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PURPOSE
This study aims to detect common bile duct (CBD) dilatation using deep learning methods from 
artificial intelligence algorithms.

METHODS
To create a convolutional neural network (CNN) model, 77 magnetic resonance cholangiopan-
creatography (MRCP) images without CBD dilatation and 70 MRCP images with CBD dilatation 
were used. The system was developed using coronal maximum intensity projection reformatted 
3D-MRCP images. The ResNet50, DenseNet121, and visual geometry group models were selected 
for training, and detailed training was performed on each model.

RESULTS
In the study, the DenseNet121 model showed the best performance, with a 97% accuracy rate. The 
ResNet50 model ranked second, with a 96% accuracy rate.

CONCLUSION
CBD dilatation was detected with high performance using the DenseNet CNN model. Once validat-
ed in multicenter studies with larger datasets, this method may help in diagnosis and treatment 
decision-making.

CLINICAL SIGNIFICANCE
Deep learning algorithms can aid clinicians and radiologists in the diagnostic process once techni-
cal, ethical, and financial limitations are addressed. Fast and accurate diagnosis is crucial for acceler-
ating treatment, reducing complications, and shortening hospital stays.

KEYWORDS
Artificial intelligence, bile duct dilatation, choledocholithiasis, convolutional neural network, mag-
netic resonance cholangiopancreatography

The common bile duct (CBD) is approximately 7–10 cm long and 3–6 mm in diameter, 
and its diameter increases slightly with age. The CBD functions as a duct that stores bile 
produced in the liver and empties it into the small intestine. Bile, a digestive fluid, plays 

an important role in breaking down fats during the digestive process. CBD dilation refers to 
a condition in which the bile ducts dilate beyond the normal range. This condition can be 
caused by a variety of factors, including bile duct obstruction, the presence of gallstones, 
infections affecting the bile ducts, or other diseases that block the flow of bile, causing the 
bile ducts to dilate.1 CBD dilatation is a common clinical symptom that can result from var-
ious conditions, including pancreatobiliary tumors, choledocholithiasis, and periampullary 
diverticula.2,3 Non-pathological causes of bile duct dilatation, such as advanced age, previ-
ous surgical interventions, and chronic narcotic use, are also widely recognized.4 Although 
patients with CBD dilatation may present with colicky pain, fever, jaundice, and other clinical 
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symptoms, a considerable proportion of pa-
tients remain asymptomatic. Nevertheless, 
the degree of dilation in the bile duct often 
serves as an essential indicator for assess-
ing disease severity and guiding treatment 
selection.5 Bile duct dilatation is a condition 
that can negatively affect the digestive sys-
tem and can cause greater health problems if 
left untreated. Early diagnosis and appropri-
ate treatment are important for preventing 
this problem and maintaining health.6

Diagnostic modalities for CBD dilatation 
include transabdominal ultrasonography 
(US), computed tomography (CT), magnet-
ic resonance cholangiopancreatography 
(MRCP), and endoscopic retrograde cholan-
giopancreatography (ERCP). Among these, 
MRCP plays a well-established role in in-
vestigating biliary disorders and serves as a 
non-invasive alternative to ERCP.7

Treatment often becomes necessary in 
cases of CBD dilatation caused by stones. 
Early detection of CBD dilatation is crucial for 
enabling the timely initiation of treatment 
modalities. Artificial intelligence applications 
(AIAs) are increasingly utilized across various 
domains and are gradually being integrated 
into healthcare.7 They facilitate disease di-
agnosis for physicians and shorten the time 
to treatment initiation. This can provide op-
portunities for early treatment and improve 
treatment success rates.8

In the healthcare industry, machine learn-
ing techniques are becoming increasingly 
common. As the term suggests, machine 
learning allows algorithms to learn and ex-
tract meaningful representations from data 
in a semi-automatic manner. Early diagnosis 
and treatment of biliary dilatation enable the 
detection of abnormalities in the biliary tract 
in a shorter time and shorten the treatment 
period.

Deep learning is one of the artificial learn-
ing approaches based on convolutional neu-
ral network (CNN) models, also known as 
multi-layer neural networks. These models 

are advanced feedforward neural networks 
widely used in image analysis, natural lan-
guage processing, and other complex image 
classification problems. They are uniquely 
capable of identifying and interpreting pat-
terns from images and text.9,10

Deep learning is widely used in automat-
ic image segmentation and also in medical 
image processing. Due to its superior per-
formance, deep learning has emerged as the 
most popular technology.11,12 Considering 
the importance of deep learning, this paper 
aims to analyze bile duct dilatation using 
ResNet50, DenseNet121, and visual geome-
try group (VGG) models.

This study aims to determine the diagnos-
tic performance of deep learning algorithms 
in detecting CBD dilatation caused by bile 
duct stones using MRCP images.

Methods
This was a retrospective study, and ethi-

cal approval was obtained from Gaziantep 
Islam Science and Technology University 
in 2024 with decision number 2024/465. In 
this study, MRCP images of individuals aged 
18–65 years were retrospectively analyzed. 
The images were obtained using a 1.5 Tesla 
magnetic resonance imaging system (Sie-
mens Vision-Symphony Upgrade, Erlangen, 
Germany) and reviewed by a radiologist with 
approximately 13 years of clinical experi-
ence. The presence of stone-associated CBD 
dilatation was evaluated using coronal max-
imum intensity projection (MIP) reformatted 
3D-MRCP images. A total of 147 MRCP imag-
es were included in this study, comprising 77 
images from the normal group and 70 from 
patients with bile duct dilatation caused by 
choledocholithiasis. The dataset consisted 
of 147 MRCP images collected from [source]. 
The images were categorized based on the 
presence of stone-associated bile duct dila-
tation. Preprocessing steps included contrast 
enhancement, normalization, and resizing 
to 224 × 224 pixels. The exclusion criteria 
included individuals with cholecystectomy, 
images with artifacts in which the CBD was 
not visible, patients with tumors in the bile 
ducts, and those without a confirmed diag-
nosis of choledocholithiasis through clinical 
evaluation or ERCP.

MRCP artifacts, technical and reconstruc-
tion-related artifacts, gas-related artifacts, 
and other fixed fluids (such as those in the 
duodenum or ascites) may result from the 
overlap of the CBD. Poor spatial resolution 
may also limit interpretation due to artifacts. 
Examination of thin sections and multiple 

planes reduces these issues. However, coro-
nal MIP reformatted 3D-MRCP images were 
used. Therefore, if the CBD was not visible in 
coronal MIP reformatted 3D-MRCP images, 
those images were excluded.

Patients with detected stones and dilata-
tion on MRCP along with a confirmed diag-
nosis of stones via ERCP were assigned to the 
CBD dilatation group. Patients with normal 
bile ducts on MRCP who clinically improved 
without requiring ERCP or were found to 
have no stones on ERCP were assigned to the 
normal group.

To enhance generalization, five-fold 
cross-validation was employed. In this ap-
proach, the dataset was divided into five sub-
sets, with four subsets used for training and 
one for validation in each iteration. This en-
sured that the model learned from different 
portions of the data, enhancing robustness. 
To mitigate overfitting, dropout layers (rate: 
0.3) were applied, and L2 weight regulariza-
tion was used. Additionally, early stopping 
was employed to prevent excessive training 
on the same patterns.

Study design

The images, stored in Digital Imaging and 
Communications in Medicine format, were 
transferred to a personal workstation using 
the Horos Medical Image Viewer (Version 
3.0; Horos Project, Annapolis, MD, USA). The 
images were analyzed using a deep learning 
approach, a subset of AI. Initially, all imag-
es underwent preprocessing steps such as 
cropping, padding, smoothing, and resizing 
to fit the input layer of the deep learning ar-
chitecture. The processed images were then 
fed into the input layer of the architecture. In 
the subsequent step, features were extracted 
from the fully connected layers of the archi-
tecture. These features were saved in a file 
and used as training and test data for classi-
fier methods.13

Pre-trained CNN models were employed 
as feature extractors. The features were ob-
tained from the fully connected layers of 
each model, with a total of 1,000 features 
per model. Training and testing processes 
were conducted using all features, as well as 
subsets selected through feature selection, 
to analyze the impact of feature selection 
on system performance. Various numbers of 
features were tested to assess their effect on 
system success.

CNNs operate on specific-sized patches 
of images, processing them piece by piece 
through comparison. Filters are spatially 

Main points

• Common bile duct (CBD) dilation was de-
tected with high performance from mag-
netic resonance cholangiopancreatography 
images.

• CBD dilation was also detected with high 
accuracy using the DenseNet deep learning 
algorithm.

• Artificial intelligence can assist clinicians 
and radiologists in the early and accurate 
diagnosis of bile duct dilation.
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small along the width and height but ex-
tend through the entire depth of the input 
image. They are designed to detect specific 
feature types in the input image. In the con-
volutional layer, the filter/kernel is moved to 
every possible position over the input matrix. 
Element-wise multiplication is performed 
between the filter and the patch of the input 
image, followed by summation. This process 
is repeated for every possible position of the 
filter on the input image matrix, enabling fea-
ture detection at any location in the image.14

Deep learning algorithms

This study employed a deep learn-
ing-based process to classify images into 
normal and choledocholithiasis-associated 
CBD dilatation groups. In the initial stage, 
raw datasets were prepared, consisting of 
normal and CBD dilatation images. During 
the data preprocessing phase, the images 
were resized, and data augmentation tech-
niques were applied. The ResNet50, DenseN-
et121, and VGG models were selected for the 
training process, with detailed training con-
ducted on each model. The models’ perfor-
mance was evaluated using metrics such as 
accuracy, F1 score, and the confusion matrix. 
Finally, the results were compared, and the 
model with the best performance was iden-
tified. The process flowchart is presented in 
Figure 1.

Dataset

This study utilized a dataset comprising 
a total of 147 images categorized into two 
classes: normal and stone-associated CBD 
dilatation. Of these, 77 images belonged to 
the normal group, and 70 images were classi-
fied as CBD dilatation. The images were sub-
jected to various preprocessing techniques 
to prepare them for deep learning models. 
During preprocessing, all images were re-
sized to 224 × 224 pixels, and pixel values 
were normalized between 0 and 1. The 
dataset was split into two subsets: 80% for 
training and 20% for testing. Additionally, to 
enhance model generalization and mitigate 
overfitting, five-fold cross-validation was ap-
plied, ensuring that different subsets of the 
data were used for training and validation in 
each iteration.

Data augmentation

To increase the diversity of the dataset 
and prevent model overfitting during train-
ing, data augmentation techniques were 
applied. Data augmentation techniques in-
cluded rotation (−20° to +20°), horizontal 
and vertical flipping, zoom (0–10%), bright-

ness adjustment, and contrast normalization. 
These transformations improved model ro-
bustness. The following data augmentation 
methods were used:

1. Horizontal flipping: Random flipping 
of images along the horizontal axis.

2. Rotation: Random rotation of images 
between 0° and 30°.

3. Brightness adjustment: Random mod-
ification of image brightness levels.

4. Random cropping: Cropping specific 
portions of the images.

These data augmentation techniques 
were dynamically applied during each ep-
och to enhance variability during training. By 
applying augmentation, the total number of 
images increased to 735.

Image examples with data augmentation

Figure 2 presents examples of images pro-
cessed with data augmentation techniques. 

1. Original image: This represents the raw 
image with no data augmentation applied.

2. Horizontal flipping: The image is 
flipped along the horizontal axis, swapping 
the left and right sides.

3. Rotation: The image is rotated random-
ly between 0° and 30°.

4. Brightness adjustment: The brightness 
level of the image is either increased or de-
creased.

5. Random cropping: A random portion 
of the image is cropped and then resized to 
the original dimensions.

Models

In this study, we selected three widely 
used CNN architectures—ResNet50, DenseN-
et121, and VGG16—to evaluate their effec-
tiveness in detecting stone-associated CBD 
dilatation. Each model was chosen based on 
its specific strengths in feature extraction, 
classification accuracy, and computational 
efficiency.

• ResNet50: This model was selected for 
its residual learning framework, which effec-
tively addresses the vanishing gradient prob-
lem in deep networks. The use of residual 
connections allows for deeper architectures 
while maintaining efficient feature propaga-
tion, making it well-suited for complex medi-
cal image classification.

• DenseNet121: This model was incorpo-
rated due to its dense connectivity mech-
anism, which enables improved gradient 
flow and feature reuse, leading to enhanced 
model efficiency. Compared with ResNet50, 
DenseNet121 requires fewer parameters 
while maintaining high classification accura-
cy, making it advantageous for medical im-
aging tasks where computational efficiency 
is crucial.

• VGG16: VGG16 was included as a base-
line model, as it has been extensively used in 
medical image analysis studies. Its simple yet 
effective architecture allows for a controlled 
comparison against more advanced CNNs 
while providing insights into the relative 
advantages of deep feature extraction tech-
niques.

By selecting these three architectures, this 
study provided a comprehensive evaluation 
of different deep learning models, ensuring 
a balanced comparison of accuracy, compu-
tational cost, and real-world applicability for 
CBD dilatation detection.

Figure 1. Flux diagram. VGG, visual geometry group.
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Training process

The models were trained for a total of 100 
epochs, with training and validation losses 
monitored during each epoch. The Adam 
optimization algorithm was used to update 
model weights. The cross-entropy loss func-
tion, suitable for multi-class classification 
problems, was employed for loss calculation. 
The learning rate was set at 0.001, and the 
mini-batch size was chosen as 32. To ensure 
optimal model performance, key hyperpa-
rameters were carefully selected and fine-
tuned during the training phase. The mod-
els were trained using the Adam optimizer 
with a learning rate of 0.0001, where beta1: 
0.9 and beta2: 0.999. The batch size was set 
to 16, balancing computational efficiency 
with stable convergence. The models were 
trained for 50 epochs, applying categorical 
cross-entropy as the loss function due to 
its effectiveness in multi-class classification 
problems.

Additionally, learning rate decay was in-
corporated using a step decay strategy, grad-
ually reducing the learning rate to prevent 
the model from getting stuck in local minima 
and to enhance convergence stability. These 
hyperparameter choices were made based 
on preliminary experiments to optimize 
model accuracy while preventing overfitting. 
The detailed tuning of these parameters con-
tributed to the improved generalizability of 
the deep learning models for detecting CBD 
dilatation.

Performance evaluation

The models’ performance was evaluated 
using metrics commonly employed in clas-
sification problems, such as precision, recall, 
and F1 score. These metrics analyze the pre-
diction success of the model from different 
perspectives:

• Precision: This is the ratio of true positive 
(TP) predictions to the total positive predic-
tions. It measures the impact of false positive 
(FP) predictions.

• Recall: This is the ratio of correctly classi-
fied positive samples to the total actual pos-

itive samples. It measures the impact of false 
negative (FN) predictions.

• F1 Score: This metric aims to balance 
precision and recall, representing their har-
monic mean. It is particularly useful when 
there is an imbalance in data distribution be-
tween classes.

The formulas for these metrics are pro-
vided in Equations 1–5, and the evaluation 
results are presented in Table 1.

  (1)

   (2)

    (3) 

   (4)

  (5)

In Formulas 1–5, the following abbrevia-
tions are used:

• TP: The number of correctly predicted 
positive cases.

• FP: The number of cases incorrectly pre-
dicted as positive.

• FN: The number of cases incorrectly pre-
dicted as negative.

• TN (true negatives): The number of cor-
rectly predicted negative cases.

These formulas are derived from standard 
classification metric definitions and are wide-
ly used in deep learning-based medical im-
age classification.14

Results
To address learning challenges in deep 

networks, this model was evaluated using 
the 50-layer ResNet50 architecture, which 
employs residual connections. The ResNet 
model achieved high performance with a 

minimum loss value of 0.0926, precision 
of 0.9642, recall of 0.9705, and F1 score of 
0.9663.

The VGG16 architecture, characterized by 
a fixed structure of 3 × 3 filters, was also eval-
uated. Its minimum loss value was measured 
at 0.6752. However, it demonstrated lower 
performance than the other models, with a 
precision of 0.2166, recall of 0.5102, and F1 
score of 0.3023.

The DenseNet121 model, which connects 
each layer to all preceding layers to enhance 
learning efficiency, achieved a minimum 
loss value of 0.1384. Its performance metrics 
were a precision of 0.9722, recall of 0.9615, 
and F1 score of 0.9657.

The loss values throughout the training 
process are presented in Figure 3, and the 
changes in precision, recall, and F1 score are 
illustrated in Figure 4.

The analysis revealed that the deep learn-
ing-based ResNet, VGG, and DenseNet mod-
els demonstrated high performance in clas-
sifying normal and dilated images, with the 
ResNet and DenseNet models showing low 
loss values and high precision, recall, and F1 
scores. Specifically, DenseNet emerged as an 
effective model in terms of learning efficien-
cy. In contrast, the VGG model performed rel-
atively poorly compared with the others. The 
data augmentation techniques and training 
processes used in this study supported the 
models’ general feature learning and en-
hanced classification success.

Discussion
In this study, which aimed to determine 

the diagnostic performance of CBD dilation 
in patients with choledocholithiasis from 
MRCP images using the CNN method, the 
highest accuracy was achieved with the 
DenseNet algorithm at 97%. MRCP can effec-
tively show changes in the bile ducts; how-
ever, MRCP images can have many artifacts 
and low resolution, which may complicate di-
agnosis. In contrast, deep learning methods 

Figure 2. Augmented images.
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can assist clinicians and radiologists quickly 
and independently in the diagnostic process. 
Our study also included images with artifacts 
and low resolution in which the CBD could 
be seen. These images can help the clinician 
determine the indication for ERCP treatment. 
Early detection of stone-related CBD dilation 
is crucial in accelerating treatment, prevent-
ing complications related to stones, and re-
ducing hospitalization and intensive care unit 
stay times. This also reduces complications 
that may arise from prolonged hospital stays.

To better contextualize the effective-
ness of deep learning models in detecting 
stone-associated CBD dilatation, we conduct-

ed a comparative analysis with existing non-
deep learning diagnostic techniques. Tradi-
tional methods, such as radiologist-based 
manual assessment, have long been the gold 
standard in clinical practice due to their high 
accuracy and interpretability. However, these 
assessments are highly dependent on the ra-
diologist’s expertise and experience, making 
them prone to inter-observer variability and 
subjective interpretation.

Another conventional approach involves 
feature engineering-based machine learning 
models, such as support vector machines 
and random forest classifiers, which extract 
handcrafted features from MRCP images. 

Although these methods can improve classi-
fication accuracy, their reliance on manually 
selected features limits their ability to gen-
eralize across different datasets and imaging 
conditions. Additionally, conventional image 
processing techniques, such as thresholding 
and edge detection, have been explored for 
bile duct segmentation and anomaly detec-
tion but often struggle with complex varia-
tions in anatomy and image artifacts.

In contrast, our proposed deep learning 
approach leverages CNNs to automatically 
extract high-level features, eliminating the 
need for manual feature selection and mini-
mizing human bias. Unlike traditional meth-
ods, CNN-based models can learn hierarchi-
cal representations of CBD dilatation patterns 
directly from raw images, leading to superior 
classification accuracy and robustness. Fur-
thermore, deep learning models have the 
potential for real-time application, enabling 
automated and consistent diagnoses with-
out requiring extensive human intervention. 
Although CNN models may lack the inher-
ent interpretability of traditional techniques, 
methods such as gradient-weighted class 
activation mapping (Grad-CAM) visualization 
can enhance explainability by highlighting 
the regions of interest in MRCP images.

Overall, our comparative analysis high-
lights the advantages of deep learning 
models in terms of automation, scalability, 
and reproducibility while recognizing the 
strengths of traditional diagnostic approach-
es in interpretability and clinical trustworthi-
ness. Future research could explore hybrid 
approaches that combine deep learning 
with traditional radiology methods to further 
enhance diagnostic performance. As AI rap-
idly advances and integrates into the health-
care field, this high-performing method can 
help reduce the workload of radiologists and 
improve diagnostic accuracy in collaboration 
with clinicians. Despite the high diagnostic 
value of the current model, a small margin 
of error remains. This is because the deep 
learning model evaluates based on a single, 
predetermined image, unlike radiologists.9,15

There are several studies in the literature 
that use AIAs to analyze bile duct pathologies 
from MRCP images. Ringe et al.16 detected 
primary sclerosing cholangitis with 95% sen-
sitivity using machine learning algorithms 
on coronal MIP 3D-MRCP images. Hou et al.17 
detected choledocholithiasis with 95% ac-
curacy from thick-section 2D MRCP images. 
Sun et al.18 also detected choledocholithiasis 
with 93.48% accuracy using 3D-MRCP imag-
es. In our study, a CNN model was developed 

Table 1. Performance evaluation metrics

Model Accuracy Precision Recall Specificity F1-score

ResNet ResNet50 0.9682 0.9642 0.9705 0.9661 0.9663

VGG VGG16 0.3923 0.2166 0.5102 0.3513 0.3023

DenseNet DenseNet121 0.9701 0.9722 0.9615 0.9772 0.9657

VGG, visual geometry group.

Figure 3. Loss changes during the training process of models.

Figure 4. Performance evaluation metrics of the models.
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for the diagnosis of stone-related CBD dila-
tion using 3D-MRCP images, achieving high 
precision, recall, and F1 score. Among the 
three models used, DenseNet demonstrat-
ed the highest performance, with precision, 
recall, and F1 score values of 0.9722, 0.9615, 
and 0.9657, respectively.

There are some limitations in our study. 
The first is that it only includes patients with 
stone-related CBD dilation and a normal 
group. Including patients with CBD dilation 
due to other pathologies, such as tumors and 
strictures, would have made the detection of 
stone-related dilation more valuable. Anoth-
er limitation is that it is a single-center study 
and includes a small number of patients. 
Additionally, we did not differentiate CBD 
dilatation according to severity, so we did 
not specifically determine the accuracy rate 
for patients with a borderline CBD diameter. 
Therefore, we do not know if our method 
will perform well on MRCP images obtained 
from different centers with various devices 
and parameters. These limitations should be 
addressed, and larger studies should be con-
ducted with this method.

Although we think that deep learning will 
be useful in diagnosis, there are many techni-
cal, ethical, and financial challenges to over-
come. For example, incorrect predictions can 
be made due to image artifacts and noise. 
Deep learning practitioners need to manual-
ly correct image noise to create an effective 
dataset. This process is both time-consuming 
and costly. Another challenge is the require-
ment for large datasets to build an effective 
deep learning system. This is both costly and 
may raise ethical concerns. Additionally, it 
may not be possible to create large datasets 
for infrequent diseases.19

In conclusion, a high-performance meth-
od for diagnosing CBD dilatation in patients 
with choledocholithiasis using the DenseNet 
CNN model from MRCP images has been de-
scribed. However, the number of patients in 
our study was small, and only patients with 
choledocholithiasis were included. We hope 
to validate this method with a larger multi-
center dataset in future studies. Additionally, 
future studies could include images of other 
pathologies, such as tumors, stenosis, and in-
flammation, that cause biliary tract dilatation 
to examine whether differential diagnosis 
can be made in addition to dilatation de-
tection using this method. After addressing 
these deficiencies, the DenseNet CNN model 
may become a valuable tool for detecting 
CBD dilatation and determining its patho-
genesis in the future.

To evaluate the impact of artifacts on 
model performance, we analyzed images 
with varying levels of noise and low resolu-
tion. The results indicate that although the 
model performed well on high-quality imag-
es, accuracy was slightly reduced in images 
with major artifacts. This finding highlights 
the need for artifact-specific preprocessing 
methods.

To further evaluate the reliability of our 
model, we calculated confidence intervals 
for the reported performance metrics and 
conducted statistical analyses using the 
bootstrap method. Additionally, five-fold 
cross-validation was applied to assess the 
model’s generalizability across different data 
partitions. These analyses confirmed the 
robustness and consistency of our model, 
strengthening its potential for clinical appli-
cations.

Performance comparisons among Res-
Net50, DenseNet121, and VGG16 revealed 
that DenseNet121 exhibited superior sen-
sitivity and classification accuracy. DenseN-
et121 consistently outperformed the other 
models, particularly in sensitivity, indicating 
a higher ability to correctly identify stone-as-
sociated CBD dilatation.

This study highlights the potential of 
deep learning in detecting stone-associat-
ed CBD dilatation but has limitations. The 
single-center dataset limits generalizability, 
requiring multicenter validation. Future re-
search should include other etiologies, such 
as tumors and strictures, for broader clinical 
use. Image artifacts and MRCP variations 
remain challenges, necessitating improved 
preprocessing. Additionally, explainability 
methods such as Grad-CAM and multi-modal 
imaging integration (CT, US) could enhance 
diagnostic accuracy and clinical applicability.

Ethical considerations

The integration of deep learning models 
into clinical decision-making raises import-
ant ethical considerations, particularly re-
garding bias, human–AI collaboration, and 
regulatory challenges. One of the primary 
concerns in AI-driven diagnostics is algo-
rithmic bias, which may arise if the training 
dataset is not sufficiently diverse or repre-
sentative of different patient populations. A 
biased dataset can lead to disparities in diag-
nostic accuracy, particularly among under-
represented demographic groups. Therefore, 
future studies should prioritize multicenter 
and demographically diverse datasets to en-
sure fair and unbiased AI decision-making.

As for human–AI collaboration, although 
deep learning models demonstrate high 
accuracy in detecting CBD dilatation, they 
should be regarded as assistive tools rather 
than replacements for radiologists. The final 
clinical decision should always involve ex-
pert verification, ensuring that AI-generat-
ed diagnoses are contextualized within the 
broader clinical picture. Methods such as 
Grad-CAM visualization and other explain-
ability techniques can enhance trust in AI 
models by providing interpretable insights 
into the decision-making process.

Additionally, the deployment of AI in 
medical imaging is subject to regulatory and 
transparency challenges. Ensuring compli-
ance with healthcare standards and AI gov-
ernance frameworks is essential for wide-
spread clinical adoption. Future research 
should focus on developing transparent, 
explainable AI models that align with ethi-
cal and legal standards, thereby increasing 
both clinician and patient trust in automat-
ed diagnostic systems. By addressing these 
ethical concerns, we aim to contribute to the 
responsible development and implementa-
tion of AI-driven radiology applications, en-
suring that deep learning models are used in 
a manner that prioritizes fairness, safety, and 
clinical efficacy.
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