and addressing AI 
bias may prevent its potential negative con-
sequences from being realized later.

•	 Increasing community awareness about all 
aspects of bias, such as fundamentals, mit-
igation strategies, and ethics, may contrib-
ute to the development of more effective 
regulatory frameworks.

Figure 1. Publication trends about bias in medical imaging artificial intelligence (AI) in comparison with AI in 
medicine, with different search syntaxes to identify the occurrences of the term “bias” in the title or abstract 
versus the title alone. Source: PubMed; date of search: May 7, 2024.

Figure 2. Over-simplified illustration of bias (i.e., systematic error) in contrast to variance, such as random 
noise.
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preprocessing, etc.), modeling (development 
and evaluation before using in real-world 
settings), and deployment (implementation 
in real-world settings). This section focuses 
on the most common sources of bias that 
medical imaging professionals, particularly 
radiologists, may encounter. Accordingly, 
types and sources of bias and concepts men-
tioned in this review are given in Figure 3. 
Table 1 provides a glossary of definition of 
other bias sources as well, including other 
related concepts. Table 2 presents fictional 
examples for selected bias sources.

Bias related to study design and dataset

Bias can emerge when taking the very first 
step into the development of AI solutions for 
medical imaging, which is the correct iden-
tification of an unmet and relevant clinical 
need.21 A valid research question must also Figure 3. Main types and sources of bias and related concepts highlighted throughout this review. For other 

common types and sources of bias, please refer to Table 1.

Table 1. Common terminology and concepts related to bias
Terminology Definition

Aggregation bias False conclusions or assumptions about individuals compared with the whole population based on inappropriate combinations of 
distinct groups.

Algorithm fairness Ensuring equitable outcomes across different demographic groups.

Algorithmic bias Systematic errors or prejudices in the algorithms.

Algorithmic aversion Reluctance or skepticism toward relying on artificial intelligence (AI) algorithms.

Annotation bias Systematic errors mostly introduced by human annotators during the labeling process of training data, mostly related to their 
experience, subjective interpretation, and cognitive biases concerning the annotation task.

Automation bias Overreliance on AI results, leading to the neglect of human decision-making.

Behavioral bias Distortions in user behavior seen across various platforms, contexts, or datasets.

Class imbalance Disproportionate representation of certain classes within or between the data partitions.

Cognitive bias Systematic subjective patterns in thinking that can affect the decision-making of individuals due to reliance on heuristics (i.e., 
shortcut strategies derived from previous experiences to solve a problem or reach a goal).

Concept drift Changes in correlation between input variables and output predictions over time due to fluctuations in data.

Confirmation bias Tendency to interpret AI model results in a way that confirms their existing beliefs or expectations.

Data leakage Exposure of target features or information to the model during training, leading to poor generalizability.

Demographic bias Systematic errors in models that disproportionately affect specific demographic groups based on factors such as age, gender, or 
ethnicity.

Deployment bias Misalignment between the envisioned purpose of a system or algorithm and its actual application.

Distributional shift Discrepancies between the distribution of data used to train AI models and the distribution encountered in real-world 
deployment.

Feedback loop bias Increase of systematic errors over time as the AI model continues to learn from its own predictions and feedback.

Institutional bias Systematic errors led by differences in practices, protocols, or equipment across institutions.

Measurement bias Systematic errors related to how particular features are chosen, used, or measured.

Omitted variable bias Systematic errors appear when one or more relevant variables are omitted, or context is neglected.

Overfitting Phenomenon where the AI model learns to memorize the training data instead of generalizing on new data.

Propagation bias Increase of potential systematic errors present in any algorithm or pipeline and being inherited by the final model or even 
amplified in it.

Representation and 
sampling bias Systematic errors in the collection of data, resulting in an unrepresentative sample.

Statistical bias Discrepancies between actual and predicted values when approximating a specific statistical measure.

Temporal bias Systematic errors arising over time, such as from the changes in medical imaging technology, protocols, or patient demographics.

Temporal drift Changes in the distribution or characteristics of data over time, leading to discrepancies between the development and 
deployment AI performance.

Uncertainty bias Influence of uncertainty on decision-making stemming from AI models.

Underfitting Phenomenon where the AI model is too simplistic, failing to adequately capture the complexity of data.
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be properly formulated so that it can be ef-
fectively translated into a fitting task for AI.22 
Any flaw in these essential starting points in-
evitably generates a bias in the subsequent 
steps, such as the selection of training data-
sets, AI model development, and/or deploy-
ment.

Bias in the dataset collection and prepa-
ration phases can significantly affect the 
outcomes of AI systems, particularly in the 
critical domain of medical imaging. This bias 
can stem from a variety of sources and can 
lead to disparities in the performance of AI 
systems across different patient groups, 
potentially exacerbating existing health in-
equalities.23

One of the primary sources of bias in med-
ical imaging datasets is demographic imbal-
ance. For example, if a dataset predominant-
ly consists of images from a particular racial 
or ethnic group, the AI model trained on this 
dataset may exhibit reduced accuracy when 
applied to individuals from other groups. 
This situation can lead to misdiagnoses or 
delayed diagnoses for underrepresented 
groups. Similar issues arise with gender, age, 
and socio-economic status, where AI systems 
may perform better for the demographic 
groups that are overrepresented in the train-
ing data (Figure 4).24 

Another critical aspect is the quality and 
source of the medical images. Bias can be 
introduced if the images come from a limit-
ed number of institutions or geographic lo-
cations, as different places may use varying 
equipment, protocols, and standards for im-
age capture. This can ultimately contribute 
to covariate shifts (distributional differences 
of features between training and test sets) 
(Figure 5). Such variations can cause AI sys-

tems to become overfitted to the character-
istics specific to the data they were trained 
on, reducing their generalizability and effec-
tiveness when deployed in different settings.

The preparation of datasets also introduc-
es potential biases (Figure 6). The process of 
labeling medical images, which is often per-
formed by human experts, can lead to incon-
sistencies due to subjective interpretation 

Figure 4. Over-simplified illustration of optimal and poor representation of subgroups, such as gender in 
this case, and their effect (*) in subsequent modeling. ROC, receiver operating characteristics.

Table 2. Examples based on fictional scenarios for selected bias sources related to medical imaging

Bias source Example

Annotation 
bias

A breast artificial intelligence (AI) tool is being developed to assist in analyzing mammograms. As radiologists annotate the images to 
be used for its development, they primarily focus on identifying malignant masses due to their significance in cancer diagnosis. Benign 
calcifications, less concerning but still important, may be underrepresented in the annotations made by the radiologists. The resultant 
tool may have this annotation bias, being more inclined to detect malignant masses and neglecting to adequately recognize benign 
calcifications, leading to an increased risk of false negatives.

Automation 
bias

A radiologist or a clinician relies on an AI tool to interpret chest computed tomography (CT) scans. If the AI model is trained on datasets that 
predominantly include lung nodules, it may develop a bias toward detection of these nodules over other clinically significant findings (e.g., 
consolidations). By developing a tendency to prioritize the AI tool’s output over the entire clinical evaluation, end-users may show an over-
reliance on the AI tool, trusting it without thoroughly considering other important information present in the CT scans. This automation 
bias can result in missing important findings beyond lung nodules.

Confirmation 
bias

An experienced radiologist uses an AI tool to analyze a prostate magnetic resonance imaging (MRI) scan of a patient with a history of 
urinary symptoms and elevated prostate-specific antigen levels. As the radiologist examines the imaging results, they may identify certain 
features that appear to support their initial suspicion of benign prostatic hyperplasia (BPH) based on the observed prostatic enlargement 
and nodularity. However, the tool also flags some potential small focal lesions or suspicious tissue characteristics, suggestive of prostate 
cancer. Despite these, the radiologist’s focus on confirming their preliminary diagnosis of BPH may lead them to ignore the important 
alerts provided by the tool. The cognitive bias of the radiologist toward confirming their previous suspicion of BPH influences their MRI 
interpretation.

Demographic 
bias

Radiologists utilize an AI tool to analyze abdominal CT scans. If the AI model is trained on datasets that primarily includes younger patients, 
the AI tool may not be effectively trained to recognize age-related conditions commonly found in older individuals, such as diverticulosis. 
Consequently, when presented with abdominal CT scans from older patients, the model may experience difficulty in accurately identifying 
and assessing these pathologies, due to age-related demographic bias.

Feedback 
loop bias

Radiologists rely on an AI algorithm to assist in analyzing brain MRI scans. If the algorithm is initially trained on datasets mostly featuring 
images with clear and prominent lesions, such as large tumors, it may develop a bias toward identifying these abnormalities with high 
accuracy. Users of this tool may subconsciously prioritize confirming the presence of these well-defined lesions, providing feedback that 
reinforces the AI’s accuracy in detecting such cases. Consequently, the model may improve its performance at identifying large lesions 
while potentially ignoring smaller, subtler, early-stage abnormalities, especially if they were underrepresented in the initial training data. 
This feedback loop between the AI model and the end-users, such as radiologists, can perpetuate bias, leading to a situation where the AI 
becomes increasingly adept at detecting certain types of abnormalities while potentially missing others. 
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of what the images represent and in turn to 
annotation bias. Moreover, if a small group of 
experts annotates the dataset, their individu-
al biases and level of expertise can influence 
the labels, affecting the AI model’s learning 
process. A broader concept than annotation 
bias is reference standard bias, affecting the 
way instances are labeled and consequently 
impacting algorithm development.25 Differ-
ent reference standards are often available 
to confirm radiological diagnosis, which may 
also lead to systematic errors.26 Some could 
be highly accurate but also costly and poorly 
available, whereas others could neglect in-
termediate findings or be operator-depen-
dent,27 potentially reducing label applicabil-
ity and reliability. Additionally, the choice of 
data preprocessing techniques, such as nor-
malization, augmentation, or cropping, can 
also influence the model’s output by empha-
sizing certain features over others.28

Moreover, bias can stem from broader 
historical and societal inequities that are 
reflected in the data. For example, certain 
diseases may be more prevalent in specific 
populations due to factors such as access 
to healthcare, environmental exposures, or 
genetic predispositions. If these factors are 
not adequately considered during dataset 
collection and AI model training, the result-
ing models may not only perpetuate but also 
amplify existing disparities.

Bias related to modeling

The development of AI models is a multi-
step process, and different AI algorithms 
are frequently employed at different stages, 
such as image segmentation, feature reduc-
tion, and selection.29 Therefore, potential 
bias present in any of the algorithms will 
propagate down the pipeline and be inher-
ited by the final model or even amplified in 
it, resulting in propagation bias. It should 
also be considered that, since humans are 
developing AI models, the latter can also in-
herit cognitive bias from the former.3 This is 
not specific to the model development stage 
alone and can potentially occur at any point 
in the AI lifecycle (Figure 7).30 

AI modeling also includes a validation 
step, necessary to confirm the performance 
of the algorithms before actual deployment. 
This should ideally be verified on publicly 
available benchmark datasets to ensure a 
common ground for model testing, as seen 
in AI challenges. Nevertheless, further test-
ing on independent data remains pivotal to 
verify that all requisites for deployment are 
met. In this context, a common and serious 

source of bias in model validation lies in data 
leakage.31 An example of data leak in med-
ical imaging is represented by the inclusion 
of different scans from the same patient both 
in the training and validation dataset, which 
increases the risk of overfitting. 

Another aspect to carefully consider is the 
choice of metrics used to estimate the mod-

el’s performance, which could introduce bias 
if those selected do not match the informa-
tion needed. A case example is the validation 
of automated segmentation tools, for which 
specific parameters should be selected 
based on the segmentation task characteris-
tics (e.g., is it more important to have an ac-
curate segmentation or a precise localization 
for the task?).32 

Figure 5. Over-simplified illustration of covariate shift. Distributional differences between training and 
test sets lead to poor test performance (i.e., poor generalizability) or significant deviation from the learned 
function.

Figure 6. Potential and practical bias sources relevant to medical imaging artificial intelligence based on 
data type (i.e., non-pixel and image data). Radiological images belong to chest computed tomography 
(upper left panel), chest X-ray (upper right panel), and pituitary magnetic resonance imaging (lower panel).

Figure 7. Human bias in the artificial intelligence life cycle.
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Finally, the model’s performance needs to 
be put into context, correctly selecting valid 
baseline alternatives for comparison, such as 
already recognized diagnostic tests, and for-
mally evaluating with statistical approaches 
the added value that the model may bring.33

Bias related to deployment 

Model deployment represents the final 
phase of AI/ML algorithms for medical im-
aging, following data collection and evalua-
tion.34 It involves assessing the model’s per-
formance in real-world scenarios, including 
potential application in clinical practice.35

A deployment bias emerges when there is 
a misalignment between the envisioned pur-
pose of a system or algorithm and its actual 
application.36 In medical imaging, this bias 
can manifest when an algorithm designed 
for segmentation tasks is utilized by human 
operators, whether intentionally or inadver-
tently, as a detection tool instead.37 Addition-
ally, improper utilization by end-users can 
also arise when utilizing systems to analyze 
images from anatomical districts or imaging 
modalities that differ from those they have 
been trained and validated with-for example, 
employing abdominal computed tomogra-
phy images instead of abdominal magnetic 
resonance images.

Concept drift represents an addition-
al source of bias for model deployment  
(Figure 8). Specifically, it arises when the 
correlation between input variables, such 
as images, and output predictions, such as 
diagnoses, evolves due to fluctuations in 
data, such as variations in image acquisi-
tion hardware or protocols, shifts in disease 
prevalence, or advancements in gold-stan-
dard technologies.38

Behavioral bias pertains to the poten-
tial distortions in user behavior seen across 
various platforms, contexts, or datasets.39 
Factors such as past experiences, social stig-
ma, exposure to misinformation, limited 
healthcare access, and historical context play 
a role in shaping this bias. In particular, this 
bias can lead to skewed data cohorts, incom-
plete information, heightened uncertainty in 
outcomes, and potential dismissal of algo-
rithm-assisted medical advice.40

Uncertainty bias encompasses the in-
fluence of uncertainty on decision-making 
stemming from AI/ML models.39 Precisely 
characterizing and estimating uncertainty is 
pivotal in ensuring the thorough evaluation 
and transparent reporting of AI/ML models. 
Nonetheless, human observer decisions re-
lying on AI/ML model outputs and their re-
ported uncertainty may be unduly swayed 
by the uncertainties inherent in the model’s 
output.41 Consider this scenario: AI/ML mod-
els can be “confidently wrong,” meaning they 
may yield incorrect outcomes with a high 
level of certainty. Consequently, humans 
may place greater importance on a predic-
tion that exhibits high certainty, even if it 
happens to be incorrect, compared with one 
with lower certainty that is actually correct.

Automation bias refers to the tendency of 
individuals to rely excessively on automated 
systems, such as AI algorithms, and to disre-
gard or underutilize their own judgment or 
critical thinking skills.42 In the context of AI in 
medical imaging, automation bias can mani-
fest when clinicians or radiologists place un-
due trust in the outputs or recommendations 
provided by AI algorithms, leading them to 
overlook potentially important information 
or make errors in diagnosis or treatment 
planning.43 Automation bias can occur in 

busy clinical settings where clinicians may 
feel pressure to make rapid decisions, lead-
ing them to rely on AI-generated results as a 
shortcut rather than engaging in thorough 
analysis.44 Additionally, clinicians may tend 
to seek out or interpret information in a way 
that confirms their preexisting beliefs or ex-
pectations. If an AI algorithm’s recommenda-
tion aligns with their initial impressions, they 
may be more likely to accept it without ques-
tion. A lack of adequate training or education 
on how to effectively integrate AI algorithms 
into workflow may favor automation bias.45

Algorithmic aversion refers to a phenom-
enon where clinicians or healthcare pro-
fessionals exhibit reluctance or skepticism 
toward relying on AI algorithms for making 
diagnostic or treatment decisions in med-
ical imaging.46 This bias can manifest due 
to several reasons, such as trust issues on 
algorithms’ reliability, transparency, or inter-
pretability or a lack of familiarity, fear of job 
displacement, or even ethical and legal con-
cerns.

Bias detection/identification

Detecting bias in AI algorithms necessi-
tates awareness of all sources of bias, includ-
ing those that have to do with the dataset 
and the development and evaluation of AI 
algorithms as well as those related to the 
deployment of these algorithms, such as 
human user biases and inference. Meth-
ods for bias detection vary according to the 
type of bias. One of the first strategies that 
can be used to identify bias related to the 
dataset is dataset evaluation against a set of 
predefined criteria (searching for exclusion 
bias, selection bias, recall bias, observer bias, 
and prejudice bias) and comprehensive data 
analysis.47 Unsupervised analysis of the train-
ing dataset, using methods such as principal 
component analysis and hierarchical cluster-
ing, can be used for the detection of patterns 
in the training dataset that may be otherwise 
occult, highlighting data skewness. Statisti-
cal comparison of model output according 
to different patient groups or confounders 
that may exist in the training dataset, such 
as the gender or age of patients. Potential 
discrepancies in group results could indicate 
a source of bias that can affect the final re-
sults.48 Visualization of algorithm output with 
methods such as class activation heatmaps 
can help detect discrepancies related to such 
potential confounders.

The next step in bias detection is the eval-
uation of the model development process. 
This starts with a code review that can be 

Figure 8. Over-simplified illustration of true concept drift while adding new data over time, resulting in 
changes in the relationship of input features and the target variable and ultimately in model behavior. In 
medical imaging, this may result from, for instance, a change of reference standard (e.g., new guidelines) 
in determining the target variable or a difference in the distribution of underlying data. It is also possible 
that such changes, particularly changes in data distribution, may result in virtual drifts with no obvious 
difference in model behavior.
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carried out by an independent experienced 
coder/auditor.49 Companies such as Google 
have developed methods for anonymous 
code review by several experts.49 Such a code 
review can be also performed retrospectively 
by the scientific community for manuscripts 
published with open-access code.50 Once the 
code has been scrutinized for potential bias, 
comprehensive testing should be initiated. 
This testing should extend from the evalu-
ation of model performance in populations 
unseen in the training dataset (e.g., assess-
ment of model performance in a pediatric 
population even though the algorithm was 
not trained with child data) to explainability 
analysis.51 Simulation methods testing algo-
rithms in various scenarios with Bayesian pa-
rameter search have been proposed to iden-
tify bias sources of algorithmic performance 
reduction.52 Several explainability methods 
have been used that include saliency maps, 
such as gradient-weighted class activation 
mapping (CAM) and integrated gradients. 
Evaluation of the results of saliency maps ne-
cessitates extra care, as concerns have been 
raised about the reliability of these meth-
ods.53,54 

To detect bias related to the use of the 
developed algorithm, human factors as well 
as economic, ethical, and legal factors need 
to be evaluated. Testing by a variety of user 
groups with variable experiences and back-
grounds can identify human user bias. Re-
ceiving feedback with user interviews and 
monitoring the results per user group can 
help locate performance outliers or imbal-
ances related to human factors. In addition, 
deep learning systems that reduce the vari-
ability in human actions leading in turn to 
bias reduction can be useful.55 Auditing by 
legal and ethics experts can also reveal issues 
related to the successful deployment of the 
model.56,57 

To identify and flag bias in AI publications, 
tools have been developed to assist the 
writing process of AI manuscripts.58,59 One 
of these tools is the Prediction Model Risk 
of Bias ASsesment Tool (PROBAST), which 
was developed in 2019 to enable the critical 
evaluation of studies presenting predictive 
models. The current version of PROBAST 
evaluates the risk of bias in four potential 
bias categories: participants, predictors, out-
comes, and analysis.60 Nonetheless, the cur-
rent version of PROBAST is not suitable for 
the evaluation of ML studies, and this is the 
reason that the PROBAST group has initiated 
the process of developing an AI-specific ver-
sion of PROBAST called PROBAST-AI, which 
is still under development.61 For systematic 

reviews of AI studies, the Quality Assessment 
of Diagnostic Accuracy Studies (QUADAS-2) 
has been widely used to detect the risk of 
bias.62 The QUADAS-2 tool includes 14 ques-
tions and provides an estimate of the risk 
of bias in the study, categorizing it as high, 
low, or unclear. Reporting guidelines, such 
as the Fairness Universality Traceability Us-
ability Robustness Explainability-AI and TRI-
POD-AI, can assist authors of AI manuscripts 
in reporting their studies according to the 
Fairness principle, promoting the identifica-
tion of bias sources.58,63,64 When dealing with 
radiomics studies, the CheckList for EvaluA-
tion of Radiomics (CLEAR) and METhodolog-
ical RadiomICs Score (METRICS) have been 
developed to evaluate the reporting and 
methodological study quality.65,66 Among 
the items evaluated, CLEAR item#7 and MET-
RICS item#1 require adherence to reporting 
guidelines similar to those mentioned above; 
CLEAR item#36 and METRICS item#19 re-
quire the consideration of confounding fac-
tors related to dataset preparation that are 
closely related to bias.

Avoidance strategies

Ideally, bias should be prevented before 
it becomes embedded within AI systems. 
The focus of strategies employed during the 
planning, data collection, and model training 
phases of creating AI systems is on preven-
tion, setting a course that avoids the pitfalls 
of bias rather than correcting for it post-hoc.

To mitigate bias and potentially avoid it, 
medical AI system development should ad-
here to ethical AI design principles. Guiding 
principles, such as transparency, fairness, 
non-maleficence, and respect for privacy 

from the outset, are widely included in rec-
ommendations and position papers and can 
help to prevent bias (Figure 9).67 Transparen-
cy increases explainability, interpretability, 
and similar acts of communication and dis-
closure, which in the context of bias mitiga-
tion applies to the explicit, proactive thought 
about which training data are used, and how 
they are collected, processed, and employed. 
Fairness refers to an impartial treatment 
without favoritism or discrimination. In the 
context of preventing bias, fairness can be 
pursued by creating and upholding design 
standards that respect diversity, equity, and 
inclusion. Non-maleficence is a core medi-
cal principle. AI systems should never cause 
foreseeable or unintentional harm, for in-
stance through discrimination or suboptimal 
patient management, which can be a direct 
result of biased models.13 Respect for privacy 
is an important ethical principle, particular-
ly in healthcare. In the context of mitigating 
bias, upholding this principle requires careful 
risk-benefit analyses to balance incorporat-
ing more data with the need to provide indi-
viduals control over their own data.

By incorporating the above-mentioned 
considerations early into the design phase, 
developers can create systems that are less 
likely to perpetuate or amplify biases. This in-
volves rigorous ethical review processes and 
early stakeholder consultations to guide the 
decision-making process. The composition 
of the involved teams can influence the AI’s 
propensity for bias. Teams that are diverse 
in terms of gender, ethnicity, culture, and 
professional background bring a wide array 
of perspectives to the table, which can help 
identify and eliminate potential biases early 
in the development process.

Figure 9. Key ethical artificial intelligence principles. WHO, World Health Organization.
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AI systems may transport various types of 
bias stemming from their underlying train-
ing data.68,69 At the data collection and pro-
cessing phase, these include measurement 
bias (how particular features are chosen, 
used, or measured), omitted variable bias 
(when one or more relevant variables are 
omitted or context is neglected), represen-
tation and sampling bias (incorrect sampling 
leads to insufficiently diverse or otherwise 
non-representative datasets), and aggrega-
tion bias (false conclusions about individu-
als from observing whole populations).69,70 
These issues warrant thoughtful data collec-
tion and processing to ensure that datasets 
are representative of the diversity of the pop-
ulation or phenomena they are intended to 
model. It requires sourcing data from a wide 
range of demographics, geographies, and 
contexts to capture a broad spectrum. None-
theless, even data collected following these 
principles may still reflect existing structural 
and historical biases. 

Apart from collecting more data, strate-
gies at the data processing stage may include 
the creation of more representative training 
datasets by data augmentation (e.g., by spe-
cifically adding underrepresented examples 
to the data through additional sampling or 
data generation) or data filtering (e.g., active-
ly undersampling or filtering out undesirable 
or non-representative samples).68 Generative 
AI models, such as large language models or 
vision-language models capable of synthe-
sizing images, additionally allow for tailored 
data augmentation by creating new exam-
ples that meet a set of targeted criteria.71-73 
An overview of bias avoidance strategies at 
the data processing phase is presented in 
Figure 10. 

The way data are presented to the mod-
el during training (affected by the problem 
formulation and the labeling methodology) 
and how model parameters are updated (de-
fined through training setup including the 
objective function) can introduce bias into 
the model.13,68 A classic example is optimiz-
ing a model for overall accuracy, which may 
severely impact the model performance on 
minority class samples in imbalanced setups. 
Other techniques, such as pruning, aiming 
to compress the model may also dispropor-
tionately impact underrepresented subsets 
in the data.74 Careful design of the training 
setup can help avoid biases at this stage.

Transparent and comprehensive docu-
mentation of the AI system’s design choices, 
data sources, and any assumptions made 
during development (e.g., through model 
cards)75 is crucial and can help spot sources 
of bias before, during, and after training. Ad-
ditionally, especially in the context of foun-
dation models, detailed documentation may 
help developers seeking to use larger mod-
els’ outputs to train smaller models to pre-
vent propagating bias existing in the teacher 
model to downstream models.

Mitigation strategies 

This section reviews different approaches 
and algorithms to mitigate biases. Bias miti-
gation algorithms can be divided into three 
types according to the phase in which they 
are applied: in a preprocessing phase, during 
model training, or after model training.76 Ad-
ditionally, algorithms can be categorized ac-
cording to whether they explicitly or implicit-
ly address bias by accessing or not accessing 
the bias variables during training.77

The bias mitigation algorithms applied in 
the preprocessing phase are motivated by 
the fact that many of the errors in ML models 
arise from biases inherent in the data used to 
train them. Additionally, these are indepen-
dent of the model and can be used in a black-
box setting by altering the data distribution 
to increase model fairness.76 To achieve this 
effect, discriminatory effects within data 
are first quantified and then removed or 
accounted for. Several specific mechanisms 
for handling discrimination have been pro-
posed to create a fair training distribution.76

Re-sampling and re-weighting algorithms 
focus on rebalancing the class distribution 
by adjusting the sample probability/loss 
weight for majority/minority samples.78-83 
Nabi and Shpitser84 rely on causal inference 
to estimate the effects of specific variables 
on the outcome, allowing them to transform 
the inference problem on a specific distri-
bution into another fair distribution to train 
the model. Despite addressing what can be 
considered the root of the fairness issue, this 
approach may need unrealistic assumptions 
about the training distribution or result in 
the loss of information that is implicit in the 
original data.

Other algorithms, such as distribution-
ally robust optimization85 and variations,86 
ensembling approaches,87-89 adversarial 
debiasing,90-95 invariant risk minimization,96 
invariant causal predictors,96,97 limited capac-
ity models,98-100 and gradient starvation mit-
igation,101 have been proposed to mitigate 
bias during model training by updating the 
objective function or imposing constraints 
on the model, with the last two methods im-
plicitly achieving this.77

Finally, another set of methods mitigates 
bias in a post-processing phase after model 
training by changing prediction based on 
fairness constraints.76 Hardt et al.102 proposed 
a methodology for achieving equalized odds 
and equality of opportunity, whereas Pleiss 
et al.103 proposed calibrated equalized odds. 
Woodworth et al.104 used equalized odds to 
propose learning non-discriminatory pre-
dictors, and Kamiran et al.105 used decision 
theory to suggest reject option-based classi-
fication and discrimination-aware ensemble 
for discrimination-aware classification. Lohia 
et al.106 proposed a post-processing method 
for individual and group debiasing. These 
post-processing methods can be used in 
black-box settings, similar to preprocessing 
methods, as they do not require access to 
model parameters.76

Figure 10. Overview of bias avoidance strategies at the data processing phase. Adapted from Gallegos 
et al.68 CXR, chest X-ray.
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In addition to active bias mitigation tech-
niques, explainable artificial intelligence 
(XAI) methods offer insights into the key 
features influencing a model’s predictions 
and identify and understand the significance 
of features driving a model’s decisions. This 
understanding is crucial for uncovering lim-
itations and biases in AI applications within 
medical imaging. These methods help us 
discern if confounders or biases are present 
in the model, allowing for their control or 
removal.107 In general, XAI methods can be 
categorized into two main groups: pertur-
bation-based and backpropagation-based 
explanations. Perturbation-based methods 
include occlusion,108 LIME,109 SHAP,110 and 
various forms of perturbations.111-113 Back-
propagation-based methods encompass 
well-known techniques, such as saliency 
map visualization,114 CAMs,115 and their ex-
tensions.116-118

Potential challenges

Handling bias in AI systems is crucial 
for ensuring fairness and equity in deci-
sion-making processes. However, there are 
several challenges in handling bias that can 
be related to ambiguities in interpreting re-
sults, limited diversity in benchmark data-
sets, and the subjectivity of detecting bias.

Ambiguities in interpreting results can 
pose significant challenges in the develop-
ment and clinical use of AI software. These 
refer to situations where the interpretation 
of the results is not unique or is open to mul-
tiple meanings by the users. Ambiguities can 
also originate during the different applica-
tions of the AI tools from the intended use 
statement provided by the AI developers, 
increasing the risk of off-label or erroneous 
applications of AI in clinical practice.119 For 
example, AI software trained for adult frac-
ture detection is at risk of erroneous results if 
applied in a pediatric population. 

Limited diversity in benchmark datasets 
can represent a significant challenge in AI 
development and generalizability. This can 
occur when some diseases or events are col-
lected with underrepresentation or overrep-
resentation compared with their prevalence 
in the general population or clinical practice 
due to the limited patient diversity included 
in the training data; this causes a class imbal-
ance due to an uneven distribution between 
the training data and the actual population 
to which the AI model is applied.120 As AI 
tools learn from archival data, a narrowed 
data source results in AI models that are not 
generalizable in heterogeneous patient pop-

ulations with different demographics, clini-
cal characteristics, and disease prevalence, 
leading to perpetuated bias in the final AI 
model.120,121 Publicly accessible benchmarks 
are essential for comparison for AI models 
and represent a crucial element of open sci-
ence.122 Multicentric databases can poten-
tially overcome this challenge by collecting 
a large number of diverse and representa-
tive data in rarer conditions. Currently, these 
publicly available datasets are limited to a 
narrow spectrum of diseases or countries 
of origin of the patient population.123 Differ-
ent demographic and clinical characteristics 
should be included to ensure a real-world 
representation in benchmark datasets.48 
However, although sharing data is essential 
for developing robust AI tools, patient priva-
cy when collecting medical information can 
pose significant challenges.124 Furthermore, 
real-world data are affected by missing or 
incomplete clinical values in retrospective 
cohorts and heterogeneity of clinical and 
laboratory parameters with their standard 
of reference. Image quality, noise, and ac-
quisition parameters represent additional 
challenges in handling bias in multicentric 
cohorts. In the current radiological litera-
ture, there are ongoing difficulties in sharing 
benchmark datasets, with fewer than ap-
proximately 6% of all published articles in ra-
diology journals partially or completely shar-
ing the experimental data used to build the 
AI models.125 Finally, data labeling for model 
training can be affected by the human image 
interpretation and diagnostic performance 
of the selected reference standard for the in-
vestigated condition.121

Identifying the source of bias in AI tools is 
also a relevant challenge. Subjectivity in the 
detection of bias can be related to personal 
interpretation and individual perspectives 
related to the identification of the bias it-
self. The complexity of AI tools makes it dif-
ficult to detect. Moreover, different sources 
of bias can contribute to the generation of 
bias, including the data source, algorithm, 
and users, which makes the identification 
more cumbersome.124 Ultimately, identifying 
and addressing bias in AI will require signif-
icant effort for algorithm transparency, data 
source and processing, and final model uti-
lization.

Ethical considerations

Ethical considerations are important in all 
steps of the AI pathway, from identifying a 
use case to post-market surveillance. It is im-
portant to ensure the technology promotes 
well-being, minimizes harm, and distributes 

benefits and harms justly among all stake-
holders.126 The World Health Organization 
(WHO) poses six key ethical principles for AI 
in healthcare in their framework (Figure 9): 
(1) protect autonomy, (2) promote human 
well-being, human safety, and the public in-
terest, (3) ensure transparency, explainabili-
ty, and intelligibility, (4) foster responsibility 
and accountability, (5) ensure inclusiveness 
and equity, and (6) promote AI that is respon-
sive and sustainable.127 

The WHO principles 2 and 5 address bias, 
mandating that AI tools prioritize human 
well-being, safety, and public interest. En-
suring AI’s safety and efficacy in medical im-
aging demands rigorous testing, validation, 
and ongoing monitoring to mitigate harms 
and biases. Cost-effectiveness analyses and 
environmental awareness are both crucial 
to prevent unnecessary burdens on society, 
patients, and our environment. 

Addressing biases in AI, particularly those 
affecting inclusivity and equity based on 
gender (identity), ethnicity, and socio-eco-
nomic status, requires thorough subgroup 
analyses. The 2020 Dutch case against the 
“system risk indication” tool, which violated 
privacy laws and wrongly identified innocent 
people as fraud suspects, underscores the 
impact of such biases.128

Additionally, the lack of diversity among 
developers and researchers can worsen 
these issues, as teams may unconsciously fa-
vor perspectives similar to their own. There-
fore, enhancing team diversity and uncon-
scious bias training is crucial for mitigating 
bias in AI development.

Central to data ethics in AI are principles 
such as informed consent, privacy, data pro-
tection, and transparency. Currently, patients 
can decline being evaluated by AI-based 
tools according to the right to informed 
consent for any procedure in the hospital.129 
Patients should be given comprehensive in-
formation about how AI is used in their care, 
including any limitations or biases of the AI 
system that may affect their treatment. This 
may, however, eventually become infeasible 
when AI is deeply integrated into healthcare, 
and refusing AI may then compromise an in-
dividual’s access to care. An alternative may 
then be a human-in-the-loop and a rigorous 
monitoring system.130

Ultimately, to protect patients, the ethical 
use of AI including mitigating biases needs 
to be captured in regulations. The recent Eu-
ropean Union’s AI Act serves as a pioneering 
legal framework aimed at regulating AI use, 
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particularly in high-risk applications such as 
healthcare (as defined in Article 6). Set to 
fully take effect in 2026, the act governs the 
development, deployment, and use of AI, en-
suring safety, transparency, and adherence 
to ethical standards across the EU. Article 10 
mandates that for high-risk AI systems, train-
ing, validation, and testing datasets must be 
relevant, representative, error-minimal, and 
complete for their intended use. Addition-
ally, it requires rigorous data governance, 
including bias examination and mitigation 
measures, to prevent impacts on health, 
safety, fundamental rights, or unlawful dis-
crimination, particularly when data outputs 
affect future inputs. Concerning monitoring, 
Article 61 of the legislation mandates that 
developers of high-risk AI systems establish 
ongoing, systematic post-market surveil-
lance mechanisms. Critiques of the act high-
light liability gaps and tension between its 
vague yet stringent stipulations, potentially 
stifling innovation and escalating healthcare 
costs through the compliance burden.131 

Prospects

Despite the above challenges, proactive 
efforts are expected to avoid and mitigate 
bias in AI for medical imaging in the future. 
Addressing bias in medical imaging AI is a 
dynamic landscape with many opportuni-
ties for innovation. Before going into detail, 
it should be acknowledged that expecting 
completely bias-free systems may be unre-
alistic.

Developing new bias detection methods 
is a promising future direction. More so-
phisticated algorithms that can identify and 
measure biases, including subtle discrimina-
tion, may be developed by researchers. Even 
though AI models are assumed to be biased, 
AI-based bias auditing tools may be lever-
aged to help mitigate bias.132,133 To reflect 
diverse healthcare landscapes and dispari-
ties across countries and regions, initiatives 
to improve diversity and representativeness 
in datasets, possibly globally, may support 
this goal.123 Such initiatives should aim to 
reduce AI system biases by compiling larger 
and more inclusive data repositories from di-
verse demographic groups and geographic 
regions.123

Additionally, bias or fairness-aware algo-
rithms for medical imaging applications may 
be promising.134 These algorithms can ensure 
equitable outcomes across patient popu-
lations. Because collaboration across disci-

plines is key to progress in this field, experts 
from computer science, medicine, ethics, 
and policymaking can collaborate to address 
bias in AI medical imaging from multiple 
perspectives.39 Resultant algorithms must 
be explainable with transparent methods so 
these can be further studied and debated in 
the future.135-137 AI companies should be en-
couraged to actively participate in indepen-
dent research on AI biases and algorithms to 
improve fairness.

After training, an AI algorithm can be 
locked or adaptive.138 Instead of becoming 
outdated after a few years, the AI model 
could be updated continuously as it learns 
from new data. Continuous learning can 
increase bias if the new data are biased.139 
Continuous monitoring of models should 
address biases that may arise over time to 
ensure the integrity of AI medical imaging 
systems in real-world clinical settings.10,48,140 
By identifying and addressing biases, these 
systems can improve healthcare outcomes 
and equity. Independent experts or organi-
zations can audit these regularly.

AI system development and deployment 
in healthcare should require adherence to 
certain ethical guidelines and standards, 
which need to be improved over time con-
sidering the dynamic nature of these tools. 
These guidelines should explicitly deal with 
AI bias and fairness as well. Stronger regu-
latory oversight and accountability mech-
anisms, such as the Food and Drug Admin-
istration’s action plans and the European 
Union’s AI act, are needed to ensure that 
AI medical imaging systems meet bias and 
trustworthiness standards without hindering 
AI innovation.141-143

Final remarks

Understanding that medical imaging AI 
systems are sensitive to biases is key for their 
effective real-world integration into clinical 
practice. As technology progresses, the AI 
community should prioritize addressing bias 
throughout the entire AI lifecycle, starting 
from the research question to data collec-
tion, data processing, model development, 
model evaluation, and eventual real-world 
deployment. For this purpose, we present 
collective recommendations in Table 3.

Despite the aspiration for unbiased AI, 
complete inclusivity of all data types and 
sources remains an unattainable goal in 
model development. Nevertheless, by le-

veraging diverse datasets, integrating fair-
ness-aware systems or bias assessment tools, 
and promoting interpretability and explain-
ability methods, the future -and also the AI it-
self- may hold great promise to mitigate bias 
and enhance patient care outcomes. Even so, 
developers and clinicians must acknowledge 
the inherent limitations of AI methodologies 
and potential biases, similar to traditional di-
agnostic tools, to ensure the ultimate clinical 
decisions are based on clinical context and 
benefit all patients equitably. Being at the 
forefront of AI implementation, medical im-
aging professionals, particularly radiologists, 
are positioned to lead efforts toward unbi-
ased AI integration in healthcare. 

By offering a comprehensive review of 
critical aspects, but without a detailed tech-
nical discussion, we hope this review effort 
raises awareness within the medical imaging 
community about the importance of identi-
fying and addressing AI bias proactively to 
prevent its impact from being realized later. 
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Table 3. Recommendations for addressing bias in artificial intelligence (AI) for medical imaging

Stage of AI Recommendation

Design

• Ensure that the project team represents a range of perspectives, including radiologists, clinicians, data scientists, engineers, and 
department administrators, preferably from different demographic backgrounds.
• Encourage the entire team for transparency in detecting and reporting potential biases.
• Scrutinize research questions to identify any inherent biases or inequalities and address them proactively in the study design.
• Consider adhering to established reporting and methodological quality guidelines to ensure transparency and reproducibility.

Data

• Collect data from a wide range of sources to capture diverse patient populations.
• Conduct in-depth exploratory data analysis to identify any potential systematic errors that may exist, informing subsequent modeling and 
mitigation strategies.
• Standardize data to ensure consistency across datasets, with effective harmonization techniques.
• Implement rigorous quality control measures to maintain the accuracy and reliability of labels and annotations, following established 
protocols and guidelines.
• Continuously monitor data quality and update annotations as needed to reflect any changes or improvements.

Modeling and 
Evaluation

• Divide the dataset into training, validation, and test sets before any modeling begins, ensuring that each subset is representative of the 
overall population.
• Select evaluation metrics that account for disparities in outcomes across different demographic groups, avoiding metrics that may mask 
underlying systematic errors.
• Consider techniques such as fairness-aware machine learning algorithms and model interpretability methods to mitigate bias and 
enhance transparency.
• Evaluate model fairness using a variety of methods to capture different aspects of bias.
• Assess model performance separately for different demographic subgroups to identify any disparities in predictive accuracy or bias.
• Continuously retrain and update models to account for evolving datasets and mitigate the perpetuation of historical biases.

Deployment

• Continuously monitor model performance in real-world settings, paying particular attention to disparities in outcomes among different 
demographic groups.
• Conduct thorough evaluation of model performance after any updates or modifications to ensure that biases have not been inadvertently 
introduced or amplified.
• Engage with regulatory bodies to ensure compliance with relevant standards and guidelines and seek periodic audits to validate the 
fairness and effectiveness of the deployed models.
• Try to collect effective feedback from the end-users to identify potential biases or shortcomings in the deployed system and address them 
promptly.
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