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PURPOSE
Neoadjuvant chemoradiotherapy (CRT) is known to increase sphincter preservation rates and de-
crease the risk of postoperative recurrence in patients with locally advanced rectal tumors. Howev-
er, the response to CRT in patients with locally advanced rectal cancer (LARC) varies significantly. 
The objective of this study was to compare the performance of models based on radiomics fea-
tures of the tumor alone, the mesorectum alone, and a combination of both in predicting tumor 
response to neoadjuvant CRT in LARC.

METHODS
This retrospective study included 101 patients with LARC. Patients were categorized as responders 
(modified Ryan score 0–1) and non-responders (modified Ryan score 2–3). Pre-CRT magnetic reso-
nance imaging evaluations included tumor-T2 weighted imaging (T2WI), tumor-diffusion weighted 
imaging (DWI), tumor-apparent diffusion coefficient (ADC) maps, and mesorectum-T2WI. The first 
radiologist segmented the tumor and mesorectum from T2-weighted images, and the second ra-
diologist performed tumor segmentation using DWI and ADC maps. Feature reproducibility was 
assessed by calculating the intraclass correlation coefficient (ICC) using a two-way mixed-effects 
model with absolute agreement for single measurements [ICC(3,1)]. Radiomic features with ICC 
values <0.60 were excluded from further analysis. Subsequently, the least absolute shrinkage and 
selection operator method was applied to select the most relevant radiomic features. The top five 
features with the highest coefficients were selected for model training. To address class imbalance 
between groups, the synthetic minority over-sampling technique was applied exclusively to the 
training folds during cross-validation. Thereafter, classification learner models were developed us-
ing 10-fold cross-validation to achieve the highest performance. The performance metrics of the 
final models, including accuracy, precision, recall, F1-score, and area under the receiver operating 
characteristic curve (AUC), were calculated to evaluate the classification performance.

RESULTS
Among the 101 patients, 36 were classified as responders and 65 as non-responders. A total of 25 
radiomic features from the tumor and 20 from the mesorectum were found to be statistically sig-
nificant (P < 0.05). The AUC values for predicting treatment response were 0.781 for the tumor-only 
model (random forest), 0.726 for the mesorectum-only model (logistic regression), and 0.837 for the 
combined model (logistic regression).

CONCLUSION
Radiomic features derived from both the tumor and mesorectum demonstrated complementary 
prognostic value in predicting treatment response. The inclusion of mesorectal features substan-
tially improved model performance, with the combined model achieving the highest AUC value. 
These findings highlight the added predictive contribution of the mesorectum as a key peritumoral 
structure in radiomics-based assessment.

CLINICAL SIGNIFICANCE
Currently, the response of locally advanced rectal tumors to neoadjuvant therapy cannot be reliably 
predicted using conventional methods. Recently, the significance of the mesorectum in predicting 
treatment response has gained attention, although the number of studies focusing on this area 
remains limited. In our study, we performed radiomics analyses of both the tumor tissue and the 
mesorectum to predict neoadjuvant treatment response.
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The standard imaging modality for lo-
cally advanced rectal cancer (LARC) is 
magnetic resonance imaging (MRI) to 

assess rectal wall invasion (T stage), evalu-
ation of locoregional lymph nodes, macro-
scopic tumor invasion into the mesorectum, 
mesorectal fascia involvement, and extramu-
ral vascular invasion.1,2 Neoadjuvant chemo-
radiotherapy (CRT) plays a crucial role in the 
management of LARC by not only increasing 
sphincter preservation rates but also facili-
tating organ preservation through non-op-
erative strategies, such as the watch-and-
wait approach, in carefully selected patients 
who achieve a complete clinical response. 
Furthermore, CRT has been shown to reduce 
the risk of postoperative recurrence signifi-
cantly.3,4 However, the response of patients 
with LARC to neoadjuvant CRT is variable. 
Neoadjuvant CRT results in tumor stage re-
gression in 50% of patients, and pathologic 
complete response is observed in 15%–20% 
of patients.5 Currently, the response of locally 
advanced rectal tumors to neoadjuvant ther-
apy cannot be estimated by conventional 
methods. The prediction of tumor response 
to neoadjuvant treatment at the time of di-
agnosis can contribute to patient-specific 
tailoring of radiation doses and thus increase 
pathologic complete response and organ 
preservation rates.6 Therefore, estimating 
the tumor’s response to the neoadjuvant 
treatment is important for treatment man-
agement. 

The influence of adipocytes on tumor 
pathogenesis has been intensively investi-
gated in recent years. The molecular interac-

tion between tumor cells and adipocytes has 
been associated with an increase in inflam-
matory markers and angiogenic factors, such 
as vascular endothelial growth factor (VEGF) 
and insulin-like growth factor 1 (IGF-1), that 
may locally and systematically provoke tu-
mor growth and metastasis. The interac-
tion between rectal cancer and mesorectal 
adipose tissue has been demonstrated to 
induce molecular alterations in adipocytes. 
These changes may lead to subtle MRI find-
ings that are not readily detectable with con-
ventional radiologic methods.7,8 Some radio-
mics studies in the literature have evaluated 
peritumoral adipose tissue to predict clinical 
outcomes and prognosis. In breast tumors, 
evaluation of the peritumoral area has been 
proven to improve the differentiation be-
tween benign and malignant breast lesions.9 
Likewise, in non-small cell lung cancers, per-
itumoral lung parenchyma may also predict 
recurrence after surgery.10

In this study, we performed radiomics 
analyses of the tumor and mesorectum to 
predict the response to neoadjuvant CRT; a 
tumor-only model, mesorectum-only model, 
and combined tumor-mesorectum model 
were constructed. 

Methods

Study participants

This study was approved by the Non-In-
terventional Research Ethics Committee of 
Dokuz Eylül University Hospital (approval 
number: 2023/33-18, date: August/2023). 
Due to the study’s retrospective nature, 
the requirement for informed consent was 
waived. Details of patients with LARC who 
underwent neoadjuvant CRT followed by to-
tal mesorectal excision between March 2017 
and May 2022 were retrieved from the hospi-
tal database. Patients who underwent rectal 
MRI before CRT were included in the study. 
The exclusion criteria were patients with MRI 
images with different parameters, patholog-
ic evaluation performed outside the hospital, 
poor image quality, and patients who re-
fused to be operated on. The patient accrual 
is summarized in Figure 1.

Image acquisition

Examinations were performed on a 1.5-
T MRI machine (Philips Achieva Release 
1.8, Eindhoven, The Netherlands) with a 
pelvic phased-array coil. Turbo spin-echo 
T2-weighted images (T2WI) were acquired 
in the sagittal, para-axial (perpendicular to 
the long axis of the tumor), and para-cor-
onal (parallel to the long axis of the tumor) 

planes using a repetition time (TR) of 4,500 
ms, a field of view (FOV) of 180–220 mm, a 
matrix size of 256 × 512, a slice thickness of 3 
mm, an intersection interval of 0.8 mm, and 
an echo train length of 16. Diffusion-weight-
ed images (b: 0 and b: 1.000 s/mm2) were 
acquired in the axial and sagittal planes with 
a single-shot echo-planar sequence using a 
4.200/95 TR/echo time, 350–400 mm FOV, 
90° bank angle, and 5-mm slice thickness. 
Apparent diffusion coefficient (ADC) maps 
were generated automatically by the soft-
ware. Fat suppression techniques and con-
trast agents were not used. Scopolamine 
butyl bromide (20 mg) was injected intrave-
nously 10 minutes before scanning to reduce 
intestinal motility.

Protocol for neoadjuvant chemoradiother-
apy

All patients received 45 gray (Gy) of pelvic 
radiotherapy before surgery. Subsequently, 
a boost of 5.4 Gy in three fractions was ad-
ministered to the primary tumor. After the 
first and fifth weeks of radiotherapy, patients 
received 400 mg/m2/day fluorouracil and 20 
mg/m2/day leucovorin for 3 days. Restag-
ing MRI was performed approximately 6–8 
weeks after completion of neoadjuvant CRT.

Evaluation of the pathologic response to 
treatment

In this study, the modified Ryan scor-
ing system was used as the gold standard  
(Table 1). The modified Ryan scoring has 
proven to be a reliable tool for classifying tu-
mor regression due to its high reproducibili-
ty and inter-observer agreement.11 It is based 
on the ratio of residual cancer cells to the 
fibrosis amount. In the modified Ryan scor-
ing system, 0 points are given for complete 
response, and a score of 3 points indicates 
a poor response or no response to neoadju-
vant treatment. 

In the study, the patients were divided 
into two groups. Patients with a modified 
Ryan score of 0–1 were classified as respond-
ers to neoadjuvant treatment, and patients 
with a modified Ryan score of 2–3 were 
classified as non-responders to neoadjuvant 
treatment.

Image interpretation–texture feature ex-
traction

Data in Digital Imaging and Communi-
cations in Medicine format were transferred 
to a workstation and analyzed by dedicated 
software (LIFEx version 7.4, Inserm, Orsay, 
France).

Main points

• In this study, we developed machine-learn-
ing models to predict tumor response to 
neoadjuvant therapy using radiomics anal-
ysis of both the tumor and mesorectum. The 
area under the receiver operating charac-
teristic values were 0.781 for the tumor-on-
ly model, 0.726 for the mesorectum-only 
model, and 0.837 for the combined tumor 
and mesorectum model.

• Molecular alterations in peritumoral adi-
pocytes may induce subtle magnetic reso-
nance imaging signal changes that are not 
visually apparent, highlighting the value of 
radiomics in quantitatively capturing these 
hidden imaging features.

• Radiomic-based assessment of the me-
sorectum underscores its added prognostic 
value in evaluating neoadjuvant treatment 
response, providing complementary in-
sights beyond tumor-derived radiomic sig-
natures.
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Both tumor tissue and mesorectal adipose 
tissue were examined in this study. Tumor tis-
sue and mesorectum were segmented sep-
arately from T2WI. In addition, tumor tissue 
was segmented using diffusion-weighted 
imaging (DWI).

Gy-level normalization and Gy-level dis-
cretization were performed to minimize the 
impact of differences in acquisition proto-
cols on texture features and to generate a 
homogeneous dataset. For this reason, the 
voxel values of each lesion in three axes (x, 
y, z) were recorded, and the median values 
of these recorded data were obtained. These 
median values were then utilized as opti-
mized parameters in the texture analysis of 
each lesion.12 The intensity range was nor-
malized using Z-scoring [mean ± 3 standard 
deviation (SD)]. Image intensities were dis-
cretized into 128 fixed bins. 

In the study, the MRI images obtained at 
the time of diagnosis (pre-treatment MRI) 
were evaluated. Three radiologists with 5 

years (AC), 4 years (RCY), and 33 years (FB) of 
experience in radiology evaluated the imag-
es of 10 patients together. The first radiolo-
gist (AC) performed a three-dimensional (3D) 
semi-automatic segmentation of the entire 
tumor (Figure 2a, b) and mesorectal adipose 
tissue (Figure 3) from the axial T2WI without 
fat suppression of all patients. Mesorectum 
segmentation was conducted from the point 
of attachment of the anterior peritoneal re-
flection to the rectal wall in the cranial sec-
tion to the intersphincteric area in the caudal 
section. The second radiologist (RCY) per-
formed a 3D semi-automatic segmentation 
of the entire tumor using DWI images (Figure 
2c, d) and ADC mapping (Figure 2e, f ) in the 
axial plane of all patients. The total number 
of radiomics features obtained was 17,978.

Statistical analysis

Statistical analyses were performed using 
IBM SPSS Statistics version 24.0 (IBM Corp., 
Armonk, NY, USA). The normality of numeri-
cal variables, such as age, was assessed using 

the Kolmogorov–Smirnov test. Correlation 
analyses between radiomic features were 
performed using the Spearman rank correla-
tion coefficient, as the features did not follow 
a normal distribution. Continuous variables 
were expressed as mean ± SD, and differenc-
es in mean age between groups were ana-
lyzed using the independent samples t-test. 
Categorical variables, including sex, distance 
of extramural extension, and distance to the 
mesorectal fascia, were compared between 
groups using the Pearson chi-squared test, as 
all expected cell frequencies were ≥5. For the 
comparison of pretreatment, where expect-
ed cell counts were below the acceptable 
threshold, the Fisher–Freeman–Halton test 
was applied. A P value of <0.05 was consid-
ered statistically significant.

Feature selection and machine learning 
models

Radiomic analysis was conducted using 
LIFEx software to extract features from tu-
mor and mesorectal segmentations. Prior 
to feature selection, all radiomic features 
were normalized using Z-score normaliza-
tion. To ensure reproducibility, interobserv-
er agreement was assessed on 20 randomly 
selected patients using (ICC)(3,1) (two-way 
mixed-effects model, absolute agreement, 
single measures). Features with ICC values 
of <0.60 were excluded from further analy-
sis. Feature selection was performed using 
the least absolute shrinkage and selection 
operator (LASSO) regression method to re-
duce dimensionality and retain the most 
predictive features while minimizing the risk 
of overfitting. The top five features with the 
highest coefficients were selected for model 
training. To address class imbalance between 
groups, the synthetic minority over-sam-
pling technique (SMOTE) was applied exclu-
sively to the training folds during cross-vali-
dation to avoid data leakage (Figure 4). The 
extracted radiomic data were transferred to 
Python (version 3.9). Machine learning clas-
sifiers–including logistic regression, random 
forest, extreme gradient boosting (XGBoost), 
support vector machine (SVM) with radial 
basis function (RBF) kernel, and k-nearest 
neighbors (KNN)–were implemented using 
the scikit-learn and XGBoost libraries. Mod-
el performance was evaluated using 10-fold 
cross-validation. In each iteration, the data-
set was split into 9 folds for training and 1 
fold for testing, repeated 10 times to cal-
culate average performance.13,14 Evaluation 
metrics included accuracy, precision, recall, 
F1-score, and area under the receiver operat-
ing characteristic (ROC) curve (AUC).

Figure 1. Flowchart of the study. LARC, locally advanced rectal cancer; CRT, chemoradiotherapy; MR, 
magnetic resonance.

Table 1. Modified Ryan scheme for tumor regression score

Description Tumor regression score

No viable cancer cells (complete response) 0

Single cells or rare small groups of cancer cells (near complete response) 1

Residual cancer with evident tumor regression, but more than single cells 
or rare small groups of cancer cells (partial response) 2

Extensive residual cancer with no evident tumor regression 
(poor or no response) 3
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The methodological quality of this study 
was evaluated using the METhodological 
RadiomICs Score (METRICS), a standardized 
tool comprising 30 parameters that assess 
key aspects of radiomics research, including 
imaging acquisition, feature extraction, and 
model validation. The METRICS tool cate-
gorizes studies into quality ratings of very 
low (0%–20%), low (20%–40%), moderate 
(40%–60%), good (60%–80%), and excellent 
(80%–100%).15

Results
In this study, a total of 101 patients [mean 

age 61.6 ± 13.59 years, 34 women (33.7%) 
and 67 men (66.3%)] with LARC were evalu-
ated using high-resolution rectal MRI.

In the initial MRI, of 101 patients, 15.8% (n 
= 16) were staged as T2, 41.6% (n = 42) were 
staged as T3b, 20.8% (n = 21) were staged as 
T3c, 11.9% (n = 12) were staged as T3d, 6% (n 
= 6) were staged as T4a, and 4% (n = 4) were 

staged as T4b. In the MRI images obtained for 
re-staging after neoadjuvant CRT, 8% (n = 8) 
were in the T0 stage, 15% (n = 15) were in the 
T1 stage, 52.5% (n = 53) were in the T2 stage, 
12% (n = 12) were in the T3b stage, 6% (n = 6) 
were in the T3c stage, 2% (n = 2) were in the 
T3d stage, 2% (n = 2) were in the T4a stage, 
and 3% (n = 3) were in the T4b stage. 

The response to neoadjuvant treatment, 
according to the findings in the postopera-
tive pathological material, was divided into 
groups by modified Ryan scoring. There were 
21 patients (20%) with a Ryan score of 0, 15 
patients (15%) with a modified Ryan score of 
1, 50 patients (50%) with a score of 2, and 15 
patients (15%) with a score of 3. Patients with 
modified Ryan scores of 0–1 were classified 
as responding, and patients with modified 
Ryan scores of 2–3 were classified as non-re-
sponding (Figure 5).

A total of 101 patients were included 
in the study, of whom 36 were classified as 
good responders (36%) and 65 as poor re-
sponders (64%). The mean age of good re-
sponders was 62 ± 12.5 years, and the mean 
age of poor responders was 65 ± 9.5 years. 
No statistically significant difference was ob-
served between the mean age of patients 
who responded well and poorly to neoadju-
vant treatment (P = 0.115). No significant cor-
relation was identified between the T stage 
(P = 0.196), extramural extension (0.167), the 
proximity of the tumor to the mesorectal 
fascia (P = 0.316), and the neoadjuvant treat-
ment response (Table 2).

A radiomic analysis was conducted on 
the tumor and mesorectum to predict the 
response of the neoadjuvant CRT. 

Prediction of treatment response

In the analyses performed to predict neo-
adjuvant CRT response, 25 radiomics fea-
tures from the tumor (Table 3) and 20 radio-
mics features from the mesorectum (Table 3) 
were found to be significant (P < 0.05).

Radiomic features were extracted from 
the tumor region on T2WI and DWI MRI im-
ages to construct the tumor-only model. 
The five most predictive parameters were 
selected using LASSO. Multiple machine 
learning models were constructed. The ran-
dom forest classifier achieved an accuracy of 
69.2%, a precision of 70.2%, a recall of 66.7%, 
an F1-score of 68.4%, and an AUC of 0.781. 
The XGBoost model yielded an AUC of 0.737. 
The logistic regression, SVM (RBF kernel), and 

Figure 2. Tumor segmentation T2 weighted imaging (a-b), tumor directed acyclic graph segmentation (c-d), 
Tumor apparent diffusion coefficient map segmentation (e-f).

e

c d

ba

f
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KNN models resulted in AUCs of 0.714, 0.676, 
and 0.700, respectively. A detailed summary 
of the performance metrics for all classifiers 
in the models is presented in Table 4. The 
ROC curves for all five classifiers construct-
ed in the tumor-only model are illustrated 
in Figure 6a. The odds ratios (ORs) and 95% 
confidence intervals (CIs) from the logistic re-
gression models are summarized in Table 5.

Radiomic features were extracted from 
the mesorectum on T2WI images to construct 
the mesorectum-only model. The five most 
predictive parameters were selected using 
LASSO. Multiple machine learning models 
were constructed. The logistic regression 
model achieved an accuracy of 66.7%, a pre-
cision of 66.1%, a recall of 68.3%, an F1-score 
of 67.2%, and an AUC of 0.726. The XGBoost 
and random forest models yielded AUCs of 
0.708 and 0.700, respectively. The SVM (RBF 
kernel) and KNN models resulted in AUCs 
of 0.711 and 0.661, respectively. A detailed 
summary of the performance metrics for all 
classifiers in the models is presented in Table 
4. The ROC curves for all five classifiers con-
structed in the mesorectum-only model are 
illustrated in Figure 6b. The ORs and 95% CIs 
from the logistic regression models are sum-
marized in Table 5.

Radiomic features extracted from both 
the tumor and mesorectum regions were 
combined to construct the combined model. 
The five most predictive parameters were se-
lected using LASSO. Multiple machine learn-
ing models were constructed. The logistic 
regression model achieved an accuracy of 
81%, a precision of 82.1%, a recall of 81.4%, 
an F1-score of 81.9%, and an AUC of 0.837. 
The random forest model yielded an AUC of 
0.816. The AUCs for the XGBoost, SVM (RBF 
kernel), and KNN models were 0.789, 0.811, 
and 0.754, respectively. A detailed summary 
of the performance metrics for all classifiers 
in the models is presented in Table 4. The 
ROC curves for all five classifiers construct-
ed in the combined model are illustrated in  
Figure 6c. The ORs and 95% CIs from the lo-
gistic regression models are summarized in 
Table 5.

Based on the METRICS assessment, the 
study achieved a score of 80.3%, classifying 
it as “excellent quality” (80 ≤ score ≤ 100%) 
(Appendix 1).

Figure 3. Mesorectum segmentation T2 weighted imaging (a, b).

a b

Figure 4. Pipeline for radiomic feature extraction and predictive model development in magnetic resonance 
imaging. MRI, magnetic resonance imaging.

Figure 5. Distribution of patient responses to treatment based on modified Ryan score.
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Discussion 
In this study, we constructed a series of 

machine-learning models to predict tumor 
response to neoadjuvant therapy by ana-
lyzing radiomic features extracted from the 
tumor, mesorectum, and their combination. 
The AUC values for the three segmentation 
approaches were as follows: 0.781 for the 
tumor-only model (random forest), 0.726 
for the mesorectum-only model (logistic re-
gression), and 0.837 for the combined model 
(logistic regression). This finding highlights 
the complementary value of the mesorectal 
compartment in radiomics modeling and its 
contribution to improving the performance 
of prediction models in LARC.

Personalized treatment protocols have 
become a prominent feature of clinical prac-
tice to minimize side effects, increase the 
frequency of organ-sparing surgery, and im-
prove the clinical complete response rate in 
LARCs.6,16,17 The prediction of CRT response 
has emerged as a valuable marker for guid-
ing the development of personalized thera-
pies. The potential of radiomics for predict-
ing the response to LARC treatment has been 
the subject of numerous studies. In the ma-
jority of studies, radiomics models of tumor 

tissue were constructed from MRI obtained 
before and/or after CRT.18-20

Mesorectal adipocytes not only act as an 
anatomical barrier surrounding the tumor 
but also actively contribute to the tumor 
microenvironment. The dynamic crosstalk 
between tumor cells and adipocytes induc-
es profound morphological and functional 
changes in adipocytes, altering the secretion 
of adipokines (e.g., leptin, adiponectin) and 
angiogenic factors (e.g., VEGF, IGF-1). These 
changes promote key biological processes, 
such as tumor progression, angiogenesis, 
and therapeutic and radiotherapy resis-
tance.21-25 Furthermore, molecular profile al-
terations within peritumoral adipocytes can 
lead to subtle MRI signal changes that may 
not be detectable through conventional vi-
sual assessment. This underscores the impor-
tance of radiomic analyses, which facilitate 
the extraction of hidden imaging data and 
provide a quantitative evaluation of subtle 
changes that would otherwise remain unde-
tected.26,27

In our study, we aimed to detect chang-
es at the cellular level by performing radio-
mics measurements from morphologically 
non-pathologic mesorectum, which did not 

include tumor deposits, extramural tumor 
extension, or lymph nodes. The mesorec-
tum contains adipocytes whose molecular 
profiles are altered in response to tumor 
processes, as well as venous and lymphat-
ic structures that facilitate the drainage of 
waste products from both the tumor and 
surrounding tissues. Recent literature sug-
gests that this microenvironment harbors 
prognostic information comparable with the 
tumor itself.7,8

Relatively few MRI-based studies have 
incorporated mesorectal features into ra-
diomics modeling. Shaish et al.8 reported 
an AUC of 0.800 using both tumor and me-
sorectal features from pretreatment MRI in 
132 patients. Jayaprakasam et al.7 evaluat-
ed mesorectal features alone in a larger co-
hort of 236 patients and achieved an AUC of 
0.890 for predicting pathological complete 
response. Kaval et al.28 assessed tumor-only 
and combined models in 93 patients, report-
ing AUCs of 0.850 and 0.830, respectively. 
Although tumor segmentation yielded the 
highest AUC in that study, the addition of 
mesorectal features led to improved sensitiv-
ity (90%) and overall accuracy (79%), further 
supporting the complementary role of the 
mesorectum in response assessment. 

Although variations in study design, 
sample size, and endpoints may account 
for differences in performance, our results 
remain consistent with the existing litera-
ture, highlighting the importance of includ-
ing mesorectal features for more accurate  
prediction of treatment response.

Compared with our models, which relied 
solely on MRI-based tumor and mesorectal 
features, the computed tomography-based 
radiomics approach developed by Wang et 
al.29 demonstrated lower predictive perfor-
mance, with an AUC of 0.68 for identifying 
high-risk neoadjuvant rectal (NAR) scores. 
Notably, their analysis found mesorectal fea-
tures to be more predictive than intratumor-
al features. In contrast, our results indicated 
that tumor-derived features contributed 
more strongly to treatment response predic-
tion, suggesting that differences in imaging 
modality, feature representation, and end-
point definition (Ryan score vs. NAR) may 
explain the discrepancy. These findings sup-
port the utility of MRI-based radiomics as a 
more accurate and robust non-invasive tool 
for individualized response prediction.

Table 2. Comparison of radiological and clinical parameters between responders and  
non-responders in rectal cancer treatment

Responding 
(modified Ryan score 0–1) 
n (%)

Non-responding 
(modified Ryan score 2–3) 
n (%)

P value

Sex 0.137

Male  20 (29.9%)  47 (70.1%)

Female  16 (47.1%)  18 (52.9%)

Pre-CRT T stage (MRI) 0.201

 T2 8 (50%) 8 (50%)

 T3b 16 (38.1%) 26 (61.9%)

 T3c 9 (42.9%) 12 (57.1%)

 T3d 1 (8.33%) 11 (91.7%)

 T4a 1 (16.7%) 5 (83.3%)

 T4b 1 (25%) 3 (75%)

Distance of extramural 
extension 0.167

 ≤5 mm 22 (43.1%) 29 (56.9%)

 >5 mm 14 (28%) 36 (72%)

Distance to the mesorectal 
fascia 0.316

 0 mm  9 (25.7%) 26 (74.3%)

 1–2 mm  9 (40.9%) 13 (59.1%)

 ≥3 mm  18 (40.9%) 26 (59.1%)

CRT, chemoradiotherapy; MRI, magnetic resonance imaging.
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Table 3. Diagnostic performance of tumor and mesorectum radiomics features for treatment response prediction 
T2WI-tumor radiomics features (treatment response) Sensitivity Specificity PPV NPV AUC P value

GLCM_Autocorrelation 0.43 0.43 0.43 0.43 0.64 0.01

INTENSITY-HISTOGRAM_IntensityHistogramMedian 0.58 0.4 0.49 0.49 0.62 0.02

INTENSITY-HISTOGRAM_IntensityHistogram50thPercentile 0.58 0.4 0.49 0.49 0.62 0.02

INTENSITY-HISTOGRAM_IntensityHistogramSkewness 0.53 0.53 0.53 0.53 0.6 0.02

GLSZM_ZoneSizeNonUniformity 0.58 0.58 0.58 0.58 0.6 0.02

GLCM_SumAverage 0.4 0.4 0.4 0.4 0.67 0.02

GLCM_JointAverage 0.4 0.4 0.4 0.4 0.67 0.02

GLCM_ClusterShade 0.55 0.55 0.55 0.55 0.6 0.03

INTENSITY-HISTOGRAM_IntensityHistogram75thPercentile 0.48 0.48 0.48 0.48 0.59 0.04

DWI-tumor radiomics features (treatment response)

INTENSITY-HISTOGRAM_MinimumHistogramGradient(IBSI:VQB3)[Intensity] 0.42 0.38 0.4 0.4 0.64 <0.01

GLRLM_LongRunsEmphasis(IBSI:W4KF) 0.6 0.6 0.6 0.6 0.63 <0.01

GLRLM_RunPercentage(IBSI:9ZK5) 0.42 0.42 0.42 0.42 0.62 <0.01

GLSZM_ZonePercentage(IBSI:P30P) 0.43 0.43 0.43 0.43 0.62 <0.01

GLRLM_ShortRunsEmphasis(IBSI:22OV) 0.42 0.42 0.42 0.42 0.62 <0.01

GLSZM_LargeZoneEmphasis(IBSI:48P8) 0.57 0.57 0.57 0.57 0.62 0.01

NGTDM_Busyness(IBSI:NQ30) 0.55 0.55 0.55 0.55 0.6 0.01

GLRLM_GreyLevelNonUniformity(IBSI:R5YN) 0.58 0.58 0.58 0.58 0.58 0.02

GLSZM_ZoneSizeVariance(IBSI:3NSA) 0.58 0.58 0.58 0.58 0.62 0.02

GLSZM_GreyLevelNonUniformity(IBSI:JNSA) 0.57 0.57 0.57 0.57 0.58 0.02

GLSZM_SmallZoneEmphasis(IBSI:5QRC) 0.43 0.43 0.43 0.43 0.61 0.02

GLSZM_NormalisedZoneSizeNonUniformity(IBSI:VB3A) 0.43 0.43 0.43 0.43 0.61 0.03

GLCM_InverseDifferenceMoment(IBSI:WF0Z) 0.53 0.53 0.53 0.53 0.59 0.03

MORPHOLOGICAL_voxelsCounting(IBSI:No)[#vx] 0.55 0.55 0.55 0.55 0.56 0.04

GLRLM_RunLengthNonUniformity(IBSI:W92Y) 0.55 0.55 0.55 0.55 0.56 0.04

INTENSITY-HISTOGRAM_MaximumHistogramGradient(IBSI:12CE)[Intensity] 0.58 0.53 0.56 0.56 0.57 0.05

T2WI-mesorectum radiomics features (treatment response)

T2M-MORPHOLOGICAL_SurfaceArea(IBSI:C0JK)[mm2] 0.63 0.63 0.63 0.63 0.69 <0.01

T2M-GLSZM_ZoneSizeNonUniformity(IBSI:4JP3) 0.65 0.65 0.65 0.65 0.72 <0.01

MORPHOLOGICAL_Maximum3DDiameter(IBSI:L0JK)[mm] 0.65 0.65 0.65 0.65 0.68 <0.01

INTENSITY-HISTOGRAM_RootMeanSquare(IBSI:No)[Intensity] 0.33 0.33 0.33 0.33 0.72 <0.01

MORPHOLOGICAL_Sphericity(IBSI:QCFX)[] 0.4 0.4 0.4 0.4 0.66 <0.01

MORPHOLOGICAL_SphereDiameter(IBSI:No)[mm] 0.62 0.62 0.62 0.62 0.66 <0.01

MORPHOLOGICAL_Compactness1(IBSI:SKGS)[] 0.4 0.4 0.4 0.4 0.66 <0.01

MORPHOLOGICAL_Asphericity(IBSI:25C7)[] 0.58 0.58 0.58 0.58 0.65 <0.01

MORPHOLOGICAL_SphericalDisproportion(IBSI:KRCK)[] 0.58 0.58 0.58 0.58 0.65 <0.01

MORPHOLOGICAL_Compactness2(IBSI:BQWJ)[] 0.4 0.4 0.4 0.4 0.66 <0.01

MORPHOLOGICAL_Compacity(IBSI:No)[] 0.58 0.58 0.58 0.58 0.65 <0.01

NGTDM_Strength(IBSI:1X9X) 0.38 0.38 0.38 0.38 0.64 <0.01

NGTDM_Coarseness(IBSI:QCDE) 0.38 0.38 0.38 0.38 0.63 <0.01

INTENSITY-HISTOGRAM_MinimumHistogramGradientGreyLevel(IBSI:RHQZ)
[Intensity] 0.42 0.38 0.5 0.39 0.62 <0.01

GLSZM_GreyLevelNonUniformity(IBSI:JNSA) 0.62 0.62 0.62 0.62 0.67 <0.01

INTENSITY-HISTOGRAM_IntensityHistogramMinimumGreyLevel(IBSI:1PR8)
[Intensity] 0.49 0.44 0.5 0.42 0.57 0.01

INTENSITY-BASED_IntensityBasedCoefficientOfVariation(IBSI:7TET)[] 0.47 0.47 0.47 0.47 0.58 0.03

NGTDM_Complexity(IBSI:HDEZ) 0.62 0.62 0.62 0.62 0.64 0.04

GLRLM_RunLengthNonUniformity(IBSI:W92Y) 0.62 0.62 0.62 0.62 0.67 0.04

MORPHOLOGICAL_SurfaceToVolumeRatio(IBSI:2PR5)[mm] 0.42 0.42 0.42 0.42 0.59 0.05

T2WI, T2-weighted imaging; DWI, diffusion weighted imaging; GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run-length matrix; NGTDM, neighborhood gray-tone 
difference matrix; GLSZM, gray-level size zone matrix; AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value.
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Table 5. Odds ratios and 95% confidence intervals of the logistic regression models constructed for the tumor-only, mesorectum-only, and 
combined model

Tumor-only model

Radiomic features P value Odds ratio 95% CI lower 95% CI upper

T2T-GLCM_Autocorrelation (IBSI:QWB0) 0.010 7.989 1.645 38.800

D-GLCM_ClusterProminence (IBSI:AE86) 0.222 1.351 0.833 2.190

D-INTENSITY-HISTOGRAM_MinimumHistogramGradient (IBSI:VQB3) [Intensity] <0.001 2.968 1.571 5.610

T2T-INTENSITY-HISTOGRAM_IntensityHistogramMode (IBSI:AMMC) [Intensity] 0.587 0.855 0.485 1.510

D-INTENSITY-HISTOGRAM_IntensityHistogramCoefficientOfVariation (IBSI:CWYJ) 
[Intensity] 0.035 8.861 1.160 67.670

Mesorectum-only model

Radiomic features

T2M-GLSZM_ZoneSizeNonUniformity (IBSI:4JP3) 0.037 0.602 0.373 0.971

T2M-MORPHOLOGICAL_SphericalDisproportion (IBSI:KRCK) 0.515 0.491 0.058 4.187

T2M-MORPHOLOGICAL_SurfaceArea (IBSI:C0JK) [mm2] 0.345 0.750 0.414 1.361

T2M-INTENSITY-HISTOGRAM_MinimumHistogramGradientGreyLevel (IBSI:RHQZ) 
[Intensity] 0.052 1.592 0.997 2.544

T2M-MORPHOLOGICAL_Sphericity (IBSI:QCFX) 0.847 0.811 0.096 6.834

Combined model

Radiomic features

T2T-GLCM_Autocorrelation (IBSI:QWB0) 0.014 9.819 1.577 61.139

T2M-INTENSITY-HISTOGRAM_MinimumHistogramGradientGreyLevel (IBSI:RHQZ) 
[Intensity] 0.017 2.069 1.142 3.747

T2M-GLSZM_ZoneSizeNonUniformity (IBSI:4JP3) 0.002 0.438 0.258 0.746

T2M-NGTDM_Complexity (IBSI:HDEZ) 0.009 0.461 0.257 0.827

D-GLCM_InverseDifferenceMoment (IBSI:WF0Z) <0.001 0.313 0.163 0.602

CI, confidence Interval; GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run-length matrix; NGTDM, Neighborhood Gray-Tone difference matrix; GLSZM, gray-level size 
zone matrix.

Table 4. Summary of classification performance metrics across tumor-only, mesorectum-only, and combined radiomic models

Tumor-only model Accuracy Precision Recall F1-score AUC

Logistic regression 0.617 0.621 0.600 0.610 0.714

Random forest 0.692 0.702 0.667 0.684 0.781

XGBoost 0.658 0.661 0.650 0.655 0.737

SVM (RBF kernel) 0.667 0.685 0.617 0.649 0.676

K-nearest neighbors 0.658 0.702 0.550 0.617 0.700

Mesorectum-only model

Logistic regression 0.667 0.661 0.683 0.672 0.726

Random forest 0.575 0.579 0.550 0.564 0.700

XGBoost 0.658 0.661 0.650 0.655 0.708

SVM (RBF kernel) 0.658 0.686 0.583 0.631 0.711

K-nearest neighbors 0.575 0.574 0.583 0.579 0.661

Combined model

Logistic regression 0.810 0.821 0.814 0.819 0.837

Random forest 0.750 0.768 0.717 0.741 0.816

XGBoost 0.683 0.704 0.633 0.667 0.789

SVM (RBF kernel) 0.767 0.767 0.767 0.767 0.811

K-nearest neighbors 0.717 0.724 0.700 0.712 0.754

AUC, Area under the curve; XGBoost, extreme gradient boosting; SVM (RBF kernel), support vector machine with radial basis function kernel.
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Multiple models were developed to pre-
dict treatment response using radiomic fea-
tures extracted from the tumor, mesorectal, 
and combined regions. Although classifica-
tion performance varied across models, lo-
gistic regression, by providing ORs, enabled 
clinically meaningful interpretation across 
the three datasets.30,31 The tumor-only logis-
tic regression model was primarily driven by 
texture-and intensity-based features, reflect-
ing intratumoral heterogeneity. In contrast, 
the mesorectum-only model included sever-
al morphological descriptors, though only a 
zone-based texture feature showed statisti-
cal significance. These findings indicate that 
mesorectal adipose tissue may reflect struc-
tural or spatial texture changes relevant to 
treatment response, even in the absence of 
pronounced intensity heterogeneity.

The combined logistic regression model 
demonstrated a more balanced and robust 
predictive performance than the individual 
models. All five features selected via LAS-
SO contributed significantly to the model’s 
performance. Notably, features indicative 
of tissue homogeneity, such as Gy-level au-
tocorrelation and smooth intensity gradient 
transitions, were associated with favorable 
response, whereas heterogeneity-related 
features, including zone size non-uniformity 
and local textural complexity, were linked to 
poor response. These results support the hy-
pothesis that radiomic heterogeneity reflects 
underlying biological disorganization or re-
sistance, whereas homogeneity may indicate 
a more organized and treatment-sensitive 
tumor architecture. This interpretation aligns 
with existing literature. Tumor heterogeneity 
has been widely associated with treatment 
resistance and poor prognosis.32,33

According to our most predictive model 
(tumor + mesorectum), second-order ra-
diomic features–particularly those derived 
from the Gy-level co-occurrence matrix 
(GLCM), Gy-level size zone matrix (GLSZM), 
and neighboring Gy tone difference ma-
trix (NGTDM)–demonstrated the highest 
predictive value. These matrices assess tis-
sue heterogeneity at different levels: GLCM 
captures local structural variability; GLSZM 
quantifies the size and uniformity of homo-
geneous zones; and NGTDM evaluates visual 
texture by comparing a central voxel to its 
neighbors. Supporting our findings, Shaish 
et al.8 reported similar prognostic relevance 
of these features in evaluating response to 
neoadjuvant therapy. Additionally, Mazzei et 
al.33 showed that changes in GLCM features 
before and after treatment in patients with 
gastric cancer correlated with response, em-

Figure 6. Receiver operating characteristic curves of the five classifiers (10-fold cross-validation) (a) tumor-
only model, (b) mesorectum-only model, (c) combined model.

a

b

c
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phasizing the potential of these features as 
imaging biomarkers.

In radiomics-based machine learning, 
model performance is strongly shaped by 
factors such as limited sample size, high fea-
ture dimensionality, multicollinearity, and 
class imbalance.34 Our study reflects these 
challenges, as we analyzed 101 patients with 
rectal cancer using 17,978 radiomic features 
extracted from pretreatment MRI images. 
To mitigate the risk of overfitting and im-
prove model generalizability, we applied 
LASSO-based feature selection and SMOTE-
based class balancing. Among the tested 
algorithms, logistic regression with LASSO 
stood out by consistently providing robust 
and interpretable predictions, especially in 
the combined and mesorectum-only mod-
els, with strong AUC and F1 scores.35 Ensem-
ble methods, such as random forest and XG-
Boost, also performed well, reflecting their 
ability to model complex, non-linear rela-
tionships in high-dimensional data.36,37 Nota-
bly, in the tumor-only model, random forest 
yielded the highest predictive performance, 
possibly due to its inherent ensemble struc-
ture, which reduces variance and captures 
localized, non-linear dependencies within 
tumor-derived radiomic features.

Conversely, distance-based algorithms, 
such as KNN and SVM, showed moderate 
but generally lower performance than oth-
er models. Their results may reflect meth-
odological limitations, such as sensitivity to 
feature scaling, reduced robustness to noise, 
and a higher risk of overfitting in high-di-
mensional, low-sample-size contexts–issues 
that often require careful tuning and pre-
processing to overcome.38,39 Nevertheless, 
SVM yielded relatively strong performance in 
the combined model, suggesting that, when 
provided with sufficiently rich and diverse in-
put features, distance-based algorithms may 
perform competitively despite their known 
limitations.

This study has several limitations, includ-
ing its retrospective nature, single-center 
origin, and limited sample size. Although ex-
ternal validation was not feasible due to the 
small cohort, we employed 10-fold cross-val-
idation to support model robustness. A hold-
out set was not conducted due to the limited 
number of cases, and dividing the data into 
training and test sets would have resulted in 
information loss. Furthermore, one mucinous 
tumor was not excluded from our patient 
cohort. Images with different pixel and FOV 
sizes were registered in the picture archiving 

and communication system in our study. This 
limitation was overcome by utilizing tech-
niques such as pixel size readjustment, nor-
malization, and Gy-level discretization.

In conclusion, our study showed that 
combining radiomic features from both the 
tumor and mesorectum improves the pre-
diction of response to neoadjuvant CRT in 
LARC. The combined model outperformed 
tumor-only and mesorectum-only models, 
achieving the highest AUC (0.837) and su-
perior overall classification metrics. Incor-
porating mesorectal features resulted in a 
more balanced and more accurate model, 
highlighting the complementary role of the 
mesorectum in individualized response pre-
diction. To enable the routine clinical appli-
cation of these findings, further validation 
through large-scale, multicenter prospective 
studies is warranted. 

Footnotes

Conflict of interest disclosure

The authors declared no conflicts of inter-
est.

References
1. Horvat N, Carlos Tavares Rocha C, Clemente 

Oliveira B, Petkovska I, Gollub MJ. MRI 
of rectal cancer: tumor staging, imaging 
techniques, and management. Radiographics. 
2019;39:367-387. [Crossref]

2. Çelik H, Barlık F, Sökmen S, et al. Diagnostic 
performance of magnetic resonance imaging 
in preoperative local staging of rectal cancer 
after neoadjuvant chemoradiotherapy. Diagn 
Interv Radiol. 2023;29:219-227. [Crossref]

3. Chari RS, Tyler DS, Anscher MS, et al. 
Preoperative radiation and chemotherapy 
in the treatment of adenocarcinoma of the 
rectum. Ann Surg. 1995;221(6):786-787. 
[Crossref]

4. Roh MS, Colangelo LH, O’Connell MJ, et al. 
Preoperative multimodality therapy improves 
disease-free survival in patients with 
carcinoma of the rectum: NSABP R-03. J Clin 
Oncol. 2009;27(31):5124-5130. [Crossref]

5. Bonnen M, Crane C, Vauthey JN, et al. Long-
term results using local excision after 
preoperative chemoradiation among selected 
T3 rectal cancer patients. Int J Radiat Oncol Biol 
Phys. 2004;60(4):1098-1105. [Crossref]

6. Burbach JP, den Harder AM, Intven M, van 
Vulpen M, Verkooijen HM, Reerink O. Impact of 
radiotherapy boost on pathological complete 
response in patients with locally advanced 
rectal cancer: a systematic review and meta-
analysis. Radiother Oncol. 2014;113(1):1-9. 
[Crossref]

7. Jayaprakasam VS, Paroder V, Gibbs P, et 
al. MRI radiomics features of mesorectal 
fat can predict response to neoadjuvant 
chemoradiation therapy and tumor 
recurrence in patients with locally advanced 
rectal cancer. Eur Radiol. 2022;32(2):971-980. 
[Crossref]

8. Shaish H, Aukerman A, Vanguri R, et al. 
Radiomics of MRI for pretreatment prediction 
of pathologic complete response, tumor 
regression grade, and neoadjuvant rectal score 
in patients with locally advanced rectal cancer 
undergoing neoadjuvant chemoradiation: an 
international multicenter study. Eur Radiol. 
2020;30(11):6263-6273. [Crossref]

9. Braman NM, Etesami M, Prasanna P, et al. 
Intratumoral and peritumoral radiomics for 
the pretreatment prediction of pathological 
complete response to neoadjuvant 
chemotherapy based on breast DCE-MRI. 
Breast Cancer Res. 2017;19(1):57. [Crossref]

10. Akinci D’Antonoli T, Farchione A, Lenkowicz 
J, et al. CT radiomics signature of tumor and 
peritumoral lung parenchyma to predict 
nonsmall cell lung cancer postsurgical 
recurrence risk. Acad Radiol. 2020;27:497-507. 
[Crossref]

11. Tiang T, Sidhu A, Williams D, Bui A. Impact 
of neoadjuvant chemotherapy interval on 
tumour regression grading for rectal cancer. 
Int J Surg Res Pract. [Crossref]

12. Collewet G, Strzelecki M, Mariette F. 
Influence of MRI acquisition protocols and 
image intensity normalization methods on 
texture classification. Magn Reson Imaging. 
2004;22(1):81-91. [Crossref]

13. Arlot S, Celisse A. A survey of cross-validation 
procedures for model selection. Stat Surv. 
2010;4:40-79. [Crossref]

14. James G, Witten D, Hastie T, Tibshirani R. 
An introduction to statistical learning: with 
applications in R. London, Springer; 2013:176-
177. [Crossref]

15. Kocak B, Akinci D’Antonoli T, Mercaldo N, et al. 
METhodological RadiomICs Score (METRICS): 
a quality scoring tool for radiomics research 
endorsed by EuSoMII. Insights Imaging. 
2024;15(1):8. [Crossref]

16. Domingo-Boluda C, Dualde D, Taberner-
Bonastre T, et al. Impact of dose-escalated 
chemoradiation on pathological complete 
response in patients with locally advanced 
rectal cancer. Cancers. 2024;16(18):3170. 
[Crossref]

17. Hoendervangers S, Burbach JPM, Lacle MM, et 
al. Pathological complete response following 
different neoadjuvant treatment strategies for 
locally advanced rectal cancer: a systematic 
review and meta-analysis. Ann Surg Oncol. 
2020;27:4319-4336. [Crossref]

18. Delli Pizzi A, Chiarelli AM, Chiacchiaretta P, 
et al. MRI-based clinical-radiomics model 
predicts tumor response before treatment 



 

Radiomics for nCRT response and T-Stage in LARC • 

in locally advanced rectal cancer. Sci Rep. 
2021;11:5379. [Crossref]

19. Horvat N, Veeraraghavan H, Khan M, et al. MR 
Imaging of rectal cancer: radiomics analysis to 
assess treatment response after neoadjuvant 
therapy. Radiology. 2018;287(3):833-843. 
[Crossref]

20. Miranda J, Tan GXV, Fernandes MC, et al. Rectal 
MRI radiomics for predicting pathological 
complete response: where we are. Clin 
Imaging. 2022;82:141-149. [Crossref]

21. Amor S, Iglesias-de la Cruz MC, Ferrero E, et 
al. Peritumoral adipose tissue as a source 
of inflammatory and angiogenic factors 
in colorectal cancer. Int J Colorectal Dis. 
2016;31(2):365-375. [Crossref]

22. Neto NIP, Murari ASP, Oyama LM, et al. 
Peritumoural adipose tissue pro-inflammatory 
cytokines are associated with tumoural 
growth factors in cancer cachexia patients. J 
Cachexia Sarcopenia Muscle. 2018;9(6):1101-
1108. [Crossref]

23. Cao Y. Adipocyte and lipid metabolism 
in cancer drug resistance. J Clin Invest. 
2019;129(8):3006-3017. [Crossref]

24. Duong MN, Geneste A, Fallone F, Li X, 
Dumontet C, Muller C. The fat and the bad: 
mature adipocytes, key actors in tumor 
progression and resistance. Oncotarget. 
2017;8(34):57622-57641. [Crossref]

25. Zoico E, Rizzatti V, Darra E, et al. Morphological 
and functional changes in the peritumoral 

adipose tissue of colorectal cancer patients. 
Obesity (Silver Spring). 2017;25(Suppl 2):87-94. 
[Crossref]

26. Gillies RJ, Kinahan PE, Hricak H. Radiomics: 
images are more than pictures, they are data. 
Radiology. 2016;278(2):563-577. [Crossref]

27. Aerts HJ, Velazquez ER, Leijenaar RT, et al. 
Decoding tumour phenotype by noninvasive 
imaging using a quantitative radiomics 
approach. Nat Commun. 2014;5:4006. 
[Crossref]

28. Kaval G, Dagoglu Kartal MG, Azamat S, et al. 
Evaluating complete response prediction 
rates in locally advanced rectal cancer with 
different radiomics segmentation approaches. 
Pathol Oncol Res. 2024. [Crossref]

29. Wang F, Tan BF, Poh SS, et al. Predicting 
outcomes for locally advanced rectal cancer 
treated with neoadjuvant chemoradiation 
with CT-based radiomics. Sci Rep. 
2022;12:6167. (2022). [Crossref]

30. Hua Y, Stead TS, George A, Ganti L. Clinical 
risk prediction with logistic regression: 
best practices, validation techniques, and 
applications in medical research. Acad Med 
Surg. 2025;3(1). [Crossref]

31. Petresc B, Lebovici A, Caraiani C, Feier DS, 
Graur F, Buruian MM. Pre-treatment T2-WI 
based radiomics features for prediction of 
locally advanced rectal cancer non-response 
to neoadjuvant chemoradiotherapy: a 
preliminary study. Cancers. 2020;12(7):1894. 
[Crossref]

32. Fu YC, Liang SB, Luo M, et al. Intratumoral 
heterogeneity and drug resistance in cancer. 
Cancer Cell Int. 2025;25:103. doi:10.1186/
s12935-025-03734-w 30. [Crossref]

33. Mazzei MA, Di Giacomo L, Bagnacci G, et al. 
Delta-radiomics and response to neoadjuvant 
treatment in locally advanced gastric cancer-a 
multicenter study of GIRCG (Italian Research 
Group for Gastric Cancer). Quant Imaging Med 
Surg. 2021;11(6):2055-2066. [Crossref]

34. Koçak B. Key concepts, common pitfalls, 
and best practices in artificial intelligence 
and machine learning: focus on radiomics. 
Diagn Interv Radiol. 2022 Sep;28(5):450-462. 
[Crossref]

35. Zhu Y, Wei Y, Chen Z, et al. Different radiomics 
annotation methods comparison in rectal 
cancer characterisation and prognosis 
prediction: a two-centre study. Insights 
Imaging. 2024 Aug 26;15(1):211. [Crossref]

36. Zhou ZH. Ensemble Methods: Foundations 
and Algorithms. CRC Press; 2012. [Crossref]

37. Bibault JE, Giraud P, Burgun A. Big data and 
machine learning in radiation oncology: state 
of the art and future prospects. Cancer Lett. 
2016;382(1):110-117. [Crossref]

38. Cawley GC, Talbot NLC. On over-fitting in 
model selection and subsequent selection 
bias in performance evaluation. J Mach Learn 
Res. 2010;11(70):2079-2107. [Crossref]

39. Radovanović M, Nanopoulos A, Ivanović M. 
Hubs in space: popular nearest [Crossref]



 

 • August 2025 • Diagnostic and Interventional Radiology Cantürk et al.

 

Appendix 1. METhodological RadiomICs Score criteria table

Item Definition Weight Answer

Item#1 Adherence to radiomics and/or machine learning-specific checklists or guidelines 0.0368 Yes

Item#2 Eligibility criteria that describe a representative study population 0.0735 Yes

Item#3 High-quality reference standard with a clear definition 0.0919 Yes

Item#4 Multicenter 0.0438 No

Item#5 Clinical translatability of the imaging data source for radiomics analysis 0.0292 Yes

Item#6 Imaging protocol with acquisition parameters 0.0438 Yes

Item#7 The interval between imaging used and reference standard 0.0292 Yes

Condition#1 Does the study include segmentation? Nan Yes

Condition#2 Does the study include fully automated segmentation? Nan No

Item#8 Transparent description of segmentation methodology 0.0337 Yes

Item#9 Formal evaluation of fully automated segmentation 0.0225 No

Item#10 Test set segmentation masks produced by a single reader or automated tool 0.0112 Yes

Condition#3 Does the study include hand-crafted feature extraction? Yes

Item#11 Appropriate use of image preprocessing techniques with transparent description 0.0622 Yes

Item#12 Use of standardized feature extraction software 0.0311 Yes

Item#13 Transparent reporting of feature extraction parameters, otherwise providing a default 
configuration statement 0.0415 Yes

Condition#4 Does the study include tabular data? Yes

Condition#5 Does the study include end-to-end deep learning? No

Item#14 Removal of non-robust features 0.02 Yes

Item#15 Removal of redundant features 0.02 Yes

Item#16 Appropriateness of dimensionality compared with data size 0.03 No

Item#17 Robustness assessment of end-to-end deep learning pipelines 0.02 No

Item#18 Proper data partitioning process 0.0599 Yes

Item#19 Handling of confounding factors 0.03 Yes

Item#20 Use of appropriate performance evaluation metrics for task 0.0352 Yes

Item#21 Consideration of uncertainty 0.0234 Yes

Item#22 Calibration assessment 0.0176 No

Item#23 Use of uni-parametric imaging or proof of its inferiority 0.0117 Yes

Item#24 Comparison with a non-radiomic approach or proof of added clinical value 0.0293 Yes

Item#25 Comparison with simple or classical statistical models 0.0176 Yes

Item#26 Internal testing 0.0375 Yes

Item#27 External testing 0.0749 No

Item#28 Data availability 0.0075 No

Item#29 Code availability 0.0075 No

Item#30 Model availability 0.0075 No

Total METRICS score: 80.3%

Quality category: Excellent


