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Breast cancer detection and classification with digital breast 
tomosynthesis: a two-stage deep learning approach

PURPOSE
The purpose of this study was to propose a new computer-assisted two-staged diagnosis system 
that combines a modified deep learning (DL) architecture (VGG19) for the classification of digital 
breast tomosynthesis (DBT) images with the detection of tumors as benign or cancerous using the 
You Only Look Once version 5 (YOLOv5) model combined with the convolutional block attention 
module (CBAM) (known as YOLOv5-CBAM). 

METHODS
In the modified version of VGG19, eight additional layers were integrated, comprising four batch 
normalization layers and four additional pooling layers (two max pooling and two average pool-
ing). The CBAM was incorporated into the YOLOv5 model structure after each feature fusion. The 
experiment was carried out using a sizable benchmark dataset of breast tomography images. A 
total of 22,032 DBT examinations from 5,060 patients were included in the data.

RESULTS
Test accuracy, training loss, and training accuracy showed better performance with our proposed 
architecture than with previous models. Hence, the modified VGG19 classified DBT images more 
accurately than previously possible using pre-trained model-based architectures. Furthermore, a 
YOLOv5-based CBAM precisely discriminated between benign lesions and those that were malig-
nant.

CONCLUSION
DBT images can be classified using modified VGG19 with accuracy greater than the previously avail-
able pre-trained models-based architectures. Furthermore, a YOLOv5-based CBAM can precisely 
distinguish between benign and cancerous lesions.

CLINICAL SIGNIFICANCE
The proposed two-tier DL algorithm, combining a modified VGG19 model for image classification 
and YOLOv5-CBAM for lesion detection, can improve the accuracy, efficiency, and reliability of 
breast cancer screening and diagnosis through innovative artificial intelligence-driven methodol-
ogies.
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Breast cancer (BC) is one of the main causes of mortality in women and a major global 
health concern.1 According to data from the World Health Organization, in 2022, 665,684 
women worldwide lost their lives due to malignancy in the breast, accounting for 2.3 

million new cases of the disease. BC is the most common cancer globally among women; be-
tween 2015 and 2021, 7.8 million women were diagnosed with the disease.2 In the US, BC ranks 
as the second most common malignancy after lung cancer, according to the Surveillance, 
Epidemiology, and End Results Program.3 Globally, according to available data,3,4 one in eight 
women will contract BC. As a result, BC screening is one of the most significant and common 
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medical imaging prerequisites, with over 39 
million examinations carried out annually.5 
Early identification and discovery are essen-
tial for therapy, rehabilitation, and a decrease 
in death rates.6 The prognosis and survival 
rate of cancer vary greatly depending on its 
stage. Cancer treatment is more successful 
the earlier the disease is discovered.7

Radiologists examine and annotate im-
ages generated by screening techniques to 
identify tumors.8 The gold standard for this 
cancer screening has been supplanted by 
the relatively new imaging technique known 
as digital breast tomosynthesis (DBT), which 
has taken the place of mammography.8 This 
is a type of three-dimensional (3D) mam-
mography that aims to increase abnormali-
ty detection.9 DBT, which recreates multiple 
low-dose picture projections from a moving 
digital X-ray source over a restricted arc an-
gle, is used to build the 3D model.10 Since a 
two-dimensional (2D) mammography exam-
ines every tissue in the breast at once, there is 
a risk that certain tissue features will overlap 
and produce inaccurate results. By allowing 
radiologists to view multiple layered images 
prior to classifying tumors, DBT helps address 
some of the problems associated with 2D 
mammograms.11 Compared with traditional 
mammography, DBT often requires longer 
image acquisition and processing times, as 
well as increased radiation exposure (though 
it is still within safe limits).10,11

Radiologists are already using comput-
er-aided diagnosis tools to help them make 

decisions.12 These technologies have the 
potential to reduce significantly the time 
and energy required to evaluate a lesion in 
clinical practice.13 They may also reduce the 
occurrence of false positives, which lead to 
unnecessary and uncomfortable biopsies.14 
Recent technological advancements in deep 
learning (DL), such as artificial neural net-
works and transfer learning, have outper-
formed several machine learning algorithms 
in tasks such as classifying and identifying 
lesions.15 Unlike traditional machine learning 
methods, which require a manual feature 
extraction and selection step, DL algorithms 
adaptively learn the optimal feature ex-
traction process from the input data.13,14

However, although DL techniques for le-
sion detection and classification have been 
used extensively using mammography, there 
have been few studies using DBT. This could 
be attributed to the computer memory con-
straints associated with DL methods, which 
are linked to the higher dimensionality of the 
data. In previous studies, breast tumors from 
DBT data have been segmented, classified, 
and detected using DL. Li et al.16 carried out 
deep convolutional neural network (DCN-
N)-based mass classification of BC using DBT 
and assessed different transfer learning strat-
egies. They collected data on 441 patients 
who had undergone DBT and conducted 
three different experiments to compare 2D 
and 3D DCNNs trained on volumetric DBT. 
The 2D convolutional neural network (CNN) 
that was trained on both DBT and full-field 
digital mammography achieved better re-
sults, with a change in area under the curve 
of 0.009.16

Ricciardi et al.17 developed a DCNN-based 
detection system for the automatic classifica-
tion of the presence or absence of mass le-
sions in DBT-annotated images. Background 
correction, data augmentation, and nor-
malization were basic pre-processing steps. 
Three DCNN architectures trained on two dis-
tinct datasets were compared: 1) built from 
scratch (DBT-DCNN); 2) pre-trained (AlexNet 
and VGG19); 3) optimized using a transfer 
learning approach. Additionally, a Grad-CAM 
technique was used to provide a position in-
dication for the lesion in the DBT. The accura-
cy of the DBT-DCNN network was 90% ± 4%, 
and the sensitivity was 96% ± 3%.17

Lotter et al.8 presented a DL method that 
was annotation-efficient and accurate; the 
method achieved maximum performance in 
classification, detected cancers in clinically 
negative mammograms, was effectively ap-
plicable to a population with low screening 

participation, and outperformed five full-
time breast-imaging radiologists, with an av-
erage 14% increase in sensitivity. The model 
used a multiple-instance learning approach 
in which it was progressively and effectively 
trained on DBT using only breast-level labels. 
The authors were successful in maintaining 
localization-based interpretability by gener-
ating new “maximum suspicion projection” 
images from DBT data.8

For the prediction of Ki-67 expression in 
DBT images, Oba et al.18 developed a mod-
el based on DL. The Ki-67 expression of 126 
patients with pathologically proven BC was 
chosen and assessed. The DL model em-
ployed the Xception architecture to forecast 
the levels of Ki-67 expression. The accuracy, 
on average, was 0.912. The findings point to 
the possible use of their model to predict 
Ki-67 expression from DBT, which is useful 
in deciding on a BC treatment plan prior to 
surgery.18 Buda et al.19 shared a large-scale 
publicly available DBT examination dataset, 
which included information for 5,060 pa-
tients, and used it to train a detection mod-
el. One hundred twenty-four images hav-
ing bounding boxes for malignant and 175 
images having bounding boxes for benign 
lesions were used to develop a detection 
algorithm based on a 2D DenseNet. There 
was no pretraining on alternative datasets or 
comparable modalities, such as mammog-
raphy. The free-response receiver operating 
curve, displaying the sensitivity of the model 
in relation to false-positive predictions, was 
utilized for the ultimate assessment of the 
baseline detection algorithm.19

Earlier studies have proposed classifica-
tion or detection using DBT with notable 
contributions. However, they are limited by 
fewer images in the datasets,16 lack of exter-
nal validation and clinical assessment,17 lim-
ited comparison of advanced architectures, 
and lack of diversity in training data.8,18 The 
DBT data used in this study has also been 
utilized in several studies;19-25 however, these 
studies have either focused on the classifi-
cation or detection of the lesions as benign 
or malignant. Table 1 provides a summary of 
the studies conducted on the Duke Dataset 
from the Cancer Imaging Archive (TCIA).26 
The model in the current study is the first 
state-of-the-art model that classifies a DBT 
scan into one of three classes: normal, ac-
tionable, and tumor. Moreover, it detects the 
lesion as benign or cancerous. The model 
incorporates a modified VGG19 DL archi-
tecture. The batch normalization layers are 
placed in every fourth convolutional layer 
to enhance the model’s training efficiency 

Main points

• The modified VGG19 architecture classified 
digital breast tomosynthesis (DBT) images 
more accurately than previously available 
pre-trained models.

• The You Only Look Once version 5 (YOLOv5)-
based convolutional block attention mod-
ule (CBAM) precisely discriminated between 
benign and malignant lesions, showing bet-
ter performance metrics such as test accura-
cy and training loss.

• The research fills a significant gap in breast 
cancer diagnosis by utilizing advanced 
deep-learning strategies for DBT images. 
The two-tier deep learning algorithm, com-
bining a modified VGG19 model for image 
classification and YOLOv5-CBAM for lesion 
detection, demonstrated good outcomes in 
terms of accuracy and time.

• The study highlights the advantages of DBT 
over traditional two-dimensional mammog-
raphy, emphasizing its improved accuracy 
in screening due to the three-dimensional 
view it provides.
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by reducing internal covariant shifts. The tu-
mor is detected using a You Only Look Once 
version 5 (YOLOv5)-based convolutional 
block  attention  module (CBAM) architec-
ture, utilizing the two submodules of CBAM: 
channel attention and spatial attention. This 
study explores the integration of YOLOv5 
(a state-of-the-art object detection model) 
with CBAM (a mechanism that enhances fea-
ture representation) to improve detection 
accuracy and efficiency. Thus, this model has 
applications in both the screening and diag-
nosis of BC. 

Methods

Dataset

The dataset available on TCIA website 
was used in this investigation; it was ac-
quired from the Duke Health System using 
the Duke Enterprise Data Unified Content 
Explorer tool between January 1, 2014, and 
January 30, 2018.26 The data included a total 
of 22,032 DBT examinations from 5,060 pa-
tients. The dataset included DBT images from 
four different views along with four catego-
ries of cases: normal (no sign of cancer and 
a biopsy was never performed), actionable 
(cancer may be present, but no biopsy was 
performed), biopsy-proven benign (a biopsy 
was performed, and the tumor was deter-
mined to be benign), and biopsy-proven can-
cer (a biopsy was performed, and the tumor 
was classified as malignant).24 The Digital 
Imaging and Communications in Medicine 
(DICOM) images consisted of a collection 
of 2D slices taken from four different views: 

left-mediolateral oblique, right-mediolateral 
oblique, left-craniocaudal, and right-cranio-
caudal. 

Ethics

This investigation utilized data from the 
TCIA website, which was obtained from the 
Duke Health System. Since the data is pub-
licly available and patient consent is not re-
quired, ethical approval was not necessary 
for this study.

Methodology 

The overall methodology consisted of 
two stages: classification and detection. First, 
the images were classified as normal, action-
able, benign, or cancer. In the second stage, 
the lesion was detected as benign or can-
cerous using the annotated images contain-
ing bounding boxes on the tumor area. The 
step-by-step methodology for each stage is 
shown in Figure 1, which summarizes the en-
tire architecture utilized in this study. 

Data pre-processing

Certain pre-processing steps were ap-
plied at both stages. The following sections 
describe all the steps that were applied to 
prepare the dataset for modeling.

Classification

The following steps were carried out to 
prepare the DBT images for classification into 
normal, actionable, or tumor. The images 
were changed from DICOM to JPEG format, 
a transformation that not only simplified the 

data format but also allowed compatibility 
with the next stages of processing. The in-
tensity rescaling was done to standardize the 
pixel intensity values in all the images so the 
uniformity of the image could be ensured 
and the effect of the different illuminations 
or contrasts could be eliminated. Color space 
conversion was also carried out to improve 
the understandability and the discrimina-
tive capacities of the images, which, in turn, 
facilitates the extraction of more significant 
features for the classification of the images. 
Resizing was done to adjust the spatial sizes 
of the images. Hence, the spatial dimensions 
of the images were harmonized, which im-
proved consistency and removed possible 
distortions that could affect the analysis. 
Normalization-the scaling of pixel values to a 
standard range-was also performed.

Detection

To prepare the data for the detection 
stage of determining the tumor as benign or 
cancerous, the images were first augment-
ed, and then the pre-processing techniques 
mentioned in the classification were applied. 
The process of purposefully increasing the 
volume and complexity of already-existing 
data is known as data augmentation. Data 
augmentation has become a necessary 
pre-processing step in DL. 

Because a significant number of training 
samples are needed for neural networks and 
medical datasets are sometimes scarce, the 
first step in increasing the diversity of the 
dataset is data augmentation; in this study, 

Table 1. Summary of the previous studies utilizing data from the Cancer Imaging Archive

Citation Architecture Pre-processing Training/testing dataset Outcome Results

21
ResNet-18, AlexNet, 

MobileNetV2, GoogleNet, 
DenseNet-201, VGG-16, 

DBT augmentation; image 
enhancement techniques; color 

feature mapping

Patients – 5,060
Slices – 22,032

Classification into 
normal, benign, and 

malignant
Acc.: 56.52

22 R-CNN

Conversion of volume intensities to 
8-bits depth; extraction of breast 

mask area; flipping to convert all the 
volumes into same orientation

Patients – 5,060
Slices – 22,032 Lesion detection IOU: 0.85

23 ResNet Cropping; reduction of pixels; 
transformation

Cancer + actionable - 100
Normal + benign - 100 Classification Acc.: 86

24 Inception v3 Cropping; reduction of pixels; 
augmentation

Normal – 1,680
Tumor – 223 Lesion detection Acc.: 91.4

25 Faster R-CNN
Data augmentation; image flipping; 

image translation; channel reception 
augmentation

Patients – 985
Scans – 1,000 Detection Acc.: 83.08

26 2 Layer DenseNet Cropping; downscaling Patients – 5,060
Scans – 22,032 Lesion detection Sensitivity: 78

27 Faster R-CNN Cropping; normalization; masking and 
background suppression

VICTRE +
Patients – 5,060
Scans – 22,032

Lesion detection Sensitivity: 60

DBT, digital breast tomosynthesis.
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the Roboflow tool was used for this activity. 
The following steps were performed: text 
files were generated to contain essential 
annotations, and all the generated text files 
were imported to Roboflow. Five types of 
augmentation techniques were applied: hor-
izontal and vertical flips, 90-degree rotations 
(clockwise, anticlockwise, upside down), 
cropping (ranging from 0% to 25% maxi-
mum zoom), rotations (−15 to +15 degrees), 
and shears (10-degree vertical and horizon-
tal). The total number of images before and 
after augmentation is given in Table 2.

Data splitting

The dataset was split into three subsets 
for the classification and detection stages: 
training (number of images for classification: 
19,148, number of images for detection: 
2,116), validation (number of images for 
classification: 1,163, number of images for 
detection: 604), and testing (number of im-
ages for classification: 1,721, number of im-
ages for detection: 303) in the 70, 20, and 10 
ratios. The number of instances in each split 
for each category for the classification frame-
work is given in Table 3. 

Experimental setup

The chosen equipment, including an 
NVIDIA RTX 4090 GPU and AMD EPYC 7R12 
48-Core Processor, provided high compu-
tational power (1.8 TFLOPS and 24.0/192 
CPU cores, respectively), which is essential 
for intensive model calculations. The moth-
erboard ROME2D32GM supports PCIe 4.0, 
enhancing data transfer speeds (22.8 GB/s), 
which is crucial for handling large datasets. 
With 516 GB of memory and a 4TB Predator 
SSD, the system ensured ample storage and 
quick data access (3,830 MB/s), supporting 
efficient model training and analysis. The 
equipment’s high-performance specifica-
tions were used to optimize model develop-
ment and execution. The pre-processed DBT 
images were classified using VGG19, and de-
tection was based on YOLOv5-CBAM. 

Modelling

The modified VGG19 model was used to 
classify the DBT slice images into normal, ac-
tionable, and tumor. A YOLOv5-CBAM model 
was used for the detection of lesions as be-
nign or cancerous.

Modified VGG19 

Transfer learning involves transferring the 
learned parameters of the pre-trained CNN 
model. It involves shifting the weights (as 

given in Table 4) of a CNN model that was 
trained on additional sizable datasets.27 Sci-
entists are creating deeper learning models 
to increase performance as DL models have 
become more and more popular in image 
classification and recognition applications. 
VGG19 is a neural network comprising 43 
layers, namely the input, 16 convolutional 
layers, 16 ReLU layers, 5 max pool layers, 3 
full-connected layers, 1 softmax layer, and 
the output. In this way, the modified version 
of VGG19 consisted of 8 complementary lay-
ers, which were 4 batch normalization layers 
and 4 extra pooling layers. The batch nor-
malization layers consisted of 2 max pooling 
and 2 average pooling layers.  The layering 
of batch normalization layers between ev-
ery 4th convolution layer was interpreted to 

improve training efficiency by reducing in-
ternal instability. This modification produces 
not only a smaller scale or initial values of the 
gradient that parameters rely on for modify-
ing but also a better and more natural flow of 
data between the intermediate layers of the 
neural network, which greatly reduces the 
number of iterations required for training. As 
to extra pooling layers to further the 5th and 
the 10th convolutional layers of the DL model, 
crucial low-level details are passed through 
the learning model, and this helps capture 
sharp features integrally. The size of the input 
image was 512 × 512.

Figure 1. The schematic depicts the organization of the suggested framework. YOLOv5, You Only Look Once 
version 5; CBAM, convolutional block attention module.

Table 2. Total number of images before and after augmentation for the application of the 
YOLOv5-CBAM architecture

Dataset Before augmentation After augmentation

Training 293 2,293

Validation 58 456

Testing 35 274

Total 386 3,023

YOLOv5, You Only Look Once version 5; CBAM, convolutional block attention module.

Table 3. Summary of the dataset splitting for each class

Category Training Testing Validation

Normal 18,232 1,356 928

Actionable 716 244 160

Tumor 200 121 75
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YOLOv5-CBAM

The attention mechanism makes it pos-
sible for models to prioritize and process 
information selectively, focusing only on the 
most crucial details and ignoring the rest. 
Convolutional block attention modules are 
one type of attention mechanism meant to 
enhance CNN performance. As can be seen 
in Figure 2, the CBAM is incorporated into 
the proposed model structure after each 
feature fusion, or “concat.” In an image or 
feature map, it mainly enhances feature ex-
traction and records meaningful spatial and 
channel-wise dependencies. The efficacy of 
this module is demonstrated in the exper-
iments reported in the study,28 where the 
performance of the module is significantly 
improved by integrating the CBAM into var-
ious models across a variety of classification 
and detection datasets. 

Convolutional block attention modules 
are made up of two sub-modules: the chan-
nel attention module and the spatial atten-
tion module. The primary focus of channel 
attention is on locating the essential traits 
or features needed to identify a lesion in an 
image. However, it is crucial to remember 
that the lesion is a relatively small and sparse 
component within the entire image when 
it comes to particular tasks, such as lesion 
detection. In these situations, the value of 
the individual pixels in the entire image is 
not equal. At this point, spatial attention is 
applied to solve the “where” issue, which in-
volves locating the lesion in the image. Func-
tioning alongside channel attention, spatial 
attention gathers data from various spatial 
regions of the image. By giving these spatial 
features weights, it essentially highlights the 
areas of the picture where lesions are pres-
ent. Applying channel and spatial attention 
in that order achieves this. Figure 3 illustrates 
how channel attention can compute chan-
nel weights represented as WCA ∈ RC × 1 × 
1, and spatial attention can compute spatial 
weights (WS) denoted as WS ∈ RH × W × 1, 
given the input feature map F ∈ RW × H × C.

Channel attention refers to a multi-step 
process that is applied to an input feature 
map (F). Global max pooling (GMP) and 
global average pooling (GAP) are carried 
out to record the highest and lowest spatial 
responses. These responses are then pro-
cessed by a multi-layer perceptron. Then, el-
ement-wise addition is used to integrate the 

results of GMP and GAP. After that, a sigmoid 
activation function is applied to the com-
bined data, resulting in a channel weight 
feature map that assigns a weight to each 
channel based on its significance. Finally, an 
element-wise multiplication is performed 

between the channel weight matrix and the 
original feature map (F) as:

(1)

Table 4. Parameter values at each layer of the modified VGG19 model

Layer  name Activation maps Learnable parameters Total learnable 
parameters

Input 512 × 512 × 3 - 0

block1_conv1 512 × 512 × 64 Weights: 3 × 3 × 3 × 64, bias: 64 1,792

block1_conv2 512 × 512 × 64 Weights: 3 × 3 × 64 × 64, bias: 64 36,928

block1_pool 256 × 256 × 64 - 0

block2_conv1 256 × 256 × 128 Weights: 3 × 3 × 64 × 128, bias: 128 73,856

block2_conv2 256 × 256 × 128 Weights: 3 × 3 × 128 × 128, bias: 128 147,584

batch_
normalization_1 256 × 256 × 128 Offset: 128, scale: 128 512

block2_pool 128 × 128 × 128 - 0

block3_conv1 128 × 128 × 256 Weights: 3 × 3 × 128 × 256, bias: 256 295,168

average_
pooling2d_1 64 × 64 × 256 - 0

block3_conv2 64 × 64 × 256 Weights: 3 × 3 × 256 × 256, bias: 256 590,080

block3_conv3 64 × 64 × 256 Weights: 3 × 3 × 256 × 256, bias: 256 590,080

block3_conv4 64 × 64 × 256 Weights: 3 × 3 × 256 × 256, bias: 256 590,080

batch_
normalization_2 64 × 64 × 256 Offset: 256, scale: 256 1,024

block3_pool 64 × 64 × 256 - 0

block4_conv1 32 × 32 × 512 Weights: 3 × 3 × 256 × 512, bias: 512 1,180,160

block4_conv2 32 × 32 × 512 Weights: 3 × 3 × 512 × 512, bias: 512 2,359,808

max_pooling2d_1 16 × 16 × 512 - 0

block4_conv3 16 × 16 × 512 Weights: 3 × 3 × 512 × 512, bias: 512 2,359,808

block4_conv4 16 × 16 × 512 Weights: 3 × 3 × 512 × 512, bias: 512 2,359,808

batch_
normalization_3 16 × 16 × 512 Offset: 512, scale: 512 2,048

block4_pool 16 × 16 × 512 - 0

block5_conv1 16 × 16 × 512 Weights: 3 × 3 × 512 × 512, bias: 512 2,359,808

block5_conv2 16 × 16 × 512 Weights: 3 × 3 × 512 × 512, bias: 512 2,359,808

block5_conv3 16 × 16 × 512 Weights: 3 × 3 × 512 × 512, bias: 512 2,359,808

block5_conv4 16 × 16 × 512 Weights: 3 × 3 × 512 × 512, bias: 512 2,359,808

batch_
normalization_4 8 × 8 × 512 Offset: 512, scale: 512 2,048

block5_pool 8 × 8 × 512 - 0

flatten_1 8,192 - 0

dense_3 4,096 Weights: 8,192 × 4,096, bias: 4,096 33,558,528

dense_4 4,096 Weights: 4,096 × 4,096, bias: 4,096 16,781,312

dense_5 3 Weights: 4,096 × 3, bias: 3 12,291

SoftMa × 1 × 1 × 3 - 0

Classification 
Output 1 × 1 × 3 - 0

Number of total learnable parameters 70,379,331
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where F’ is the weighted feature map, F is 
the input feature map, and WCA is the channel 
weight matrix. The channel weight matrix is 
computed as follows:

(2)

where the global max-pooling operation 
is represented by MaxPool, the average pool-
ing operation is AvgPool, σ is the sigmoid 
function, and fc is the channel encoder. 

Spatial attention functions were analyzed 
using GAP and GMP to compute the average 
and maximum spatial responses on the input 
feature map. These resulting responses are 
utilized to combine into a set of descriptive 
features. A spatial weight feature map (WS) is 
produced by activation with a sigmoid func-
tion and is multiplied element-wise by the 
original feature map. This approach distills 
the model’s focus to important regions of the 
network, thus identifying the spatial atten-
tion process, given as:

(3)

where WSA is the spatial weight matrix and 
is calculated as:

(4)

The proposed model leverages YOLOv5 
to preserve the original network topology 
while extracting features from the three 
feature layers of the backbone network. The 
head network receives these features after 
they have been concatenated and sent for 
object detection. The head network’s ability 
to comprehend complex spatial feature ar-
rangements in the data is improved by inte-
grating the CBAM. When dealing with small 
objects or intricate details, such as tiny le-
sions within an image, this problem becomes 
extremely helpful. Through the refinement 
of the network’s understanding of semantic 
and spatial nuances, the CBAM enhances de-
tection performance. It increases the model’s 
ability to locate and identify small teeth with 
greater accuracy and generates a stronger 
recognition effect without increasing the 
training cost.

Result
This study’s primary goal was to develop 

and evaluate a model for BC screening and 
diagnosis from DBT data with greater accura-
cy. A two-stage architecture was developed 
for this purpose. 

Classification

The task of optimizing DL models to 
achieve the highest level of accuracy and 
detection in computer vision is still the main 
concern in BC screening. In this study, the 
performance of the VGG19 architecture- 
known for its impact on image processing- is 
shown, and the DBT images are classified into 
tumor, normal, and actionable classes. The 
effect of different optimizers and batch sizes 
on the accuracy and loss of the model is ex-
tensively studied. Specifically, the influence 
of these parameters on the performance of 
the VGG19 architecture in classifying DBT 
images into tumor, normal, and actionable 
categories. Table 5 presents the findings of 
the modified VGG19. It can be seen that with 
the increase in batch size, the performance, 
accuracy, and loss increase. The Adam opti-
mizer shows better performance than the 
other two, with the highest accuracy and 
minimum loss. 

Our findings reflect the complex relation-
ship between optimization techniques and 
the model’s performance; thus, we demon-
strated that the Adam optimizer is superior 
in achieving high accuracy and minimizing 
the loss in different batch sizes. Furthermore, 
the confusion matrix shown in Figure 4 not 
only gives more weight to our classification 
results but also explains the model’s ability 
to correctly distinguish between the classes. 
The model shows a greater accuracy in clas-
sifying normal, actionable, and tumor, with 
all three classes having a true positive rate 
>89%.

Detection

Figure 5 compares model-to-model per-
formance (YOLOv5 vs. YOLOv5-CBAM); the 
100-epoch training period is assessed.  The 
metrics plotted are the precision, recall, 
and mean average precision (mAP), and the 
threshold is 0.5. The YOLOv5-CBAM model 
gave higher sums than the standard YOLOv5 
for all metrics. This is a clear indicator of im-

Figure 2. Comparison of the validation loss and training loss for YOLOv5-CBAM and YOLOv5. YOLOv5, You 
Only Look Once version 5; CBAM, convolutional block attention module.

Figure 3. YOLOv5-CBAM. YOLOv5, You Only Look Once version 5; CBAM, convolutional block attention 
module.
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proved detection efficiency. The graph pres-
ents variations mostly at the beginning (0 to 
20) since the model takes time to increase 
the weights.  With time, the metrics reach 
steady states, where mAP is gradually get-
ting better, which plays a role in the model’s 
convergence. The recall for both models is 
usually more stable and consistently remains 
fairly high, whereas precision has a greater 
degree of fluctuation compared with re-
call. Thus, the model is most accurate when it 
predicts the relevant cases, specifically those 
instances where abnormalities are present in 
the DBT images.

Similarly, Figure 2 shows the comparison 
of the box loss, object loss, and class loss. The 
addition of CBAM to YOLOv5 shows a reduc-
tion in all three parameters in both training 
and validation. This shows that the YOLOv5 
based-CBAM can learn from the data well 
and generalize it. 

Table 6 displays the performance metrics 
for two configurations of YOLOv5. It indicates 
that the YOLOv5 model enhanced with the 
CBAM significantly outperforms the stan-
dard YOLOv5 across all metrics for both be-
nign and cancerous classes, suggesting that 
the CBAM addition effectively improves the 
model’s detection and classification capabil-
ities in these specific medical imaging tasks.

Similar results can be observed from the 
confusion matrices. The YOLOv5-CBAM mod-
el shows a significant improvement over the 
standard YOLOv5 in both classes. It has high-
er true positive rates for both benign (0.84 
vs. 0.71) and cancerous (0.89 vs. 0.78). It also 
has lower false positive and false negative 
rates, indicating better overall accuracy and 
reliability in classification. The comparison 
of the confusion matrices for YOLOv5 and 
YOLOv5-CBAM is shown in Figure 6.

Through the analysis, the variations in 
performance are unveiled, which are the 
focus of the CBAM in the detection efficien-
cy and model convergence. Furthermore, 
we conduct a detailed comparison of loss 
parameters between the two models, and 
thus, we get to the issues of their learning 
dynamics and generalization capabilities. 
Furthermore, a thorough analysis of the per-
formance metrics of both YOLOv5 versions is 
presented, which helps explain their effec-
tiveness for different classes. 

Figure 4. Confusion matrix for the VGG19 model.

Table 5. Performance metrics for the VGG19 model

Batch 
size

Training 
accuracy

Training 
loss

Validation 
accuracy

Validation 
loss

Testing 
accuracy

Testing loss

SGDM

32 88% 0.32 86% 0.34 85% 0.35

64 85% 0.35 83% 0.37 82% 0.39

512 82% 0.39 80% 0.42 78% 0.44

Adam

32 87% 0.3 86% 0.32 85% 0.33

64 90% 0.27 89% 0.29 88% 0.3

512 95% 0.2 94% 0.22 93% 0.23

RMSProp

32 87% 0.31 85% 0.33 84% 0.35

64 84% 0.34 82% 0.36 81% 0.38

512 80% 0.38 78% 0.4 77% 0.42

Figure 5. Comparison of the precision, recall, and mAP of YOLOv5 and YOLOv5-CBAM. YOLOv5, You Only 
Look Once version 5; CBAM, convolutional block attention module; mAP, mean average precision.
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Discussion
This research work fills a significant void 

in BC diagnosis through the use of enhanced 
DL strategies for DBT images. Today, BC is 
still considered one of the most widespread 
health issues affecting women worldwide; its 
early diagnosis can contribute to enhancing 
the effectiveness of its treatment and, conse-
quently, the increase in female survival rates. 
DBT has brought improvements in the ac-
curacy of BC screening by giving a 3D view, 
which has some discrepancies as compared 
with traditional 2D mammography. The de-
veloped two-tier DL algorithm includes a 
modified VGG19 model for image classifica-
tion and YOLOv5-CBAM for identification of 
lesions, which demonstrates good outcomes 
in terms of accuracy and time.

In the classification stage, better results 
from the previous pre-trained models are 
achieved by the modified VGG19 with ex-
tra layers, such as batch normalization and 
pooling layers, to improve feature extraction 
and training. This change not only enhances 
the performance of classification models in 
normal, actionable, and tumor types but also 
highlights the versatility of DL approaches in 
medical imaging where conventional meth-
ods may fall short. The inclusion of YOLOv5-
CBAM in the detection stage adds to the 
model’s effectiveness in the identification 
of malignant and benign lesions based on 

the attention mechanisms that align data 
highlights in the image. The YOLOv5-CBAM 
model improves performance through its 
attention mechanisms, which focus on the 
most informative features in the image. The 
CBAM enhances the model’s ability to priori-
tize relevant areas by applying both channel 
and spatial attention, thereby reducing false 
positives and improving the detection accu-
racy of malignant and benign lesions.

Based on the experimental outcomes, 
the applicability of the philosophy of the 
proposed work has been demonstrated, and 
new achievements in the analysis of DBT us-
ing comparable methodologies have been 
established. To achieve this, the study adopt-
ed TCIA, which provides a large dataset to 
minimize the likelihood of model overfitting, 
which is detrimental in clinical applications. 
Furthermore, the study presents method-
ological reflections, including such aspects 
as data preprocessing, dataset enlargement, 
and computational environment; these are 
crucial for reproducing the presented study 
and expanding similar research. Altogether, 
this study advances the knowledge base of 
artificial intelligence (AI)-supported BC diag-
nosis and lays down the foundation for effec-
tive diagnosis models that can enhance iden-
tification processes globally, hence boosting 
patients’ survival.

Despite the promising results, the study 
faced several limitations. The reliance on a 
specific dataset from TCIA may limit gener-
alizability to other populations. Additionally, 
the model’s performance in real-world clini-
cal settings needs further validation. Chal-
lenges also included handling variability in 
image quality and computational resources 
required for model training. Future work 
will be able to extend to various associated 
modalities, add multiple imaging data, and 
carry out studies with clinical materials to 
validate the performance in practical scenar-
ios. Moreover, the role of DL models in the 
diagnostics of medical conditions, together 
with methods that enable the interpretabil-
ity and explainability of the results, deserves 
more attention and development to earn the 
trust of physicians. Finally, harnessing such 
advanced AI technologies as the ones dis-
cussed in this study has the potential to sig-
nificantly improve the practice of BC screen-
ing and its management and, thus, the state 
of global healthcare.

In conclusion, over 39 million examina-
tions are performed yearly as part of the BC 
screening program. However, BC screening 
has been one of the most difficult applica-
tions of AI in medical imaging. DBT can cre-
ate 3D images where tissue overlapping is 
reduced, making it simpler for radiologists 
to spot abnormalities and resulting in a more 
precise diagnosis. This study suggested the 
use of a new computer-aided multi-class 
diagnosis system that uses YOLOv5-CBAM 
to identify benign or malignant tumors 
and a modified DL architecture (VGG19) for 
classifying DBT images. A large set of breast 
tomography images was used in the experi-
ment. Test accuracy, training loss, and train-
ing accuracy showed better performance of 
our proposed architecture than the previous 
models. Hence, the modified VGG19 classified 
DBT images more accurately than previously 
possible using pre-trained model-based ar-
chitectures. Second, YOLOv5-based CBAM 
precisely discriminated between benign le-
sions and those that are malignant.
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Table 6. Performance metrics for the two configurations of the YOLOv5 model

mAP Recall F1-score

Classes YOLOv5 YOLOv5-CBAM YOLOv5 YOLOv5-CBAM YOLOv5 YOLOv5-CBAM

Benign 0.815 0.915 0.716 0.879 0.760 0.890

Cancer 0.793 0.891 0.751 0.881 0.713 0.856

Overall 0.785 0.887 0.796 0.896 0.775 0.878

YOLOv5, You Only Look Once version 5; mAP, mean average precision; CBAM, convolutional block attention module.

Figure 6. The comparison of the confusion matrices for YOLOv5 and YOLOv5-CBAM. YOLOv5, You Only Look 
Once version 5; CBAM, convolutional block attention module.
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