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Machine learning models for discriminating clinically significant from 
clinically insignificant prostate cancer using bi-parametric magnetic 
resonance imaging

PURPOSE
 

This study aims to demonstrate the performance of machine learning algorithms to distinguish 
clinically significant prostate cancer (csPCa) from clinically insignificant prostate cancer (ciPCa) in 
prostate bi-parametric magnetic resonance imaging (MRI) using radiomics features.

METHODS
MRI images of patients who were diagnosed with cancer with histopathological confirmation fol-
lowing prostate MRI were collected retrospectively. Patients with a Gleason score of 3+3 were con-
sidered to have clinically ciPCa, and patients with a Gleason score of 3+4 and above were consid-
ered to have csPCa. Radiomics features were extracted from T2-weighted (T2W) images, apparent 
diffusion coefficient (ADC) images, and their corresponding Laplacian of Gaussian (LoG) filtered 
versions. Additionally, a third feature subset was created by combining the T2W and ADC images, 
enhancing the analysis with an integrated approach. Once the features were extracted, Pearson’s 
correlation coefficient and selection were performed using wrapper-based sequential algorithms. 
The models were then built using support vector machine (SVM) and logistic regression (LR) ma-
chine learning algorithms. The models were validated using a five-fold cross-validation technique.

RESULTS
This study included 77 patients, 30 with ciPCA and 47 with csPCA. From each image, four images 
were extracted with LoG filtering, and 111 features were obtained from each image. After feature 
selection, 5 features were obtained from T2W images, 5 from ADC images, and 15 from the com-
bined dataset. In the SVM model, area under the curve (AUC) values of 0.64 for T2W, 0.86 for ADC, 
and 0.86 for the combined dataset were obtained in the test set. In the LR model, AUC values of 0.79 
for T2W, 0.86 for ADC, and 0.85 for the combined dataset were obtained.

CONCLUSION
 

Machine learning models developed with radiomics can provide a decision support system to com-
plement pathology results and help avoid invasive procedures such as re-biopsies or follow-up bi-
opsies that are sometimes necessary today.

CLINICAL SIGNIFICANCE
This study demonstrates that machine learning models using radiomics features derived from 
bi-parametric MRI can discriminate csPCa from clinically insignificant PCa. These findings suggest 
that radiomics-based machine learning models have the potential to reduce the need for re-biopsy 
in cases of indeterminate pathology, assist in diagnosing pathology–radiology discordance, and 
support treatment decision-making in the management of PCa.
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Prostate cancer (PCa) is the second most 
common cancer in men, with a rising in-
cidence.1 The prostate-specific antigen 

(PSA) test remains a commonly used screen-
ing method, although recent studies sug-
gest it has a limited impact on survival out-
comes.2,3 In the modern medical landscape, 
the significance of prostate imaging, particu-
larly with magnetic resonance imaging (MRI), 
has grown. Imaging plays an important role 
in the diagnosis of PCa, and multiparametric 
prostate magnetic resonance imaging (mp-
MRI) is the most commonly used imaging 
modality for diagnosis. Different versions of 
Prostate Imaging–Reporting and Data Sys-
tem (PI-RADS®) have been published to stan-
dardize mpMRI radiology reports.4 In cases 
where the Gleason score is 6, the Gleason 
grade group (GGG) is 1, and in cases where 
the Gleason score is 3+4 or higher, the GGG 
is 2 or above. In PCa, the prognosis is expect-
ed to be better if GGG = 1.5 However, active 
surveillance can be applied to patients with 
GGG <2.6 Treatment management varies with 
the GGG. Although dynamic contrast-en-
hanced imaging is considered a “safety zone,” 
bi-parametric magnetic resonance imag-
ing (bpMRI) is increasingly favored due to 
its speed and, in some studies, comparable 
diagnostic performance to mpMRI.7,8 PI-
RADS® version 2.1 indicates that bpMRI may 
be a viable option for decreasing the use of 
ga-dolinium contrast media, associated ad-
verse reactions, and examination time.4 This 

can lead to greater accessibility to prostate 
MRI for patients. Nevertheless, the PI-RADS® 
version 2.1 suggests mpMRI for patients with 
a high likelihood of cancer based on factors 
such as PSA levels, family history, or genetic 
predisposition. It also recommends mpMRI in 
cases where image quality may be compro-
mised, such as in patients with hip prostheses.

In PI-RADS® version 2.1, for clinically sig-
nificant prostate cancer (csPCa), at least one 
of the following must be present: GGG >2, 
volume >0.5 cc, or extra-prostatic extension. 
As a result, frequent distinction between 
clinically significant and clinically insignif-
icant prostate cancer (ciPCa) is achieved by 
histopathological verification as a result of 
prostate biopsy, which is an invasive method. 
Gleason score may need to be re-evaluated 
by pathology in some cases.9 In our study, we 
aimed to show the role of machine learning 
algorithms created from radiomics features 
obtained from T2-weighted (T2W) and ap-
parent diffusion coefficient (ADC) sequenc-
es in MRI. A review of the literature reveals 
numerous machine learning-based studies 
on PCa detection, particularly csPCa detec-
tion.10,11 Our study aims to make a significant 
contribution to the existing literature by pro-
viding an easily applicable, reproducible, and 
more accurate model that facilitates the dis-
tinction between csPCa and ciPCa. This mod-
el is particularly focused on improving the 
management of patient populations who 
may require multiple biopsies over time. In 
daily practice, this could impact a consider-
able number of patients.

Methods

Ethics and data source

This study was approved by the İstanbul 
University, İstanbul Faculty of Medicine Eth-
ics Committee (decision number: 2021/676, 

date: 28/05/2021). Since it was a retrospec-
tive study, informed consent was waived. The 
dataset was obtained by retrospectively scan-
ning the images of patients >18 years of age, 
whose lesions detected after mpMRI were 
confirmed histopathologically by systematic 
core and targeted biopsy at the department 
of radiology of the institution between 2016 
and 2022. Fusion biopsy, which combines MR 
and ultrasound imaging, was used as the bi-
opsy technique in all patients. The data were 
obtained on a lesion-by-lesion basis to avoid 
possible bias during the data collection. The 
exclusion criteria encompassed the follow-
ing conditions: 1) elimination of cases with 
imaging artifacts that hindered the accurate 
segmentation of cancer lesions and 2) exclu-
sion of instances with incomplete MRI data, 
including scenar-ios where essential images 
were missing. 

Magnetic resonance imaging 

The primary MRI sequences chosen for 
radiomic input in prostate imaging included 
axial T2W images and ADC images. In this 
study, two distinct MR technologies were 
employed: the Magnetom Aera 1.5 Tesla (Sie-
mens Healthcare, Germany) and the Achieva 
3.0 Tesla (Philips Medical Systems, the Neth-
erlands). ADC images were acquired from dif-
fusion-weighted imaging (DWI) with a b-val-
ue of 0 and 1400 sec/mm2 on both devices. 
For the axial T2W images and DWI protocols, 
the repetition time/echo time parameters 
were set at 7500/100 and 5000/70 ms for the 
1.5 Tesla system and 4200/100 and 3600/70 
ms for the 3.0 Tesla system. The field of view 
(FOV) differed between the devices, with an 
18 mm x 18 mm FOV for the 3.0 Tesla system 
and a 20 mm x 20 mm FOV for the 1.5 Tesla 
system. A slice thickness of 3.0 mm was main-
tained consistently on both devices, with no 
slice gap, to ensure homogeneity in imaging 
parameters throughout the study. Table 1 
provides detailed parameters related to MRI.

Main points

• This study employed machine learning al-
gorithms [support vector machine (SVM) 
and logistic regression (LR)] to differentiate 
between clinically significant prostate can-
cer (csPCa) and clinically insignificant pros-
tate cancer (ciPCa) using radiomics features 
from bi-parametric magnetic resonance im-
aging images.

• Feature selection yielded 5 key features 
from T2-weighted (T2W) images, 5 from ap-
parent diffusion coefficient (ADC) images, 
and 15 from the combined dataset, which 
was critical for model accuracy.

• A total of 77 patients were analyzed, with 
the SVM model achieving area under the 
curve (AUC) values of 0.64 for T2W, 0.86 for 
ADC, and 0.86 for combined images, where-
as the LR model achieved AUC values of 
0.79 for T2W, 0.86 for ADC, and 0.85 for com-
bined images.

• The findings suggest that machine learning 
models using radiomics can significantly aid 
in distinguishing csPCa from ciPCa, poten-
tially reducing the need for invasive biopsy 
procedures.

Table 1. Parameters of the magnetic resonance imaging

T2W (1.5 Tesla 
system)

DWI (1.5 Tesla 
system)

T2W (3.0 Tesla 
system)

DWI (3.0 Tesla 
system)

TR 7500 5000 4200 3600

TE 100 70 100 70

FOV area 20 mm x 20 mm 20 mm x 20 mm 18 mm x 18 mm 18 mm x 18 mm

Matrix 320 x 320 256 x 256 230 x 180 64 x 64

Voxel size (x, y, z; 
mm) 0.6 x 0.6 x 3 (mm) 0.8 x 0.8 x 3 (mm) 0.8 x 1 x 3 (mm) 3 x 3 x 3 (mm)

Slice thickness 3 mm 3 mm 3 mm 3 mm

Slice gap - - - -

Sequence Turbo spin echo Echo planar 
imaging Turbo spin echo Echo planar 

imaging

T2W, T2-weighted; DWI, diffusion-weighted imaging; TR, repetition time; TE, echo time; FOV, field of view.
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Image preprocessing and feature ex-
traction

The acquired images underwent normal-
ization through the proprietary algorithm 
embedded in Olea Sphere® software (Olea 
Medical, La Ciotat, France). Despite ADC be-
ing a computationally derived sequence, 
it underwent normalization in a manner 
consistent with the axial T2W series, align-
ing with the recommendations in radiomics 
studies.12 Subsequently, outlier pixels were 
systematically eliminated using the ±3 sig-
ma technique.13 Following normalization and 
the removal of outlier pixels, pixel sizes were 
standardized to a 1 × 1 mm2 scale using cubic 
B-spline interpolation. The gray levels were 
then discretized uniformly for both series 
with a bin width of 0.05.14 Utilizing PyRadiom-
ics, Laplacian of Gaussian (LoG) filter images 
were extracted from the original images with 
logarithmic values of 2, 4, and 6. Consequent-
ly, four images were derived from a single 
original image, where one of them represent-
ed the original unaltered image. 

Segmentations were performed manu-
ally by two radiologists using the freehand 
method, prior to the steps described in the 
previous paragraph. Each radiologist had 5 
and 4 years of experience, respectively, and 
performed the segmentations independent-
ly using axial T2W and ADC images (Figure 1). 
When necessary for improved tumor orienta-
tion, DWI with b-values of 0 and 1400, as well 
as sagittal T2W images, were incorporated. 
However, for objective bi-parametric mod-
eling, contrast-enhanced series were inten-
tionally omitted and not reviewed during 
the segmentation process. During segmen-
tation, the lesion area with high suspicion of 
tumor was included, whereas areas of uncer-
tainty were excluded. The suspicious lesion 
underwent volumetric 3D segmentation 
using Olea Sphere® software. Subsequently, 
feature extraction was performed from the 
original image, as well as from three LoG-fil-
tered series within each set, following the 
steps described in the previous paragraph. 
The radiomics workflow is summarized in 
Figure 2.

Data preprocessing and feature selection

To ensure consistency and dependability 
of machine learning models, meticulous data 
pre-processing steps were performed.15 After 
standardization and discretization were ap-
plied uniformly to all data using a consistent 
bin width, the data were divided into 20 bins. 
The dataset was randomly split into training 
and test sets with a 70/30 ratio. To prevent 

contamination of the test dataset with the 
training dataset, data splitting was con-
ducted before any data augmentation. This 
approach ensured the integrity and inde-
pendence of the training and test datasets, 
and T2W and ADC series were combined to 
construct a unified dataset.

Pearson’s correlation coefficient was em-
ployed to identify and remove redundant 
features. Pairs of features with a correlation 
coefficient exceeding a threshold of 0.80 
were identified and subsequently removed.16 
The remaining features, which met these 
criteria, served as input for the next stage. 

Figure 2. The figure illustrates the radiomics workflow. GLDM, gray-level dependence matrix; GLCM, 
gray-level co-occurrence matrix; GLRLM, gray-level run length matrix; GLSZM, gray-level size zone matrix; 
NGTDM, neighboring gray-tone difference matrix.

Figure 1. The figure shows examples of the segmentation of the original (a) T2-weighted images with 
Laplacian of Gaussian (LoG) filters using sigma values of 2 (b), 4 (c), and 6 (d), as well as the original (e) 
apparent diffusion coefficient images with LoG filters using sigma values of 2 (f), 4 (g), and 6 (h).

a

e

c

g

b

f

d

h
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A wrapper-based feature selection algo-
rithm was then developed using backward 
elimination and five-fold cross-validation. 
Logistic regression (LR) was chosen as the 
estimator for feature selection. This wrap-
per method evaluates different models by 
iteratively including or excluding features to 
determine the optimal feature combination. 
Each model was analyzed by iteratively re-
moving one feature at a time. Through mul-
tiple evaluations, the most relevant features 
were identified. Crucial features were select-
ed exclusively from the training folds using 
cross-validation, thereby avoiding the “dou-
ble-dipping” phenomenon.17 As previously 
indicated, the test set remained untouched 
throughout the feature selection process 
due to the prior data division into training 
and test sets.

Machine learning algorithms

T2W, ADC, and the combined dataset 
were incorporated into the machine learning 
modeling. The finalized set of features was 
used for implementing machine learning 
algorithms, which were executed using Py-
thon (version 3). The first model employed 
was a support vector machine (SVM) with hy-
perparameters set to C: 1.0 and kernel: linear. 
Another model, LR, was used with hyperpa-
rameters configured as C: 25, solver: liblinear, 
and regularization penalty: L2 (Ridge). The 
performance of the models was evaluated 
using five-fold cross-validation. Metrics in-
cluding accuracy, sensitivity, specificity, pre-
cision, recall, F1 score, and the area under the 
curve (AUC) were calculated.

Results

Patients 

The study involved a total of 108 patients. 
However, 14 patients were excluded due to 
incomplete pathology results, 3 patients 
had incomplete images, and 14 patients 
had artifacts in their images (Figure 3). Of 
the remaining patients, 61% (47 patients) 
were diagnosed with csPCa, whereas 39% 
(30 patients) were classified as having ciPCa. 
Table 2 provides a summary of the patients’ 
characteristics.

Feature extraction and selection

A total of 444 features were extracted 
from each sequence. These features were 
categorized as follows: 17 (15.32%) shape, 19 
(17.12%) first-order, 24 (21.62%) gray-level 
co-occurrence matrix, 16 (14.41%) gray-lev-
el run-length matrix, 16 (14.41%) gray-level 

size-zone matrix, 14 (12.61%) gray-level de-
pendence matrix, and 5 (4.50%) neighboring 
gray-tone difference matrix features. Subse-
quently, a combined dataset was generated 
by concatenating features from both T2W 
and ADC sequences.

Pearson’s correlation coefficient identified 
28, 31, and 50 features as non-overlapping in 
T2W, ADC, and the combined group, respec-
tively. Following the wrapper-based sequen-
tial feature selection step, the final feature 
subsets consisted of 5 features in T2W, 5 in 
ADC, and 15 in the combined group, details 
of which are shown in Table 3 and Figure 4.

Models performance

The SVM models demonstrated accuracy 
scores of 75%, 85%, and 91% in the train-
ing group and 64%, 76%, and 72% in the 
test group for the T2W, ADC, and combined 
groups, respectively. The corresponding AUC 

values with 95% confidence intervals (CI) 
were 0.75 (0.74–0.76), 0.89 (0.88–0.89), and 
0.95 (0.95–0.96) in the training group, and 
0.64 (0.62–0.65), 0.86 (0.85–0.88), and 0.86 
(0.85–0.88) in the test group for the T2W, 
ADC, and combined groups, respectively.

The LR models in the T2W, ADC, and com-
bined groups had accuracy scores of 74%, 
84%, and 86% in the training group, and 70%, 
79%, and 77% in the test group, respectively. 
The AUC values with 95% CI were as follows: 
for the T2W, ADC, and combined groups in 
the training group, 0.83 (0.82–0.83), 0.89 
(0.88–0.89), and 0.95 (0.94–0.95); and in the 
test group, 0.79 (0.78–0.80), 0.86 (0.84–0.88), 
and 0.85 (0.83–0.87), respectively. Detailed 
performance analyses for the training group 
and the test group are presented in Table 4, 
and Figure 5 shows the receiver operating 
characteristic curves for all models.

Figure 3. The figure demonstrates the patient selection algorithm. (F, feature; as listed in Table 2).

Table 2. Demographic and patient characteristics for both groups

csPCa ciPCa P value

Age (mean ± SD) (95% CI) 65.22 ± 8.85 (62.59–67.84) 61.61 ± 6.8 (58.97–64.24) 0.086

PSA level (median) (min–max) 7.46 (1.22–38.67) 5.95 (2.0–45.0)  0.044*

Localization (n)
Peripheric zone
Transitional zone

40
7

24
6

0.560

MRI technology
1.5 T scanner
3.0 T scanner

31
16

19
11

0.009†

Gleason score (n)
Gleason 3+3
Gleason 3+4
Gleason 4+3
Gleason 4+4
Gleason 4+5
Gleason 5+4
Gleason 5+5

NA
24
9
9
3
1
1

30
NA
NA
NA
NA
NA
NA

*A significant difference was found between both groups by Mann–Whitney U test revealing a higher value in the 
CsPCa group. †1.5 Tesla scanners have a higher number of patients and a significant difference was found in the 
Pearson’s chi-square test. csPCa, clinically significant prostate cancer; ciPCa, clinically insignificant prostate cancer; 
SD, standard deviation; CI, confidence interval; PSA, prostate-specific antigen; min–max, minimum–maximum; MRI, 
magnetic resonance imaging; NA, not available.
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Discussion
In our investigation, the efficacy of ma-

chine learning models employing prostate 
bpMRI radiomics analysis for predicting 
csPCa was explored, revealing promising 
predictive capabilities. As the two different 
algorithms work on different principles, an 
attempt was made to minimize the possibil-
ity of overfitting by using them in the algo-
rithms created and to evaluate the usability 
of the different models. The reasonable and 
comparable accuracy rates of these algo-
rithms in this study demonstrate the feasibil-
ity of using machine learning algorithms to 
identify csPCa.

In the literature, radiomics studies con-
ducted using ultrasonography and com-
puted tomography in prostate imaging are 

available.18,19 Nevertheless, the popularity of 
radiomics studies in prostate MRI is notably 
increasing. The field of radiomics studies 
conducted in MR is expansive, encompass-
ing endeavors to differentiate extraprostatic 
extension, discern normal tissue from cancer, 
identify recurrence post-radical prostatecto-
my, and distinguish recurrence after treat-
ment.20 Notably, the treatment approaches 
for csPCa and ciPCa can vary significantly.21-23 
Hence, there is a growing significance in 
conducting studies aimed at differentiat-
ing csPCa and ciPCa. Some of these studies 
have been performed with mpMRI and some 
with bpMRI. Our study was conducted with 
bpMRI, which is more accessible, has a short-
er duration, and is considered suitable for 
acquisition with certain criteria in PI-RADS® 
version 2.1, and studies are being conducted 
to disseminate it.4 

Zhang et al.24 used GGG 1 and GGG >1 
groups in their nomogram study of 159 pa-
tients with radiomics, similar to our study. 
Similar to our study, only bpMRI images were 
used, and segmentation was performed on 
DWI, ADC, and T2W. Although the use of in-
ternal validation was the advantage of the 
study, this study was performed with a single 
3.0T MR technology. In addition, this study 
was performed with a radiomic nomogram, 
and machine learning modeling was not 
applied. In a retrospective radiomics study 
of 489 patients, Gong et al.25 derived mod-
els from bpMRI data (T2W and DWI). They 
incorporated clinical modeling by including 
PSA data in the study. Performed on a single 
3.0T MRI machine, they reported an AUC of 
0.811 in the training group and 0.788 in the 
test group for the combined model, which 
was created without integrating clinical 

Table 3. Selected features and their classifications for T2W, ADC, and combined datasets

Selected features

T2W ADC Combined dataset

Image type Feature name (feature 
class) Image type Feature name (feature 

class) Image type Feature name (feature class)

Original
Original shape surface 

area to volume ratio 
(shape)

Original Original shape mesh 
volume (shape) T2W - original Original shape surface area to volume ratio 

(shape)

Original Original shape 
sphericity (shape) Original

Original shape surface 
area to volume ratio 

(shape)
T2W - original Original shape sphericity (shape)

Original
Original first order root 

mean squared (first 
order)

Original Original first order 
entropy (shape) T2W - original Original shape elongation (shape)

Original Original GLCM 
correlation (GLCM) Original Original first order 

skewness (first order) T2W - original Original shape flatness (shape)

LoG (Sigma: 4)
Original GLCM informal 
measure of correlation 1 

(GLCM)
LoG (Sigma: 4) Original first order 

kurtosis (first order) T2W - original Original GLCM correlation (GLCM)

T2W - laplacian of 
gaussian (Sigma: 2) Original first order 90th percentile (first order)

ADC - original Original first order entropy (first order)

ADC - original Original first order minimum (first order)

ADC - original Original GLCM inverse variance (GLCM)

ADC - original Original GLSZM small area emphasis 
(GLSZM)

ADC - original Original GLDM large dependence low gray 
level emphasis (GLDM)

ADC - LoG (Sigma: 4) Original GLCM inverse variance (GLCM)

ADC - LoG (Sigma: 6) Original GLCM informal measure of 
correlation 1 (GLCM)

ADC - LoG (Sigma: 6) Original GLCM maximal correlation 
coefficient (GLCM)

ADC - LoG (Sigma: 6) Original GLSZM variance (GLSZM)

The same features included in the combined group and T2W are shown in bold; the combined group and ADC are shown in italic. T2W, T2-weighted; ADC, apparent diffusion 
coefficient; GLCM, gray-level co-occurrence matrix; LoG, Laplacian of Gaussian; GLSZM, gray-level size-zone matrix; GLDM, gray-level dependence matrix.
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modeling. However, in this study, PCa was 
separated into low-grade and high-grade, 
and patients with a Gleason score <8 were 
considered low-grade. Li et al.26 used T2W 
and ADC series in their retrospective study 
of 381 patients to differentiate csPCa, but 
199 patients were selected from the benign 
patient group. Clinical modeling was also 
included in the study, and they reported the 
AUC value obtained without clinical model-
ing as 0.99 in the training group and 0.98 in 
the test group. However, this study used a 
single MR scanner, and lesion segmentation 
was supported by pathological data and dy-
namic contrast-enhanced images.26 

In current clinical practice, almost all pa-
tients with suspected PCa require a biopsy. 
The advantage of conducting our study only 
with patients who have a Gleason score of 
6 or higher is to avoid the possibility that 
these patients, diagnosed with cancer, might 
require re-biopsies during follow-up under 
current conditions or even immediately after 
the initial biopsy. Thus, the aim is to create a 
decision support system to aid the pathol-
ogy result or to identify patients who need 
re-biopsy. The use of two MR scanners, 3.0T 
and 1.5T, and the modeling of both periph-
eral and transitional zone lesions are advan-
tageous in our study. In addition to its rap-
id applicability, another advantage of our 
model for bpMRI over other studies is that it 
relies solely on ADC series and does not use 
contrast-enhanced sequences. Furthermore, 
the significance of our study lies in the high 
reproducibility of the technique, along with 
its favorable accuracy rates and AUC values, 
which are relatively high compared to other 
studies.27 Other studies in the literature used 
more images than T2 and ADC and achieved 
similar accuracy rates to those in our study.11 
Additionally, some studies with high accu-
racy rates focused only on the peripheral or 
transitional zones. For instance, Fehr et al.28 
reported high accuracy rates but performed 
segmentation in conjunction with pathologi-
cal results. Chen et al.29 also reported high ac-
curacy rates, but their study did not perform 
an interobserver analysis.

Our study has several limitations. First, 
as a retrospective study sourcing data from 
past registries, it may introduce selection 
bias. Second, although segmentation was 
performed independently by two radiolo-
gists, the manual nature of this process can 
introduce subjectivity. Third, the patient 
population was relatively small, raising con-
cerns about a potential imbalance between 
groups. Class imbalance can challenge many 
machine learning algorithms, which typically 

assume that all classes are equally distribut-
ed.15 In cases of imbalanced classes, models 
tend to favor predictions for the majority 
class. To address class imbalance and reduce 
the risk of overfitting, especially with a limited 
number of samples, data augmentation is a 

validated technique. The use of different syn-
thetic over-sampling methods can provide 
a more efficient and effective approach.30,31 
However, this would result in a substantial 
portion of the data being synthetic. Further-
more, despite employing a systematic and 

Figure 4. The selected features for T2-weighted images (a), apparent diffusion coefficient images (b), and 
the combined dataset (c) are shown.

a

b

c

Table 4. Detailed performance statistics for machine learning algorithms on T2W, ADC, and 
combined dataset

Group Accuracy Sensitivity Specificity Recall F1 AUC (95% CI)

LR-T2W Train
Test

74%
70%

77%
76%

57%
56%

84%
79%

0.80
0.76

0.83 (0.82–0.83)
0.79 (0.78–0.80)

SVM-T2W Train
Test

75%
64%

77%
69%

52%
46%

85%
75%

0.81
0.71

0.75 (0.74–0.76)
0.64 (0.62–0.65)

LR-ADC Train
Test

84%
79%

85%
82%

69%
67%

90%
87%

0.87
0.84

0.89 (0.88–0.89)
0.86 (0.84–0.88)

SVM-ADC Train
Test

85%
76%

85%
80%

65%
63%

90%
85%

0.88
0.82

0.89 (0.88–0.89)
0.86 (0.85–0.88)

LR-combined Train
Test

86%
77%

89%
85%

73%
70%

95%
81%

0.92
0.80

0.95 (0.94–0.95)
0.85 (0.83–0.87)

SVM-combined Train
Test

91%
72%

90%
75%

68%
66%

95%
75%

0.93
0.75

0.95 (0.95–0.96)
0.86 (0.85–0.88)

T2W, T2-weighted image; ADC, apparent diffusion coefficient; F1 score, the harmonic mean of precision and recall; 
AUC, area under the curve; CI, confidence interval; LR, logistic regression; SVM, support vector machine.



 

Machine learning for discriminating significant prostate cancer • 319

targeted biopsy approach, the accuracy of 
the PCa score may be underestimated due to 
potential limitations in puncture pathology, 
which might not accurately reflect the true 
pathological status. Additionally, in PI-RADS® 
version 2.1, the criteria for csPCa include ex-
traprostatic extension and volume criteria, in 
addition to the Gleason score. Although pa-
tients were selected retrospectively, care was 
taken to exclude those meeting this criterion 
from the ciPCa group.

In conclusion, machine learning models 
utilizing radiomics extracted from prostate 
bpMRI show promising results in distinguish-
ing between csPCa and ciPCa. However, 
additional studies with larger datasets are 
needed to validate these models across ex-
ternal centers before considering their clin-
ical implementation. Incorporating clinical 
data, such as PSA levels, into these models 
could lead to the development of more ro-
bust tools for clinical practice. The integra-
tion of radiomics with artificial intelligence 

methodologies, including machine learning, 
holds significant potential for future ad-
vancements in prostate imaging.
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