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PURPOSE
To assess the performance and feasibility of generative deep learning in enhancing the image qual-
ity of T2-weighted (T2W) prostate magnetic resonance imaging (MRI).

METHODS
Axial T2W images from the prostate imaging: cancer artificial intelligence dataset (n = 1,476, bi-
ologically males; n = 1,500 scans) were used, partitioned into training (n = 1300), validation (n = 
100), and testing (n = 100) sets. A Pix2Pix model was trained on original and synthetically degraded 
images, generated using operations such as motion, Gaussian noise, blur, ghosting, spikes, and bias 
field inhomogeneities to enhance image quality. The efficacy of the model was evaluated by seven 
radiologists using the prostate imaging quality criteria to assess original, degraded, and improved 
images. The evaluation also included tests to determine whether the images were original or syn-
thetically improved. Additionally, the model’s performance was tested on the in-house external 
testing dataset of 33 patients. The statistical significance was assessed using the Wilcoxon signed-
rank test.

RESULTS
Results showed that synthetically improved images [median score (interquartile range) 4.71 (1)] 
were of higher quality than degraded images [3.36 (3), P = 0.0001], with no significant difference 
from original images [5 (1.14), P > 0.05]. Observers equally identified original and synthetically im-
proved images as original (52% and 53%), proving the model’s ability to retain realistic attributes. 
External testing on a dataset of 33 patients confirmed a significant improvement (P = 0.001) in 
image quality, from a median score of 4 (2.286)–4.71 (1.715).

CONCLUSION
The Pix2Pix model, trained on synthetically degraded data, effectively improved prostate MRI im-
age quality while maintaining realism and demonstrating both applicability to real data and gener-
alizability across various datasets.

CLINICAL SIGNIFICANCE
This study critically assesses the efficacy of the Pix2Pix generative-adversarial network in enhanc-
ing T2W prostate MRI quality, demonstrating its potential to produce high-quality, realistic images 
indistinguishable from originals, thereby potentially advancing radiology practice by improving 
diagnostic accuracy and image reliability.
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The prostate imaging reporting and 
data system (PI-RADS) and its updates 
prescribe best practices for the acquisi-

tion and interpretation of prostate magnetic 
resonance imaging (MRI) scans,1 empha-
sizing minimum technical requirements to 
ensure scan quality, which is crucial for the 
accurate detection of clinically significant 
prostate cancer. However, adherence to PI-
RADS guidelines does not invariably guaran-
tee high-quality MRI scans, as evidenced by 
various studies.2-4 

Deep learning (DL)-based reconstruction 
techniques can speed up image acquisition 
and improve quality beyond traditional MRI 
methods.5-8 Nonetheless, variables such as 
patient characteristics, equipment quality, 
and the expertise of the radiology team can 
still result in suboptimal images.3,9 Moreover, 
DL-based reconstruction typically requires 
newer scanner models and significant initial 
investments, limiting its accessibility. Howev-
er, limited research has been conducted on 
applying DL techniques to enhance prostate 
MRI quality. Existing studies are often con-
strained by the use of single-center datasets 
and proprietary scoring systems, which can 
affect the reproducibility of their outcomes.10

In this study, we employed a gener-
ative-adversarial network (GAN) model, 
Pix2Pix, to enhance the quality of axial 
T2-weighted (T2W) prostate MRI. We used a 
large-scale, multi-center, and publicly avail-
able dataset, prostate imaging: cancer arti-
ficial intelligence (PI-CAI),11 allowing us to 
overcome some of the limitations noted in 
previous studies. Image quality was evaluat-
ed by multiple readers from different centers 
using a scoring system adopted from the 
newly introduced Prostate imaging quality 
(PI-QUAL):12 which provided a standardized 
assessment method. We also examined the 

realism of the generated images and tested 
the model’s performance on the in-house 
external testing dataset to evaluate its gen-
eralizability.

Methods

Study sample

The Acıbadem University and Healthcare 
Institution’s Medical Research Ethics Com-
mittee approved this retrospective study 
and waived the requirement for informed 
consent for the retrospective collection, 
analysis, and presentation of anonymized 
medical data (date: 11.02.2021, decision no: 
2021-03/12).

This study utilized the publicly available 
PI-CAI training dataset, which consisted of 
1,500 bi-parametric prostate MRI scans ob-
tained from 1,476 biologically male individu-
als at 4 tertiary academic centers in the Neth-
erlands and Norway between March 2015 
and January 2018. The data from these four 
centers were stratified across the training, 
validation, and internal testing sets to ensure 
representation from each center in all data 
partitions. The examinations were stratified 
into three distinct groups: a development set 
(1400 scans, 1300 training, and 100 valida-
tion) and a testing set (100 exams). This strat-
ification was done with careful consideration 
to ensure that scans from the same patient 
were not included across the development 
and testing sets. The flowchart of the study is 
given in Figure 1.

We also included the in-house dataset 
of 33 bi-parametric MRI examinations from 
33 biologically male individuals as an exter-
nal testing dataset in this study. The overall 
workflow of the study is shown in Figure 2.

Bi-parametric magnetic resonance imaging 
examinations

All bi-parametric MRI scans of the PI-CAI 
dataset were conducted using 1.5T units (n = 
82) from Siemens (Aera and Avanto models, 

Siemens Healthcare, Erlangen, Germany) and 
Philips (Achieva and Intera models, Philips 
Healthcare, Eindhoven, the Netherlands), 
as well as 3T units (n = 1418) from Siemens 
(Skyra, TrioTim, and Prisma models, Siemens 
Healthcare, Erlangen, Germany) and Philips 
(Ingenia model, Philips Healthcare, Eind-
hoven, the Netherlands). These scans utilized 
surface coils and adhered to the PI-RADS V2 
guidelines. Additional specifications regard-
ing the MRI protocols used for the study sam-
ple are detailed in.11

The examinations of the in-house test-
ing dataset were performed using 1.5T units 
from Siemens (Avanto-fit, Siemens Health-
care, Erlangen, Germany). These scans were 
also performed with surface coils. For this 
study, only axial T2W images were used for 
further analysis. Table 1 shows the imaging 
protocol for the in-house testing dataset.

Synthetic data creation

In this study, a crucial step involved the 
creation of a robust training dataset by ap-
plying clinically relevant MRI artifacts to cre-
ate realistic low-quality T2W images. For this 
purpose, TorchIO library13 was used: a pow-
erful tool specifically designed for data aug-
mentation in medical imaging. A variety of 
techniques were employed to simulate com-
monly encountered artifacts, including mo-
tion, Gaussian noise, blur, ghosting, spikes, 
and bias field inhomogeneities (detailed in 
Supplementary S1).

All images were normalized and resized 
to uniform dimensions to facilitate consis-
tent neural network training, ensuring each 
image had intensity values within a specific 
range for optimal input standardization. 

The training set included images manip-
ulated with each artifact individually, as well 
as in specific combinations, enabling the 
Pix2Pix model to learn from a wide variety 
of possible artifact scenarios and improve 
its ability to generalize across different im-
age quality corruption. Internal testing was 

Main points

•	 The Pix2Pix generative-adversarial network 
(GAN) significantly improved T2-weighted 
prostate magnetic resonance imaging (MRI) 
quality while maintaining realism.

•	 Synthetically improved images scored high-
er than degraded ones when compared 
with the original images.

•	 External testing confirmed significant im-
age quality improvement.

•	 Radiologists could not distinguish between 
original and synthetically improved images.

•	 The study demonstrated GANs’ potential for 
realistic, high-quality prostate MRI enhance-
ment. Figure 1. Flowchart of the study. PI-CAI, prostate imaging: cancer artificial intelligence.
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created using either a single artifact or a pre-
defined combination of multiple artifacts. 
This setup allowed for a controlled evaluation 
of the model’s performance in enhancing 
images with known quality issues. Detailed 
descriptions of the data pre-processing are 
given in Supplementary Document S1.

Pix2Pix model

The Pix2pix model, a conditional GAN, 
was utilized for image-to-image translation 
using paired images to improve accuracy. It 

consisted of a generator, employing a U-Net 
architecture to maintain anatomical fea-
tures in medical images, and a discriminator, 
which used a PatchGAN classifier to focus on 
high-frequency details and realism by evalu-
ating small patches within the images.14,15

The training involved an adversarial pro-
cess where the generator tried to create 
increasingly realistic images, whereas the 
discriminator improved at detecting syn-
thetically improved images. The process was 
governed by a combined loss function: ad-

versarial loss ensured the images were visu-
ally indistinguishable from the original ones, 
and L1 loss maintained structural integrity, 
reducing blurring and preserving crucial de-
tails. This setup enhanced the model’s ability 
to produce clinically useful MRI images while 
retaining essential diagnostic features.

The Pix2pix model was trained using 
the Adam optimizer with a learning rate of 
0.0002, focusing on 200 epochs where the L1 
loss was emphasized initially to enhance ac-
curacy. The training involved an adversarial 
setup where the generator aimed to produce 
images close to the original ones by mini-
mizing both L1 and adversarial loss, whereas 
the discriminator sought to identify whether 
the image patches were original or synthet-
ic, aiming to maximize the adversarial loss. A 
detailed description of the model is given in 
Supplementary Document S1.

The model’s performance during train-
ing was monitored using the mean absolute 
error (MAE) calculated between the recon-
structed images and the original high-qual-
ity images. The model with the lowest MAE 
on the validation data was selected as the 
best-performing model for subsequent eval-
uation and application to the test set.

The best-performing model was then ap-
plied to synthetically degraded internal test-
ing data (n = 100) and original images from 
the in-house external testing dataset (n = 33) 
to assess performance, as detailed in the sub-
sequent sections.

Study readers

Seven readers participated in the anal-
ysis of the scans for this study. Reader 1, an 
expert prostate radiologist, interpreted over 
300 cases annually for more than 10 years. 
Readers 2–7 were basic prostate readers, 
each handling 150–200 cases per year for 
2–7 years. The classification of the readers 
adhered to the consensus statement of the 
European Society of Urogenital Radiology.16 
Readers one and three were from the same 
center, whereas the others were based in var-
ious other hospitals, ranging from academic 
to non-academic settings.

Assessment criteria 

The evaluation by the readers was ad-
opted from the visual assessment criteria 
proposed in the PI-QUAL for T2W imag-
ing.12 Specifically, the readers assessed the 
clarity with which they could delineate the 
capsule, seminal vesicles, ejaculatory ducts, 
neurovascular bundle, and sphincter mus-

Table 1. Prostate T2-WI acquisition parameters of the in-house external testing dataset

Parameters Values

TR (ms) 5454

TE (ms) 101

FOV (mm) 268 × 400

Matrix size 206 × 512

Slice thickness (mm) 4

Slice gap (mm) 0.6

Flip angle 150°

Temporal resolution (s) -

T2WI, T2-weighted imaging; TR, repetition time; TE, echo time; FOV, field of view.

Figure 2. This figure illustrates the three main stages of the study. First, during data pre-processing, 
synthetically degraded T2-weighted images were created to mimic real-world artifacts, then normalized 
and resized along with the original images before being split into training and testing sets. Next, in the 
model training and inference stage, the Pix2Pix model was trained on paired original and synthetically 
degraded images (2a), with the generator learning to produce improved images from degraded inputs 
while the discriminator differentiated between original and synthetically improved images. The trained 
model was then applied to an external in-house testing dataset, generating improved versions of the 
original images (2b). Finally, radiologists visually assessed a set of images, including original, synthetically 
degraded, synthetically improved, and improved images from the external in-house testing dataset, 
evaluating them based on predefined criteria encompassing anatomical delineation, artifact presence, and 
perceived realism.
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cle, awarding one point for each positively 
identified structure (i.e., if the structure could 
be seen clearly). Additionally, they awarded 
one point in the absence of artifacts and zero 
points if artifacts were present. Thus, the to-
tal score for each examination ranged from 
zero (the worst quality) to six points (the best 
quality). 

Before the reading sessions, several on-
line meetings were conducted to familiarize 
the readers with the PI-QUAL criteria through 
examples from published papers17 and to ac-
quaint them with the reading platform. The 
primary aim of these sessions was to en-
hance their understanding of the PI-QUAL.

We used only axial T2W images for the 
reading sessions, as the model employed in 
the current study was designed to work with 
axial T2W images. Although this may be con-
sidered a limitation, it was consistent with 
earlier work, which primarily focused on axial 
images as they were the primary sequence 
used in PI-RADS assessments.

Case reading sessions

The readers used a dedicated worksta-
tion equipped with a 6-megapixel diagnostic 
color monitor (Radiforce RX 660, EIZO) and a 
dedicated browser-based platform (https://
matrix.md.ai). All reviewed images were in 
the Digital Imaging and Communications in 
Medicine format.

Initially, 7 readers evaluated 300 T2W se-
ries in the internal testing set of 100 patients, 
consisting of 100 original, 100 synthetically 
degraded, and 100 synthetically improved 
series. The readers independently assessed 
the cases in a random order to minimize bias, 
not knowing which images were original, de-
graded, or improved. They assigned points 
to each examination based on the previously 
described criteria and judged whether the 
images were original or synthesized.

Subsequently, to further evaluate the 
model’s performance and its ability to en-
hance image quality on real data, the readers 
assessed the scans in the in-house external 
testing dataset of 33 patients, which includ-
ed 33 original and 33 synthetically improved 
T2W series.

Statistical analysis

Statistical analyses were performed using 
the SciPy library in Python version 3. Contin-
uous variables were presented using medi-
ans and interquartile ranges, whereas cate-
gorical and ordinal variables were presented 
with frequencies and percentages.

The structural similarity index measure 
(SSIM) and peak signal-to-noise ratio (PSNR) 
were used as quantitative metrics to assess 
image quality. The SSIM evaluated perceptu-
al similarity by comparing luminance, con-
trast, and structure between images, with a 
range from −1 to 1, where 1 indicated per-
fect similarity. The PSNR measured the ratio 
between the maximum possible signal value 
and the distortion introduced, expressed in 
decibels, where higher values indicated bet-
ter quality.

For comparing image quality assessments 
across original, synthetically degraded, and 
synthetically improved images, pairwise 
comparisons were conducted using the 
Friedman test and post-hoc Durbin-Con-
over test due to the matched nature of the 
data. For the pairwise comparison of the in-
house external testing dataset, the Wilcoxon 
signed-rank test was used. 

To evaluate the performance of radiolo-
gists in correctly identifying original versus 
synthetically improved images, accuracy 
was calculated. To analyze the differences 
in radiologists’ ability to detect synthetically 
improved versus original images, McNemar’s 
test was used. A P value less than 0.05 was 
considered statistically significant.

Results 

Image quality assessment

We included 100 examinations in the test-
ing set, each paired with their synthetically 
degraded and improved versions from the 
PI-CAI testing set. The PSNR and SSIM val-
ues of synthetically improved images [PSNR: 
28.79 (32.54), SSIM: 0.92 (0.16)] were statis-
tically significantly higher than those of the 
degraded image forms [PSNR: 24.87 (15.27), 
SSIM: 0.78 (0.13)] (PSNR: P < 0.001, SSIM: P < 
0.001). 

During the random blinded assessment, 
the observers gave median scores of 5 (1.14) 
to the original images, 3.36 (3) to the synthet-
ically degraded images, and 4.71 (1) to the 
synthetically improved images (P = 0.0001). 
Pair-wise comparisons revealed that original 
images had a significantly higher median 
quality score than the synthetically degrad-
ed images (P < 0.0001). Likewise, synthetical-
ly improved images also had a higher image 
quality than synthetically degraded images 
(P < 0.0001). No statistically significant dif-
ference was found between the median im-
age quality of the original and synthetically 
improved images (P = 0.37) (Figure 3a). A 
detailed breakdown of each reader’s median 

scores for original, synthetically degraded, 
and synthetically improved images is given 
in Supplementary Document S2.

Figure 4 shows a representative example 
of original, synthetically degraded, and syn-
thetically improved images. More represen-
tative examples can be found in Supplemen-
tary Document 2.

Original vs. synthetic assessment

We evaluated whether the observers 
could discriminate between original and syn-
thetically improved T2W images using a ma-
jority voting scheme from the PI-CAI testing 
set. In this test, the observers identified 52% 
of the original and 53% of the synthetically 
improved images as original, with no statis-
tical difference, indicating that the observers 
could not reliably discriminate between orig-
inal and synthetically improved images (P = 
0.62). A detailed breakdown of each reader’s 
assessments on whether the images are orig-
inal or synthetic is provided in Supplementa-
ry Document S2.

External testing

We evaluated whether the proposed 
model could also improve original images 
from the in-house external testing dataset. 
This set consisted of T2W images of 33 pa-
tients from the in-house center, where pros-
tate images were obtained using a 1.5T scan-
ner. The observers gave a median score of 4 
(2.286) for the original images in the in-house 
external testing dataset. The median image 
quality score for this dataset was statistically 
lower than that for the original T2W images 
from the PI-CAI testing set (P = 0.009). 

The proposed model improved the im-
age quality of the original images from 4 
(2.2) to 4.71 (1.7), demonstrating a statis-
tically significant improvement (P = 0.001) 
(Figure 3b). Notably, after the improvement, 
we found no statistical difference in median 
image quality between the original images 
from the PI-CAI dataset [median: 5 (1.14)] 
and the synthetically improved images from 
the in-house dataset [median: 4.71 (1.7)] (P = 
0.16). A detailed breakdown of each reader’s 
median scores for original and synthetically 
improved images for the in-house external 
testing dataset is given in Supplementary 
Document S2.

Figure 5 shows representative examples 
of original and synthetically improved imag-
es of a patient along with observers’ ratings 
from the in-house external testing dataset. 
More representative examples can be found 
in Supplementary Document S2.
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Discussion
We found that the Pix2Pix model signifi-

cantly improved the quality of synthetically 
degraded images evidenced by quantitative 
metrics and assessments of multiple readers 
with different experience levels from differ-
ent institutions following the criteria adopt-
ed from the PI-QUAL. Notably, the syntheti-
cally improved images showed no statistical 
difference in image quality compared with 
the original images. 

We further tested the performance of the 
proposed model on an external testing data-
set, where it substantially increased the im-
age quality. This demonstrates that the mod-
el not only works across different datasets 
but is also effective in improving image qual-
ity for original images that have not been 
synthetically manipulated. This finding is 
promising as it suggests that DL models can 
be trained on available datasets without the 
need for actual poor-quality prostate MRIs. It 
is important to note that the PI-CAI dataset is 
derived from centers in the Netherlands and 
Norway. This geographical restriction could 
limit the generalizability of our findings to 
other populations. Future studies should in-
clude data from more diverse geographical 
regions.

Another important finding was that the 
readers were not unambiguously able to 
discriminate original from synthetically im-
proved images regardless of their experience 
levels, showing the proposed model did not 
only improve image quality but was also able 
to generate realistic looking images without 
introducing over-smoothness or plastic ap-
pearance. 

Our findings diverge from those of the 
study by Belue et al.10, where the authors ob-
served no qualitative improvement and the 
readers mostly opted for original images over 
synthetically improved images evidenced by 
expert radiologists. Belue et al.10 utilized a 
Cycle-GAN model and tested it using paired 
original images of both poor and good 
quality from the same patients. Moreover, 
they employed bespoke qualitative criteria, 
which they acknowledged as a significant 
limitation of their study.10 We propose that 
by systematically incorporating a variety of 
artifacts, our model may better learn the rep-
resentations of both poor- and good-quali-
ty images, thereby effectively transforming 
poor-quality images into good-quality ones 
in a realistic manner.

The tendency of DL methods in 
over-smoothing diagnostic images has 
also been documented in studies using 

Figure 3. Comparison of the radiologists’ scores for original, synthetically degraded, and synthetically 
improved T2-weighted images (a). Comparison of the radiologists’ average score for original and synthetically 
improved prostate magnetic resonance imaging scans from the in-house external testing dataset (b).

a

b

Figure 4. A representative prostate magnetic resonance imaging scan (a) original image with the average 
score of 5.43, (b) synthetically degraded image with the average score of 4.43, and (c) a synthetically 
improved image with the average score of 5.29. 

a b c
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DL-based reconstruction methods.18 This 
smoothness can cause radiologists to feel 
uncertain about their interpretations, fear-
ing potential loss of diagnostic information, 
such as the disruption of lesion appearance 
or visibility.18,19 In contrast, our Pix2Pix mod-
el, trained on a meticulously prepared data-
set, successfully generated realistic images, 
addressing these concerns by maintaining 
critical image details essential for accurate 
diagnosis. The training data included various 
levels of corruption for each augmentation 
as well as a combination of these augmen-
tations with the corresponding good quality 
data. Including a combination of ghosting, 
spike artifacts, and bias field inhomogene-
ities with general Gaussian blur and noise in 
the training regime of the Pix2Pix model in-
creased the robustness of our model against 
over-smoothing. However, our study did not 
explicitly evaluate the impact of image en-
hancement on lesion detection or character-
ization, which represented an essential area 
for future investigation.

In reflecting on the methods and results 
of our study, particularly in terms of experts 
identifying whether the images were origi-
nal or synthetic, it is crucial to acknowledge 
the potential impact of bias. To minimize 
bias, we did not show the readers both the 
original and synthetic images simultaneous-
ly. Instead, the images were presented in a 
random order, and the readers were asked 
to determine their authenticity. A potential 
limitation is that readers one and three were 
from the same institution. Although this 
could introduce bias, the inclusion of readers 
from other centers helped mitigate this po-
tential issue. Future work could incorporate 
strategies such as stratified sampling based 

on institutional affiliation to further address 
this. Intriguingly, the results suggested that 
the readers were essentially guessing, in-
dicating no clear distinction between the 
original and synthetically improved images. 
However, this design may have inadvertently 
introduced another form of bias.

Knowing the study’s objective—to as-
sess the realism of synthetically generated 
images—likely predisposed the readers to 
scrutinize each image more critically. This 
awareness could have heightened sensitivi-
ty to any minor imperfections, predisposing 
the readers to identify these as indicators 
of synthetic origin. Admittedly, it is virtually 
impossible to completely isolate this infor-
mation from the readers since the core of our 
evaluation involved discerning the nature 
of the images, thus directly revealing the 
study’s design.

We openly acknowledge that the design 
of our study might have influenced the read-
ers’ judgments. Recognizing this does not di-
minish the validity of our findings but rather 
enhances the transparency and integrity of 
our analysis. This situation underscores the 
need for further research to quantify and 
adjust for such bias, ensuring that the con-
clusions drawn are robust and applicable in 
real-world diagnostic settings. This will help 
in developing methodologies that better 
emulate the blind assessments typically con-
ducted in clinical practice.

Several other limitations to our study war-
rant acknowledgment. First, our model was 
limited to axial T2W images and excluded 
other crucial sequences. Future studies could 
explore enhancing image quality across all 
sequences and integrating them into a sin-

gle DL pipeline for more effective improve-
ments.20 Although our study employed 
PI-QUAL V1, we acknowledge that V2.0 was 
released during our study period. Future 
studies should utilize the updated version 
for assessment.

Second, we used Pix2Pix due to its estab-
lished use and relatively lower computation-
al demands compared with the state-of-the-
art diffusion denoising probabilistic models, 
which required significantly more resources. 
Future work will include applying advanced 
architectures, including transformers and dif-
fusion models for image enhancement.      

In conclusion, we demonstrated that a 
GAN model, Pix2Pix, trained on syntheti-
cally degraded axial T2W prostate MRI, can 
substantially improve image quality as evi-
denced by quantitative metrics and assess-
ments from multiple readers with varying 
levels of experience following PI-QUAL crite-
ria, showing no statistical difference in image 
quality compared with the original images. 
Additionally, the readers were unable to 
distinguish between original and synthetic 
images, indicating that the model did not in-
troduce any unnatural appearance. Further-
more, the same model was able to improve 
image quality in an external testing dataset 
of original images, demonstrating its gener-
alizability across datasets and its capability 
to improve both original and synthetically 
degraded images. 
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Supplementary Document S1

1. data pre-processing: creating a robust 
training set for prostate MRI enhancement

A crucial step in this study involved the 
creation of a robust training dataset com-
prised of T2W images realistically mimicking 
various MRI artifacts. This approach, utilizing 
the TorchIO library for medical image aug-
mentation, aimed to enhance the robustness 
and generalizability of the trained model by 
exposing it to a wide range of image degra-
dations commonly encountered in clinical 
practice.1

1.1. Motion artifacts: simulating the impact 
of patient movement

Motion artifacts leads to blurring or 
ghosting that can obscure anatomical de-
tails.2 To make our deep learning model more 
robust to these artifacts, we simulated realis-
tic motion during the MRI scan. This simula-
tion involves randomly generating a series of 
small movements, representing the kind of 
positional shifts a patient might make.

Each simulated movement is mathemat-
ically represented as a 3D transformation. 
These transformations include both rotation 
(turning) and translation (shifting) compo-
nents, and their parameters are randomly 
varied to create a diverse range of plausi-
ble motions. To ensure that these simulated 
movements don’t unrealistically displace 
the prostate from its average position with-
in the image, each movement is adjusted 
using a “de-meaning” process. This process 
ensures that the simulated motion primarily 
degrades image quality through blurring or 
ghosting, rather than causing a significant 
shift in the prostate’s overall location.

The simulated movements are then ap-
plied to the original image data, which is re-
sampled to maintain smooth image features 
despite the introduced motion. Finally, the 
motion-corrupted image is synthesized by 
processing the image data in k-space, the 
frequency domain representation of the MRI 
signal. This process incorporates the tempo-
ral dynamics of the simulated movements, 
resulting in a realistic depiction of a mo-
tion-affected T2-weighted prostate MRI.

1.2. Gaussian noise: simulating inherent ac-
quisition noise

Inherent noise is an unavoidable part 
of MRI acquisition, creating random fluctu-
ations in signal intensity that can obscure 
subtle details within prostate images. To 

make our synthetically degraded prostate 
images more realistic, we incorporated ran-
dom Gaussian noise, simulating this inherent 
noise.

Instead of using fixed noise levels, we 
varied the amount of noise added to each 
image. This mimics the range of noise lev-
els encountered in real-world prostate MRI 
scans. For each image, the parameters con-
trolling the noise distribution were randomly 
selected, ensuring our model is exposed to a 
variety of noise profiles during training.

This random noise is added to each indi-
vidual voxel within the image. The amount 
of noise added is determined by scaling a 
random value with a randomly chosen stan-
dard deviation and shifting it by a randomly 
selected mean. This process creates realistic 
noise patterns, reflecting the noise charac-
teristics inherent to real-world prostate MRI.

1.3. Gaussian blur: simulating loss of sharp-
ness in prostate MRI

Blurring is often caused by factors like 
imperfect scanner focus or slight patient 
movements. This loss of sharpness can make 
it difficult to see fine anatomical details, 
potentially affecting diagnosis. To prepare 
our model for this real-world challenge, we 
introduced Gaussian blur into our synthetic 
image degradation process.

We didn’t apply the same amount of blur-
ring to each image. Instead, we randomly 
varied the degree of blurring, mimicking the 
range of sharpness variations seen in real 
prostate MRIs. This exposes our model to a 
wider range of blurring artifacts during train-
ing, making it more robust to blurry images 
in real-world scenarios.

The blurring is implemented by convolv-
ing each image with a Gaussian filter. The 
size of this filter, which controls how much 
blurring is applied, is randomly chosen and 
scaled based on the resolution of each im-
age. This ensures the blurring effect is ap-
propriately applied relative to the size of the 
details in the prostate image.

1.4. Ghosting artifacts: simulating periodic 
motion effects

Ghosting artifacts are often caused by 
rhythmic motions like blood flow or bowel 
movement. These artifacts appear as faint 
copies or “ghosts” of anatomical structures, 
shifted along a specific direction in the im-
age. To simulate ghosting artifacts, we ma-
nipulate the image data in its frequency do-
main representation, known as k-space.

In k-space, periodic motions like those 
causing ghosting affect specific frequency 
bands. We simulate this by selectively sup-
pressing the strength of certain frequencies 
in k-space. The amount of suppression con-
trols the intensity of the ghosting effect, 
while the spacing between the suppressed 
frequencies determines how often the 
ghosting pattern repeats. By adjusting these 
parameters, we can create a wide range of 
ghosting artifacts with varying appearances.

Once the k-space data has been modi-
fied to include the simulated ghosting, we 
transform the data back to its original spatial 
representation, resulting in a prostate MRI 
image containing realistic ghosting artifacts.

1.5. Spike artifacts: simulating radio-fre-
quency interference

Spike artifacts, often called herringbone 
or corduroy artifacts, can create unwanted 
stripes in MRI images. These artifacts are 
caused by radio-frequency interference 
during the scan, which introduces spikes in 
the k-space representation of the image.

To simulate these artifacts, we directly 
add spikes to the k-space data of the pros-
tate MRI. Each spike’s location in k-space 
determines the direction and frequency of 
the stripe pattern that will appear in the final 
image.

We randomize both the number and lo-
cation of these spikes to simulate the unpre-
dictable nature of real-world spike artifacts. 
The number of spikes controls how severe 
the artifact is, while their random locations 
create stripes in various directions and posi-
tions within the image. The intensity of each 
spike is also randomized, resulting in stripes 
with varying prominence. After adding the 
spikes to the k-space data, we transform the 
data back to its normal spatial representa-
tion, creating a prostate MRI image with re-
alistic spike artifacts.

1.6. Bias field inhomogeneities: simulating 
magnetic field imperfections

Bias field inhomogeneity is a common ar-
tifact in MRI, caused by imperfections in the 
scanner’s magnetic field.3 This artifact creates 
gradual changes in image brightness across 
the prostate, making some areas appear 
brighter or darker than others, even if the 
tissues are the same. This can make it harder 
to distinguish between different tissues and 
interpret the image accurately.

We simulated this artifact using a math-
ematical model based on polynomials. This 
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model can create smooth, gradual changes 
in image brightness similar to those seen in 
real bias field artifacts. The model uses a set 
of coefficients to control the intensity vari-
ations, and by randomly generating these 
coefficients, we create a variety of bias field 
patterns.

The complexity of these patterns can be 
adjusted by changing the order of the poly-
nomial used in the model. A higher-order 
polynomial allows for more intricate and spa-
tially varying intensity changes. The generat-
ed bias field pattern is then applied to the 
original prostate MRI image, simulating the 
effect of magnetic field imperfections.

1.7. Combining noise types: enhancing 
training realism

To create a more challenging and realistic 
training scenario, each image in the training 
and validation sets was augmented with ev-
ery type of synthetic degradation individu-
ally (motion, Gaussian noise, blur, ghosting, 
spike artifacts, bias field inhomogeneity). 
This ensured the model learned to handle 
each artifact in isolation.

In addition to individual augmentations, 
combined noise augmentations were also 
applied to enhance the model’s robustness 
and generalizability. For 20% of the images in 
the training and validation sets, we random-
ly selected a combination of two or more of 
the aforementioned noise types and applied 
them together to the same image.  This ap-
proach aimed to simulate the more complex 

and diverse noise profiles that are represen-
tative of real-world clinical scenarios where 
multiple artifacts can co-occur. The specific 
combinations of noise types were random-
ly selected for each image, ensuring a wide 
variety of combined degradations within the 
training data.

For the test set, to evaluate the model’s 
ability to generalize to unseen combinations 
of artifacts, these noise types were combined 
randomly with varying ratios. This rigorous 
testing procedure helped assess the model’s 
performance under conditions that more 
closely reflect real-world clinical prostate 
MRI.

2. The Pix2Pix model: image-to-image 
translation for prostate MRI enhancement

To address the challenge of improving 
the quality of degraded T2-weighted pros-
tate MRI images, we employed the Pix2Pix 
model, a conditional Generative Adversarial 
Network (cGAN) renowned for its efficacy 
in image-to-image translation tasks.4 Unlike 
Cycle-GAN, which relies on unpaired data 
from two different domains, Pix2Pix leverag-
es paired images for training. This makes it 
particularly suitable for our study, where we 
have access to ground truth data in the form 
of original, high-quality images correspond-
ing to the synthetically degraded images.

The Pix2Pix architecture comprises two 
key components: a generator and a discrimi-
nator, which are simultaneously trained in an 
adversarial manner. The generator, structured 

as a U-Net,5 takes the degraded T2-weighted 
image as input and endeavors to generate 
a high-quality image that closely resembles 
the original, artifact-free image. The U-Net 
architecture, with its encoder-decoder struc-
ture and skip connections, is particularly 
advantageous in medical image processing. 
The encoder progressively downsamples the 
input image, extracting features at multiple 
scales, while the decoder upsamples the 
encoded representation, reconstructing the 
output image. The skip connections, linking 
corresponding encoder and decoder layers, 
facilitate the direct flow of low-level informa-
tion across the network, preserving crucial 
anatomical details and preventing excessive 
blurring often associated with traditional en-
coder-decoder networks.

The discriminator, on the other hand, em-
ploys a PatchGAN classifier,4 which evaluates 
individual N x N image patches rather than 
the entire image at once. This patch-based 
approach encourages the generator to focus 
on generating realistic high-frequency de-
tails crucial for maintaining the clarity and re-
alism of medical images. During training, the 
generator and discriminator are engaged in 
a continuous adversarial loop. The generator 
strives to produce increasingly realistic im-
ages to deceive the discriminator, while the 
discriminator becomes more adept at dis-
cerning real images from the synthetic imag-
es generated by the generator. The proposed 
Pix2Pix architecture is given in Figure 1. 

Figure 1. The proposed Pix2Pix architecture in current work.
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A U-Net architecture represented by gray 
and blue blocks generate a synthetically im-
proved image in generator. PatchGAN archi-
tecture shown in green blocks evaluate im-
age patches to differentiate between original 
and synthetic images in discriminator and 
promotes high-frequency detail generation 
in the synthetic images. The image examples 
at the bottom of Figure 1.  showcase (1) the 
original image, (2) the synthetically degrad-
ed image, and (3) the synthetically improved 
image respectively. Moreover, the numbers 
on the blocks denote the number of feature 
maps at each layer, and the image dimen-
sions are displayed above each block. Each 
convolution operations, skip connections, 
down and up sampling operations are at-
tended to corresponding arrows and blocks 
with specified colors under legend section in 
Figure 1. 

This adversarial process is guided by a 
combined loss function encompassing both 
an adversarial loss and an L1 loss. The adver-
sarial loss, determined by the discriminator’s 
ability to classify image patches as real or 

fake, ensures that the generated images are 
visually indistinguishable from the real im-
ages in the training dataset. The L1 loss, cal-
culated as the mean absolute error between 
the generated image and the ground truth 
target image, promotes structural similarity, 
preventing excessive blurring and preserv-
ing the anatomical integrity crucial for accu-
rate diagnosis. 

We optimized the Pix2Pix model using 
the Adam optimizer with a learning rate of 
0.0002 for both the generator and the dis-
criminator. The model was trained for 200 
epochs, with a heavier emphasis placed on 
the L1 loss during the early stages of training. 
This prioritizes the generation of structurally 
accurate images over purely visually realistic 
ones, particularly crucial in the context of 
medical imaging, where diagnostic accuracy 
is paramount.
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Comparison of radiologists’ score for original, synthetic degraded, and synthetic improved prostate MRI images.
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A B C

Average Score: 3.43 Average Score: 3 Average Score: 3.43

A representative prostate MRI scan (A) original image, (B) 
synthetic degraded image, (C) synthetic improved image.

A B C

Average Score: 2.57 Average Score: 2.43 Average Score: 3.14

A representative prostate MRI scan (A) original image, (B) 
synthetic degraded image, (C) synthetic improved image.

A B C

Average Score: 4.57 Average Score: 4.14 Average Score: 4.57

A representative prostate MRI scan (A) original image, (B) 
synthetic degraded image, (C) synthetic improved image.
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A B C

Average Score: 5.57 Average Score: 1.14 Average Score: 5.43

A representative prostate MRI scan (A) original image, (B) 
synthetic degraded image, (C) synthetic improved image.

A B C

Average Score: 5.43 Average Score: 4.29 Average Score: 5.29

A representative prostate MRI scan (A) original image, (B) 
synthetic degraded image, (C) synthetic improved image.

A B

Average Score: 2.14 Average Score: 2

A representative prostate MRI scan from external test set (A) original image, (B) synthetic improved image.

A B

Average Score: 2.14 Average Score: 2

A representative prostate MRI scan from external test set (A) original image, (B) synthetic improved image.
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A B

Average Score: 5 Average Score: 5

A representative prostate MRI scan from external test set (A) original image, (B) synthetic improved image.

A B

Average Score: 5 Average Score: 5

A representative prostate MRI scan from external test set (A) original image, (B) synthetic improved image.

A B

Average Score: 5 Average Score: 5.43

A representative prostate MRI scan from external test set (A) original image, (B) synthetic improved image.

A B

Average Score: 5 Average Score: 5.43

A representative prostate MRI scan from external test set (A) original image, (B) synthetic improved image.
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A B

Average Score: 3.14 Average Score: 3.57

A representative prostate MRI scan from external test set (A) original image, (B) synthetic improved image.

A B

Average Score: 3.14 Average Score: 3.57

A representative prostate MRI scan from external test set (A) original image, (B) synthetic improved image.

A B

Average Score: 3.29 Average Score: 4.71

A representative prostate MRI scan from external test set (A) original image, (B) synthetic improved image.

A B

Average Score: 3.29 Average Score: 4.71

A representative prostate MRI scan from external test set (A) original image, (B) synthetic improved image.
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Comparison of radiologists’ assessment on whether the image is original or synthetic.
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Comparison of radiologists’ assessment on whether the image is original or synthetic.
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Comparison of radiologists’ assessment on whether the image is original or synthetic.
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