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PURPOSE

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited treat-
ment options and poorer overall survival than other subtypes. Neoadjuvant chemotherapy (NACT)
is often used to reduce tumor size and improve surgical outcomes. However, predicting patients’
response to NACT remains challenging, and non-responding patients risk unnecessary chemo-
toxicity. This study aimed to develop a deep learning-based artificial intelligence (Al) model using
pre-treatment magnetic resonance imaging (MRI) to predict pathological complete response (pCR)
in patients with TNBC undergoing NACT.

METHODS

This retrospective, double-centered study included 49 lesions from 43 patients with TNBC. Data
from MRI, including T2-weighted, T1-weighted, and diffusion-weighted imaging, were segmented
and processed to train a residual convolutional neural network model.

RESULTS

The Al model achieved an accuracy of 0.82 and an area under the receiver operating characteristic
curve of 0.75 in differentiating pCR from non-pCR cases. The model’s performance was validated
through intra- and inter-reader agreement metrics, with Dice similarity coefficients ranging from
0.821t0 0.915.

CONCLUSION
Our results demonstrate that Al models can effectively predict NACT responses in patients with
TNBC using only pre-treatment MRI data.

CLINICAL SIGNIFICANCE

This proof-of-concept study supports the potential for Al-based tools to aid clinical decision-mak-
ing and reduce the risks associated with ineffective therapies. Future research with larger datasets
and additional imaging modalities is needed to improve model generalizability and clinical appli-
cability.

KEYWORDS
Breast cancer, artificial intelligence, neoadjuvant chemotherapy, magnetic resonance imaging, re-
sidual convolutional neural network

reast cancer (BC) is a common health problem worldwide and remains the most com-

mon cancer type among women. Despite its high incidence, mortality rates have con-

sistently decreased over the last decades due to technological advancements in imaging
and novel therapeutic options.! BC has different subtypes, and each subtype has a different
prognosis. It is crucial to evaluate the tumor molecularly to assess the patient’s treatment
options and clinical outcomes.?

Triple-negative BC (TNBC) is characterized by the lack of estrogen receptors, progester-
one receptors, and expression of human epidermal growth factor receptor 2. It is the most
aggressive subtype and has the least favorable overall survival (OS); it is diagnosed in almost
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15%-20% of all patients with BC. In contrast
to other subtypes, TNBC has limited hormo-
nal and target-specific treatment options.>*

Neoadjuvant chemotherapy (NACT) for
BC is increasingly used to decrease the tu-
mor volume and to downstage the disease
to create a bridge to surgery.® Early TNBC is
commonly treated with surgery and adjuvant
chemotherapy.® Furthermore, unresectable
and locally advanced TNBC treatment is main-
ly based on NACT.®” Compared with adjuvant
chemotherapy, preoperative systemic thera-
py for BC has no advantages in disease-free
survival or 0S.2° However, there is a survival
advantage in patients who achieve pathologi-
cal complete response (pCR) after NACT com-
pared with those with residual disease.'®"
With NACT becoming the standard treatment,
clinicians have focused on patients who do
not achieve pCR. This is because patients
without pCR show poorer survival outcomes
than those with pCR, and post-NACT has been
applied to patients without pCR to achieve
long-term survival outcomes.'" Imaging stud-
ies and physical exams have provided early
response assessments, helping distinguish
non-responders. This allows for alternative
treatments to overcome resistance, aiming to
improve pCR rates and forming the basis for
post-neoadjuvant treatment strategies.''

Assessment of disease stage is mainly
based on radiological examinations. Imag-
ing modalities include mammography, ul-
trasound (US), magnetic resonance imaging
(MRI) of the breast, and positron emission
tomography/computed tomography.” Eval-
uation of the response after completion of
NACT is based on radiological examinations.
Mammography and US are routinely used
to assess the response to NACT."® However,
after the initiation of NACT, it is impossible
to predict the patient’s response status with
conventional radiological methods."”®

* Triple-negative breast cancer (TNBC) is the
most aggressive and least common breast
cancer subtype.

* Pre-treatment magnetic resonance imaging
(MRI) may contain helpful information for
artificial intelligence (Al) models to predict
neoadjuvant chemotherapy response in ad-
vance to individualize treatment.

* Our Al model predicts therapy response in
TNBC using pre-treatment MRI data and
achieved accuracy of 0.82 and area under
the curve of 0.75 in predicting pathological
complete response (pCR) compared with
non-pCR.

In this proof-of-concept study, we intro-
duce a deep learning-based artificial intelli-
gence (Al) model using pre-treatment MRIs
to predict the NACT response status before
the initialization of NACT. Convolutional
neural networks (CNNs) are artificial neural
networks composed of multiple layers, spe-
cifically designed to evaluate datasets that
contain grid-like (coordinate-based) infor-
mation such as radiological images.'?' We
hypothesized that tumor appearances in dif-
ferent MRI sequences, as reflected by differ-
ent gray-level pixel presentations and tumor
features, can be deciphered by a residual
CNN-based Al model using pre-treatment
MRIs.

Methods

Study design and patient population

Our study was a retrospective dou-
ble-center study conducted in accord-
ance with the Declaration of Helsinki, and
this retrospective study was approved by
the University of Health Sciences Tiirkiye, iz-
mir Bozyaka Training and Research Hospital
Clinical Research Ethics Committee (decision
number: 2023/19, date: 08.02.2023). Due
to the retrospective design of the study, in-
formed consent was waived by the local eth-
ics committee.

Patients with biopsy-proven TNBC under-
went and completed NACT between 2018
and 2023.These patients had pathology data
at the time of initial diagnosis and under-
went breast MRI before NACT. A flowchart
of the patient selection, inclusion, and exclu-
sion criteria is presented in Figure 1.

Magnetic resonance imaging acquisition

MRIs of the patients were acquired at
two different centers using 1.5 Tesla MRI
units (Magnetom Amira and Symphony,
Siemens Healthineers, Erlangen, Germany
/ Philips Achieva, Philips Medical Systems,
Drachten, Netherlands) and a 3-Tesla MRI
unit (Magnetom Verio, Siemens Health-
ineers, Erlangen, Germany). All patients
were imaged in the prone position using
a breast coil. The MRI sequences included
fast spin echo (FSE) T2-weighted images
(T2WIs), b800 diffusion-weighted imag-
es (DWIs), and fat-suppressed pre- and
post-contrast images at 180 seconds,
which were used for segmentation. For
contrast-enhanced images, 0.1 mmol/kg
of gadobutrol (Gadovist®, Bayer, Germany)
or gadoteric acid (Clariscan®, GE Health-
care, Norway) was injected as a rapid bolus,
followed by a 10-mL saline flush at 2-mL/s.
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The 180-second post-contrast images were
used to feed the Al algorithm.

Definition of pathological complete re-
sponse

After completion of NACT, pathological
response data from surgical specimens were
classified as pCR and non-pCR. Pathological
classifications were made according to the
Miller-Payne grading system, with Grade 5
classified as a complete response and Grade
4 or below classified as no pCR.??

Lesion segmentation

During data collection, the leading re-
searcher (R.E.B.) included 49 lesions from 43
patients based on the inclusion and exclu-
sion criteria. The images were anonymized
using local software, all image labels were
removed, and new patient numbers were as-
signed post-anonymization. After anonymi-
zation, the FSE-T2WIs, DWIs, and pre- and
post-contrast fat-suppressed T1-weighted
images (T1WIs) were selected for annotation.
The researcher evaluated the images along
with pathological data. The lesions were seg-
mented volumetrically in three-dimension-
al (3D) polygon mode using ITK-SNAP 4.x
open-source software in FSE-T2WIs, DWIs,
and post-contrast images.

After the initial segmentation, following
an interval of at least 1 month, the research-
er randomly selected 20% of the lesions from
each sequence for re-segmentation to calcu-
late intra-observer agreement using different
metrics. Moreover, 20% of the lesions in each
sequence were re-segmented by a second ra-
diologist (A.D.B.) with similar experience, and
inter-observer agreement was calculated.

Artificial intelligence model

Data preprocessing

Before entering the data into the deep
learning network, several preprocessing
steps were applied.

- Segmentation: Lesions identified by ra-
diologists were annotated on the imaging
sequences.

« Image cropping: Images were cropped
to include only the annotated lesions.

+ Image scaling: Lesions were resized to a
fixed 50 x 50 x 50 scale, with zero padding
used for any gaps.

+ Normalization: The pixel values of the
3D tumor slices were normalized between 0
and 1.

Biyiiktoka et al.



- Female Patients
- Patients aged over 18 years
- Biopsy-proven TNBC prior to
NACT

Center 1
35 Patients with
biopsy-proven TNBC

Center 2
33 Patients with
biopsy-proven TNBC

68 Patients with
biopsy-proven TNBC
from two different

centers

sl _
- Patients under 18
years of age

24 Patients Excluded - Non-mass-forming

A 4

lesions
- No MRI prior to NACT
- Patients who did not
have NACT or operation
at the endpoint
- MRIs not suitable for Al
usage

49 lesions from
43 patients

Training/Validation
n=38

Test
n=11

Figure 1. Flowchart of patient selection. TNBC, triple-negative breast cancer; NACT, neoadjuvant
chemotherapy; MRI, magnetic resonance imaging; Al artifical intelligence.

- Data splitting: The normalized tumor
slices were randomly split into “Training,”
“Validation,” and “Test” sets (random state:
42). After splitting, 30 tumor slices were se-
lected for training, 8 for validation, and 11 for

testing.

Data augmentation

Due to the relatively small dataset and
imbalanced data distribution, data augmen-

tation was applied to the training set. There
were 13 lesions in the “pCR” class and 17 in
the “non-pCR” class. To address this imbal-
ance, data augmentation was first applied
to underrepresented classes. Each class was
then further augmented by randomly rotat-
ing the 3D MRl slices on the two-dimensional
(2D; x, y) axis.

Deep learning model

Residual CNNs were used for their ad-
vantages in processing limited data and
achieving better generalization. A residu-
al CNN layer was designed in accordance
with the ResNet architecture (Figure 2). The
network input consisted of a 50 x 50 x 50
lesion image. A 2D CNN layer with 64 chan-
nels, followed by batch normalization and
MaxPooling (MP) layers, reduced the data to
25 x 25 x 64. After two residual blocks and
a 128-channel 2D CNN layer, the data were
further reduced to 12 x 12 x 128 through
another MP layer. Finally, a flattening layer
produced a feature pool of 18,432 attrib-
utes. Similar processes were applied to other
imaging sequences, and the features were
combined after they had passed through the
residual CNN layers. Although lesions were
segmented volumetrically, the implemented
architecture functions as a 2D CNN, operat-
ing on individual axial slices.

Due to their low count, T2WI sequenc-
es were excluded from the study. The fea-
tures extracted from the pre-contrast T1WI,
post-contrast T1TWI, and DWI sequences were
combined for each lesion, and classification
was performed through a fully connected
network with 1,792,896, and 256 neurons,
respectively, in three dense layers (Figure
3). However, we evaluated multiple input
configurations: (i) post-contrast TTWIs alone
and (ii) multi-sequence inputs (pre-contrast
T1WIs, post-contrast T1WIs, DWIs) using the
same backbone. Due to sequence availabili-
ty and performance on the test set, the final
model reported in the Results section utilizes
post-contrast TTWIs only. Despite the limited
training data, accuracy values comparable to
those in the literature were achieved. Residu-
al CNNs offer key advantages, such as easier
learning, robustness to model complexity,
and training efficiency.

Statistical analysis

All statistical analyses were performed us-
ing R statistical software (version 3.6.0, Posit
Software, PBC). Descriptive statistics were
calculated to summarize patient and lesion
characteristics. Continuous variables were
expressed as mean * standard deviation (SD)
for normally distributed data and median
with quartile values (Q1, Q3) for non-normal-
ly distributed data. Categorical variables were
presented as absolute frequencies and per-
centages. Between-group comparisons for
continuous variables were conducted using
the Student’s t-test or the Mann-Whitney U
test according to distributional assumptions,

Prediction of neoadjuvant therapy response «
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Figure 2. Residual convolutional neural network (CNN) layers. The network input consisted of a 50 x 50 x 50 lesion image. A two-dimensional (2D) CNN layer with 64
channels, followed by batch normalization and MaxPooling (MP) layers, reduced the data to 25 x 25 x 64. After two residual blocks and a 128-channel 2D CNN layer,
the data were further reduced to 12 x 12 x 128 through further MP layer. Finally, a flattening layer produced a feature pool of 18,432 attributes.

whereas categorical variables were com-
pared using the Fisher-Freeman-Halton test,
as appropriate. It was considered statistically
significant when P < 0.05. Variables found to
be statistically significant in univariable anal-
yses were included in a multivariable logistic
regression model to identify independent
predictors of pCR following NACT. The results
were expressed as odds ratios (ORs) with 95%
confidence intervals (Cls). The overall model
fit was assessed using the likelihood ratio
test, and predictive performance was eval-
uated with Nagelkerke's pseudo R’. Model
calibration was tested using the Hosmer-Le-
meshow goodness-of-fit test. Model perfor-
mance on the test set was evaluated by cal-
culating accuracy from the confusion matrix
(true-positive, true-negative, false-positive,
and false-negative counts). Receiver oper-
ating characteristic (ROC) curves were plot-
ted, and the area under the curve (AUC) was
computed directly from the classification
results. Intra-reader agreement was assessed
by comparing repeated segmentations from
the same reader on the same dataset using
the Dice similarity coefficient formula. Pair-
wise Dice values were computed between all
readers, and the mean (+ SD) Dice value was
reported to summarize inter- and intra-read-
er agreement.

All analyses were performed using
functions from the readx|, dplyr, compar-
eGroups, broom, and ResourceSelection
packages inR.

Results

Descriptive results

The patient and lesion characteristics
of the 43 patients included in the study are
summarized in Table 1.

The study includes a total of 49 lesions,
with 20 (40.82%) achieving pCR and 29
(59.18%) not achieving pCR. The mean age
of patients in the pCR group was 50.1 +
10.9 years, slightly older than the non-pCR
group, which had a mean age of 48.9 +
13.3 years. Patients who achieved pCR had
significantly smaller median tumor sizes at
baseline (P = 0.034), with a median of 28.5
mm (Q1-Q3: 22.5-32.0), than those who
did not achieve pCR, who had a median tu-
mor size of 35.5 mm (Q1-Q3: 24.25-56.5).
The median tumor volume on post-contrast
T1WIs was significantly less (P = 0.045) in
the pCR group [median 9,243 mm?® (Q1-Q3
3,714-13,665 mm?)] than in the non-pCR
group [median 19,453 mm? (Q1-Q3: 5,029~
58,595 mm>)].

In the multivariable logistic regres-
sion analysis, tumor volume measured on
post-contrast TIWIs and the Ki-67 prolifer-
ation index were found to be independent
predictors of achieving pCR after NACT. Tu-
mor volume was associated with pCR (ad-
justed OR: 1.00; 95% Cl: 1.00-1.00; P = 0.040),
and higher Ki-67 levels were significantly
associated with increased odds of pCR (ad-
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justed OR: 1.04;95% Cl: 1.01-1.07; P=0.018).
Tumor size did not reach statistical signifi-
cance (adjusted OR: 1.05; 95% Cl: 0.96-1.17;
P = 0.299). The overall model demonstrated
a good fit (Nagelkerke's pseudo R* = 0.422,
Hosmer-Lemeshow test P = 0.702) and was
statistically significant according to the like-
lihood ratio test (P < 0.001). These results are
summarized in Table 2.

Intra-reader and inter-reader agreement
results

The Al algorithm was fed with 3D vol-
umetric segmentations, and its reliability
was evaluated by assessing intra-reader
agreement using different scores for each
sequence. Accordingly, the average Dice
coefficient for segmentations performed on
DWIs was 0.841 + 0.075, and for segmenta-
tions performed on post-contrast TTWI se-
quences, the average Dice coefficient was
0.915 + 0.046. Considering the inter-reader
agreement between the radiologists based
on different segmentations, the average Dice
coefficient was 0.821 + 0.050 for segmenta-
tions performed on DWIs and 0.890 + 0.059
for segmentations performed on post-con-
trast TIWI sequences. These data demon-
strate that the segmentations performed by
the primary researcher at different times and
those performed by the second researcher
were highly consistent.

Biyiiktoka et al.
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Figure 3. Deep learning model. The features extracted from the pre-contrast T1-weighted image (T1WI),
post-contrast TIWI, and diffusion-weighted image (DWI) sequences were combined for each lesion,
and classification was performed through a fully connected network with 1,792,896, and 256 neurons,

respectively, in three dense layers.

*Note: We tested alternative model configurations using multiple sequences (pre-T1WI, post-T1WI, DWI);
however, the final reported model uses post-contrast T1WI only. CNN, convolutional neural network.

Artificial intelligence model results

The best Al model for differentiating pCRs
from non-pCRs on the test set revealed an ac-
curacy of 0.82 (95% Cl: 0.545-1.000) and AUC
ROC of 0.75 (Figure 4). The best-performing
model used only post-contrast TIWI data.
These results demonstrate that the CNN-
based Al model can predict response status
with high performance. True-positive and
true-negative examples predicted by the
model are presented in Figure 5.

Discussion

TNBC is a rare but aggressive subtype of
BC with a higher risk of metastasis than other

subtypes.>* Neoadjuvant therapy improves
surgical outcomes, but its success is still un-
predictable. If patients do not respond to
this therapy, they face unnecessary toxicities.
Therefore, predicting NACT response would
help optimize treatment, reduce chemotox-
icity risks, and improve clinical decision-mak-
ing.

Despite advances in radiology, there is still
a lack of data for accurately predicting NACT
outcomes. Although Al is increasingly ap-
plied in radiology, few studies have focused
on predicting NACT response in BC, especial-
ly for the TNBC subtype. This study aims to
fill this gap by using only pre-treatment MRIs

to predict responses in patients with TNBC.
Our Al model, based on a CNN, achieved an
accuracy of 0.82 in distinguishing patients
who achieved pCR. Our model has several
advantages over the previous studies that
tried to predict or detect the response status
of NACT in patients with BC. First, our model
used only pre-treatment MRIs to classify pa-
tients as pCR or non-pCR. This extends the
period for clinicians to modify the treatment
plan and enhances their decision-making
when concluding NACT early. Second, our
model tried to predict responses using more
sequences than previously used, which may
add additional value to the Al model by using
the different features of the various sequenc-
es. However, the best-performing model was
identified as that using only post-contrast
T1WI data to predict NACT response status.
This might be because tumor heterogeneity
is best determined in this sequence, and oth-
er sequences, such as DWIs and pre-contrast
T1WIs, might lack sufficient data for the Al
model to extract. Therefore, we also segment-
ed the tumors in 3D volumetrically, enhanc-
ing the information that is acquired from the
tumors. Moreover, selecting only a few slices
of the tumor might create selection bias. Fi-
nally, unlike in earlier studies,*%* our model
is based on the biopsy-proven TNBC subtype.
This is because different types of BC behave
differently to NACT, and studies including
various types of BC might have heterogene-
ity that influences the results of the Al model
in the future.

In terms of conventional analysis, after
logistic regression analysis, we found that
the parameters that might help identify
NACT predictors in TNBC were the tumor
proliferation index (Ki-67) and volume. Pre-
vious studies have shown that tumor Ki-67
values can predict response to NACT.? In a
study by Penault-Llorca et al.?® which exam-
ined the predictive performance of various
pathological markers for NACT in different
types of BC with 710 patients, high Ki-67 val-
ues were found to be significant in predicting
complete response, consistent with our find-
ings. Similarly, MacGrogan et al.?* identified
high Ki-67 as an independent predictor of
NACT response in patients with BC (n = 128).
By contrast, Petit et al>° observed higher Ki-
67 values in the complete response group
but reported that the difference was not
statistically significant. Additionally, studies
by Bottini et al.3" and Estévez et al.*? found
that Ki-67 was not a key predictor of NACT
response. These different results are thought
to arise from variations in patient groups and
treatment protocols.

Prediction of neoadjuvant therapy response -



Table 1. Descriptive results of the dataset indicate that tumor size (mm), tumor volume (mm?), and proliferation index (Ki67-) are significantly

different between pCR and non-pCR groups

pCR Non-pCR

Total 20 29

Age (years) mean (+ SD) 50.1(10.9) 48.9(13.3) P=0.732
A (%) 2 (50%) 2 (50%) P=0.556
B (%) 10 (50%) 10 (50%)

Mammographic density BIRADS
C (%) 5 (27.7%) 13 (72.3%)
D (%) 3 (42.8%) 4 (57.2%)

Tumor size (mm) median (Q1; Q3) 28.5(22.5;32.0) 35.5 (24.25; 56.5) P=0.041

. 3 i

(TSTgsgc"”me post-contrastTTWI (mm?) meclan 9,243 (3,714; 13,665) 19,453 (5,029; 58,595) P=0.030
Minimal (%) 13 (44.8%) 16 (55.2%) P=0.782
Mild (%) 5 (38.5%) 8(61.5%)

Background parenchymal enhancement BIRADS
Moderate (%) 2 (40%) 3 (60%)
Marked (%) 0 (0%) 2 (100%)

Proliferation (Ki-67) median (Q1; Q3) 80 (50; 80) 50 (30; 77.5) P=0.027

SD, standard deviation; pCR, pathological complete response; T1WI, T1-weighted image.

Table 2. Multivariable logistic regression analysis of predictors for pathological complete

response

Adjusted OR (95% Cl) P

Tumor size (mm)
Tumor volume, post-contrast TTWI (mm?3)

Proliferation (Ki-67)

1.05 (0.96-1.17)
1.00 (1.00-1.00)
1.04 (1.01-1.07)

0.299
0.040
0.018

Pseudo R? (Nagelkerke): 0.422, Hosmer-Lemeshow P = 0.702, likelihood ratio test P < 0.001; OR, odds ratio; Cl,

confidence interval; TTWI, T1-weighted image.
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Figure 4. Receiver operating characteristic curve for the best-performing convolutional neural network
model using post-contrast T1-weighted imaging to differentiate pathological complete response (pCR)

from non-pCRin the test set (n=11).

Besides conventional analysis, several
studies support the potential of Al in predict-
ing NACT outcomes. However, most of these

studies used either one imaging method
or one sequence, both pre-treatment and
post-treatment images in combination, or

« October 2025 - Diagnostic and Interventional Radiology

all subtypes of the BC for the dataset. For
instance, Herrero Vicent et al** combined
multiparametric MRIs and clinical data to
create a machine learning model. This study,
conducted on a small group of 58 patients,
achieved an accuracy of 0.87 using only ra-
diological imaging features.?* Similarly, our
study achieved high accuracy despite using
a small patient group, demonstrating that Al
models can perform well even with limited
data.

Skarping et al.?®* developed an Al model
using pre-treatment digital mammograms
to predict pCR in all BC subtypes. This mod-
el was applied to 453 lesions, and an AUC
score of 0.712® was achieved. Although their
model used pre-treatment mammographic
data, ours focused on MRI, demonstrating
the versatility of imaging modalities in Al
applications. In addition, we used different
sequences to better understand the informa-
tion in each sequence. In another study, Qu
et al.* tested deep learning models on differ-
entimaging sets, including pre- and post-ne-
oadjuvant T1WIs. Their model using only
pre-treatment images had a lower AUC score
of 0.55, but the combined model achieved a
high AUC of 0.97.% This suggests that com-
bining imaging datasets could substantially
improve prediction accuracy; however, our
study achieved stronger performance by only
using pre-treatment images. Ha et al.* devel-
oped a CNN using pre-neoadjuvant MRI data
from 141 patients, achieving an impressive
AUC score of 0.98. This high accuracy high-
lights the potential of deep learning meth-
ods in predicting therapy responses. These
findings suggest that with more data and re-

Biyiiktoka et al.
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Figure 5. Examples of the artificial intelligence (Al) model’s prediction. The upper-left tumor has a median size of 70 mm, a volume of 68,870 mm?, and a Ki-67 value
of 35, with no response. By contrast, the upper-right tumor has a median size of 25 mm, a volume of 3,714 mm?3, and a Ki-67 value of 50, with a complete response.

PCR, pathological complete response.

fined methodologies, the performance of Al
models such as that presented in this study
could be further enhanced. Zhou et al.* de-
veloped an Al model focusing solely on TNBC,
using MRI datasets collected before and after
four cycles of NACT. This study achieved an
accuracy of 0.77, and using open-source data
allowed them to expand their patient group
to 162. Furthermore, this study used both
pre-treatment and post-treatment images to
increase the performance, but they failed to
note whether they tried only pre-treatment
images for any model.® Previous studies are
summarized in Table 3.

Overall, these studies highlight the prom-
ise of Al-based models in predicting NACT
responses. As seen in the literature and our
study, Al can provide high accuracy in pre-
dicting therapy outcomes, although larger
patient groups and refined methodologies
are necessary to enhance performance. Inte-
grating clinical and radiological data and Al
can substantially aid clinical decision-making
processes.

This study has several limitations. First,
the cohort size and small test set constrain
statistical power and widen uncertainty
around performance estimates. Second, clin-

ical staging at diagnosis was not consistently
available across centers, which precluded
stage-stratified analyses and may introduce
clinical heterogeneity. Third, although we
initially evaluated multiple MRI sequences,
T2WIs were excluded because complete,
high-quality series were insufficiently availa-
ble across patient cohorts and centers; more-
over, in other models within our sample, add-
ing DWIs and/or pre-contrast TTWIs did not
improve discrimination over post-contrast
T1WIs alone. These factors may limit gener-
alizability and should be addressed in larger,
prospectively curated, multi-institutional co-
horts. Moreover, patients with non-mass en-
hancement were excluded due to difficulties
in tumor segmentation. Although rare, this
exclusion limits the model’s applicability to
specific patient subgroups. Finally, this study
evaluates a single residual CNN backbone
without head-to-head comparisons against
alternative deep learning architectures or
classic machine learning approaches using
hand-crafted radiomics, which restricts the
scope for architectural comparison.

Future research focusing on external
validation across multiple institutions and
scanners, prospective enrollment to ensure

complete clinical staging and acquisition
protocols, and development of multimod-
al models that fuse imaging-derived rep-
resentations with clinical biomarkers (e.g.,
Ki-67) might improve discrimination, calibra-
tion, and decision utility. With larger datasets
and more complete sequence availability,
we will revisit multi-sequence inputs and ex-
plore end-to-end 3D architectures and other
architectural designs to test whether addi-
tional sequences and different architectures
(e.g., T2WIs, DWIs) provide incremental value
beyond post-contrast T1WIs.

In conclusion, Al-based models hold con-
siderable potential in predicting NACT re-
sponses, particularly for aggressive subtypes
such as TNBC. These models can improve
clinical outcomes by optimizing treatment
plans and personalizing care. However, ex-
panding research with larger, multicenter
datasets is necessary to enhance the models’
generalizability and ensure broader clinical
application. With continued advancements,
Al can play a crucial role in the future of per-
sonalized BC treatment.
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Table 3. Comparison of the results of different studies, indicating that artificial intelligence-assisted models can predict the neoadjuvant
therapy response status in different categories for patients with breast cancer

Study Data used Method Total Test Subtypes of breast Performance result
number number cancer
Hem;ro Vicent Multlpar.arjnetrlc MRI and R 58 24 All types of breast 9.87 of.accu.racy
etal. clinical data cancer (only with radiological images)
. 2 - . All types of breast
Skarping et al. Digital mammograms Deep learning 453 53 cancer 0.71 AUC
o : Al s 0.55 AUC (only with pre-
- re-treatment and post- . types of breast treatment images)
O e, treatment post-contrast TTWI D il 302 >8 cancer J
0.97 AUC (combined)
Ha et al.25 Pre-treatment post-contrast Beepllearming 141 28 All types of breast 0.98 AUC
TIWI cancer
Pre-treatment and post- Triole-neqative
Zhou et al.* treatment post-contrast T1WI Deep learning 162 32 P 9 0.77 of accuracy
breast cancer
and DWI
Thisistudy Pre-treatment post-contrast Deepllearning 49 1 Triple-negative 0.82/of accuracy

T1WI

breast cancer
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