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Magnetic resonance imaging-based artificial intelligence model predicts 
neoadjuvant therapy response in triple-negative breast cancer 

PURPOSE
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited treat-
ment options and poorer overall survival than other subtypes. Neoadjuvant chemotherapy (NACT) 
is often used to reduce tumor size and improve surgical outcomes. However, predicting patients’ 
response to NACT remains challenging, and non-responding patients risk unnecessary chemo-
toxicity. This study aimed to develop a deep learning-based artificial intelligence (AI) model using 
pre-treatment magnetic resonance imaging (MRI) to predict pathological complete response (pCR) 
in patients with TNBC undergoing NACT.

METHODS
This retrospective, double-centered study included 49 lesions from 43 patients with TNBC. Data 
from MRI, including T2-weighted, T1-weighted, and diffusion-weighted imaging, were segmented 
and processed to train a residual convolutional neural network model.

RESULTS
The AI model achieved an accuracy of 0.82 and an area under the receiver operating characteristic 
curve of 0.75 in differentiating pCR from non-pCR cases. The model’s performance was validated 
through intra- and inter-reader agreement metrics, with Dice similarity coefficients ranging from 
0.821 to 0.915. 

CONCLUSION
Our results demonstrate that AI models can effectively predict NACT responses in patients with 
TNBC using only pre-treatment MRI data.

CLINICAL SIGNIFICANCE
This proof-of-concept study supports the potential for AI-based tools to aid clinical decision-mak-
ing and reduce the risks associated with ineffective therapies. Future research with larger datasets 
and additional imaging modalities is needed to improve model generalizability and clinical appli-
cability. 
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Breast cancer (BC) is a common health problem worldwide and remains the most com-
mon cancer type among women. Despite its high incidence, mortality rates have con-
sistently decreased over the last decades due to technological advancements in imaging 

and novel therapeutic options.1 BC has different subtypes, and each subtype has a different 
prognosis. It is crucial to evaluate the tumor molecularly to assess the patient’s treatment 
options and clinical outcomes.2

Triple-negative BC (TNBC) is characterized by the lack of estrogen receptors, progester-
one receptors, and expression of human epidermal growth factor receptor 2. It is the most 
aggressive subtype and has the least favorable overall survival (OS); it is diagnosed in almost 
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15%–20% of all patients with BC. In contrast 
to other subtypes, TNBC has limited hormo-
nal and target-specific treatment options.2-4

Neoadjuvant chemotherapy (NACT) for 
BC is increasingly used to decrease the tu-
mor volume and to downstage the disease 
to create a bridge to surgery.5 Early TNBC is 
commonly treated with surgery and adjuvant 
chemotherapy.6 Furthermore, unresectable 
and locally advanced TNBC treatment is main-
ly based on NACT.6,7 Compared with adjuvant 
chemotherapy, preoperative systemic thera-
py for BC has no advantages in disease-free 
survival or OS.8,9 However, there is a survival 
advantage in patients who achieve pathologi-
cal complete response (pCR) after NACT com-
pared with those with residual disease.10,11 
With NACT becoming the standard treatment, 
clinicians have focused on patients who do 
not achieve pCR. This is because patients 
without pCR show poorer survival outcomes 
than those with pCR, and post-NACT has been 
applied to patients without pCR to achieve 
long-term survival outcomes.11 Imaging stud-
ies and physical exams have provided early 
response assessments, helping distinguish 
non-responders. This allows for alternative 
treatments to overcome resistance, aiming to 
improve pCR rates and forming the basis for 
post-neoadjuvant treatment strategies.12-14 

Assessment of disease stage is mainly 
based on radiological examinations. Imag-
ing modalities include mammography, ul-
trasound (US), magnetic resonance imaging 
(MRI) of the breast, and positron emission 
tomography/computed tomography.15 Eval-
uation of the response after completion of 
NACT is based on radiological examinations. 
Mammography and US are routinely used 
to assess the response to NACT.16 However, 
after the initiation of NACT, it is impossible 
to predict the patient’s response status with 
conventional radiological methods.17,18

In this proof-of-concept study, we intro-
duce a deep learning-based artificial intelli-
gence (AI) model using pre-treatment MRIs 
to predict the NACT response status before 
the initialization of NACT. Convolutional 
neural networks (CNNs) are artificial neural 
networks composed of multiple layers, spe-
cifically designed to evaluate datasets that 
contain grid-like (coordinate-based) infor-
mation such as radiological images.19-21 We 
hypothesized that tumor appearances in dif-
ferent MRI sequences, as reflected by differ-
ent gray-level pixel presentations and tumor 
features, can be deciphered by a residual 
CNN-based AI model using pre-treatment 
MRIs.

Methods 

Study design and patient population

Our study was a retrospective dou-
ble-center study conducted in accord-
ance with the Declaration of Helsinki, and 
this retrospective study was approved by 
the University of Health Sciences Türkiye, İz-
mir Bozyaka Training and Research Hospital 
Clinical Research Ethics Committee (decision 
number: 2023/19, date: 08.02.2023). Due 
to the retrospective design of the study, in-
formed consent was waived by the local eth-
ics committee. 

Patients with biopsy-proven TNBC under-
went and completed NACT between 2018 
and 2023. These patients had pathology data 
at the time of initial diagnosis and under-
went breast MRI before NACT. A flowchart 
of the patient selection, inclusion, and exclu-
sion criteria is presented in Figure 1.

Magnetic resonance imaging acquisition 

MRIs of the patients were acquired at 
two different centers using 1.5 Tesla MRI 
units (Magnetom Amira and Symphony, 
Siemens Healthineers, Erlangen, Germany 
/ Philips Achieva, Philips Medical Systems, 
Drachten, Netherlands) and a 3-Tesla MRI 
unit (Magnetom Verio, Siemens Health-
ineers, Erlangen, Germany). All patients 
were imaged in the prone position using 
a breast coil. The MRI sequences included 
fast spin echo (FSE) T2-weighted images 
(T2WIs), b800 diffusion-weighted imag-
es (DWIs), and fat-suppressed pre- and 
post-contrast images at 180 seconds, 
which were used for segmentation. For 
contrast-enhanced images, 0.1 mmoL/kg 
of gadobutrol (Gadovist®, Bayer, Germany) 
or gadoteric acid (Clariscan®, GE Health-
care, Norway) was injected as a rapid bolus, 
followed by a 10-mL saline flush at 2-mL/s. 

The 180-second post-contrast images were 
used to feed the AI algorithm.

Definition of pathological complete re-
sponse

After completion of NACT, pathological 
response data from surgical specimens were 
classified as pCR and non-pCR. Pathological 
classifications were made according to the 
Miller-Payne grading system, with Grade 5 
classified as a complete response and Grade 
4 or below classified as no pCR.22 

Lesion segmentation

During data collection, the leading re-
searcher (R.E.B.) included 49 lesions from 43 
patients based on the inclusion and exclu-
sion criteria. The images were anonymized 
using local software, all image labels were 
removed, and new patient numbers were as-
signed post-anonymization. After anonymi-
zation, the FSE-T2WIs, DWIs, and pre- and 
post-contrast fat-suppressed T1-weighted 
images (T1WIs) were selected for annotation. 
The researcher evaluated the images along 
with pathological data. The lesions were seg-
mented volumetrically in three-dimension-
al (3D) polygon mode using ITK-SNAP 4.x 
open-source software in FSE-T2WIs, DWIs, 
and post-contrast images.  

After the initial segmentation, following 
an interval of at least 1 month, the research-
er randomly selected 20% of the lesions from 
each sequence for re-segmentation to calcu-
late intra-observer agreement using different 
metrics. Moreover, 20% of the lesions in each 
sequence were re-segmented by a second ra-
diologist (A.D.B.) with similar experience, and 
inter-observer agreement was calculated. 

Artificial intelligence model

Data preprocessing 

Before entering the data into the deep 
learning network, several preprocessing 
steps were applied. 

•	 Segmentation: Lesions identified by ra-
diologists were annotated on the imaging 
sequences. 

•	 Image cropping: Images were cropped 
to include only the annotated lesions. 

•	 Image scaling: Lesions were resized to a 
fixed 50 × 50 × 50 scale, with zero padding 
used for any gaps. 

•	 Normalization: The pixel values of the 
3D tumor slices were normalized between 0 
and 1. 

Main points

•	 Triple-negative breast cancer (TNBC) is the 
most aggressive and least common breast 
cancer subtype. 

•	 Pre-treatment magnetic resonance imaging 
(MRI) may contain helpful information for 
artificial intelligence (AI) models to predict 
neoadjuvant chemotherapy response in ad-
vance to individualize treatment.

•	 Our AI model predicts therapy response in 
TNBC using pre-treatment MRI data and 
achieved accuracy of 0.82 and area under 
the curve of 0.75 in predicting pathological 
complete response (pCR) compared with 
non-pCR. 
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•	 Data splitting: The normalized tumor 
slices were randomly split into “Training,” 
“Validation,” and “Test” sets (random state: 
42). After splitting, 30 tumor slices were se-
lected for training, 8 for validation, and 11 for 
testing. 

Data augmentation

Due to the relatively small dataset and 
imbalanced data distribution, data augmen-

tation was applied to the training set. There 
were 13 lesions in the “pCR” class and 17 in 
the “non-pCR” class. To address this imbal-
ance, data augmentation was first applied 
to underrepresented classes. Each class was 
then further augmented by randomly rotat-
ing the 3D MRI slices on the two-dimensional 
(2D; x, y) axis.

Deep learning model 

Residual CNNs were used for their ad-
vantages in processing limited data and 
achieving better generalization. A residu-
al CNN layer was designed in accordance 
with the ResNet architecture (Figure 2). The 
network input consisted of a 50  × 50 × 50 
lesion image. A 2D CNN layer with 64 chan-
nels, followed by batch normalization and 
MaxPooling (MP) layers, reduced the data to 
25 × 25 × 64. After two residual blocks and 
a 128-channel 2D CNN layer, the data were 
further reduced to 12 × 12 × 128 through 
another MP layer. Finally, a flattening layer 
produced a feature pool of 18,432 attrib-
utes. Similar processes were applied to other 
imaging sequences, and the features were 
combined after they had passed through the 
residual CNN layers. Although lesions were 
segmented volumetrically, the implemented 
architecture functions as a 2D CNN, operat-
ing on individual axial slices. 

Due to their low count, T2WI sequenc-
es were excluded from the study. The fea-
tures extracted from the pre-contrast T1WI, 
post-contrast T1WI, and DWI sequences were 
combined for each lesion, and classification 
was performed through a fully connected 
network with 1,792,896, and 256 neurons, 
respectively, in three dense layers (Figure 
3). However, we evaluated multiple input 
configurations: (i) post-contrast T1WIs alone 
and (ii) multi-sequence inputs (pre-contrast 
T1WIs, post-contrast T1WIs, DWIs) using the 
same backbone. Due to sequence availabili-
ty and performance on the test set, the final 
model reported in the Results section utilizes 
post-contrast T1WIs only. Despite the limited 
training data, accuracy values comparable to 
those in the literature were achieved. Residu-
al CNNs offer key advantages, such as easier 
learning, robustness to model complexity, 
and training efficiency. 

Statistical analysis

All statistical analyses were performed us-
ing R statistical software (version 3.6.0, Posit 
Software, PBC). Descriptive statistics were 
calculated to summarize patient and lesion 
characteristics. Continuous variables were 
expressed as mean ± standard deviation (SD) 
for normally distributed data and median 
with quartile values (Q1, Q3) for non-normal-
ly distributed data. Categorical variables were 
presented as absolute frequencies and per-
centages. Between-group comparisons for 
continuous variables were conducted using 
the Student’s t-test or the Mann–Whitney U 
test according to distributional assumptions, 

Figure 1. Flowchart of patient selection. TNBC, triple-negative breast cancer; NACT, neoadjuvant 
chemotherapy; MRI, magnetic resonance imaging; AI, artifical intelligence. 
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whereas categorical variables were com-
pared using the Fisher–Freeman–Halton test, 
as appropriate. It was considered statistically 
significant when P < 0.05. Variables found to 
be statistically significant in univariable anal-
yses were included in a multivariable logistic 
regression model to identify independent 
predictors of pCR following NACT. The results 
were expressed as odds ratios (ORs) with 95% 
confidence intervals (CIs). The overall model 
fit was assessed using the likelihood ratio 
test, and predictive performance was eval-
uated with Nagelkerke’s pseudo R². Model 
calibration was tested using the Hosmer–Le-
meshow goodness-of-fit test. Model perfor-
mance on the test set was evaluated by cal-
culating accuracy from the confusion matrix 
(true-positive, true-negative, false-positive, 
and false-negative counts). Receiver oper-
ating characteristic (ROC) curves were plot-
ted, and the area under the curve (AUC) was 
computed directly from the classification 
results. Intra-reader agreement was assessed 
by comparing repeated segmentations from 
the same reader on the same dataset using 
the Dice similarity coefficient formula. Pair-
wise Dice values were computed between all 
readers, and the mean (± SD) Dice value was 
reported to summarize inter- and intra-read-
er agreement. 

All analyses were performed using 
functions from the readxl, dplyr, compar-
eGroups, broom, and ResourceSelection 
packages in R. 

Results 

Descriptive results

The patient and lesion characteristics 
of the 43 patients included in the study are 
summarized in Table 1.

The study includes a total of 49 lesions, 
with 20 (40.82%) achieving pCR and 29 
(59.18%) not achieving pCR. The mean age 
of patients in the pCR group was 50.1 ± 
10.9 years, slightly older than the non-pCR 
group, which had a mean age of 48.9 ± 
13.3 years. Patients who achieved pCR had 
significantly smaller median tumor sizes at 
baseline (P = 0.034), with a median of 28.5 
mm (Q1 –Q3: 22.5–32.0), than those who 
did not achieve pCR, who had a median tu-
mor size of 35.5 mm (Q1–Q3: 24.25–56.5). 
The median tumor volume on post-contrast 
T1WIs was significantly less (P = 0.045) in 
the pCR group [median 9,243 mm³ (Q1–Q3 
3,714–13,665 mm³)] than in the non-pCR 
group [median 19,453 mm³ (Q1–Q3: 5,029–
58,595 mm³)].

In the multivariable logistic regres-
sion analysis, tumor volume measured on 
post-contrast T1WIs and the Ki-67 prolifer-
ation index were found to be independent 
predictors of achieving pCR after NACT. Tu-
mor volume was associated with pCR (ad-
justed OR: 1.00; 95% CI: 1.00–1.00; P = 0.040), 
and higher Ki-67 levels were significantly 
associated with increased odds of pCR (ad-

justed OR: 1.04; 95% CI: 1.01–1.07; P = 0.018). 
Tumor size did not reach statistical signifi-
cance (adjusted OR: 1.05; 95% CI: 0.96–1.17; 
P = 0.299). The overall model demonstrated 
a good fit (Nagelkerke’s pseudo R² = 0.422, 
Hosmer–Lemeshow test P = 0.702) and was 
statistically significant according to the like-
lihood ratio test (P < 0.001). These results are 
summarized in Table 2. 

Intra-reader and inter-reader agreement 
results 

The AI algorithm was fed with 3D vol-
umetric segmentations, and its reliability 
was evaluated by assessing intra-reader 
agreement using different scores for each 
sequence. Accordingly, the average Dice 
coefficient for segmentations performed on 
DWIs was 0.841 ± 0.075, and for segmenta-
tions performed on post-contrast T1WI se-
quences, the average Dice coefficient was 
0.915 ± 0.046. Considering the inter-reader 
agreement between the radiologists based 
on different segmentations, the average Dice 
coefficient was 0.821 ± 0.050 for segmenta-
tions performed on DWIs and 0.890 ± 0.059 
for segmentations performed on post-con-
trast T1WI sequences. These data demon-
strate that the segmentations performed by 
the primary researcher at different times and 
those performed by the second researcher 
were highly consistent. 

Figure 2. Residual convolutional neural network (CNN) layers. The network input consisted of a 50 × 50 × 50 lesion image. A two-dimensional (2D) CNN layer with 64 
channels, followed by batch normalization and MaxPooling (MP) layers, reduced the data to 25 × 25 × 64. After two residual blocks and a 128-channel 2D CNN layer, 
the data were further reduced to 12 × 12 × 128 through further MP layer. Finally, a flattening layer produced a feature pool of 18,432 attributes.
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Artificial intelligence model results

The best AI model for differentiating pCRs 
from non-pCRs on the test set revealed an ac-
curacy of 0.82 (95% CI: 0.545–1.000) and AUC 
ROC of 0.75 (Figure 4). The best-performing 
model used only post-contrast T1WI data. 
These results demonstrate that the CNN-
based AI model can predict response status 
with high performance. True-positive and 
true-negative examples predicted by the 
model are presented in Figure 5.

Discussion
TNBC is a rare but aggressive subtype of 

BC with a higher risk of metastasis than other 

subtypes.2-4 Neoadjuvant therapy improves 
surgical outcomes, but its success is still un-
predictable. If patients do not respond to 
this therapy, they face unnecessary toxicities. 
Therefore, predicting NACT response would 
help optimize treatment, reduce chemotox-
icity risks, and improve clinical decision-mak-
ing. 

Despite advances in radiology, there is still 
a lack of data for accurately predicting NACT 
outcomes. Although AI is increasingly ap-
plied in radiology, few studies have focused 
on predicting NACT response in BC, especial-
ly for the TNBC subtype. This study aims to 
fill this gap by using only pre-treatment MRIs 

to predict responses in patients with TNBC. 
Our AI model, based on a CNN, achieved an 
accuracy of 0.82 in distinguishing patients 
who achieved pCR. Our model has several 
advantages over the previous studies that 
tried to predict or detect the response status 
of NACT in patients with BC. First, our model 
used only pre-treatment MRIs to classify pa-
tients as pCR or non-pCR. This extends the 
period for clinicians to modify the treatment 
plan and enhances their decision-making 
when concluding NACT early. Second, our 
model tried to predict responses using more 
sequences than previously used, which may 
add additional value to the AI model by using 
the different features of the various sequenc-
es. However, the best-performing model was 
identified as that using only post-contrast 
T1WI data to predict NACT response status. 
This might be because tumor heterogeneity 
is best determined in this sequence, and oth-
er sequences, such as DWIs and pre-contrast 
T1WIs, might lack sufficient data for the AI 
model to extract. Therefore, we also segment-
ed the tumors in 3D volumetrically, enhanc-
ing the information that is acquired from the 
tumors. Moreover, selecting only a few slices 
of the tumor might create selection bias. Fi-
nally, unlike in earlier studies,23-26 our model 
is based on the biopsy-proven TNBC subtype. 
This is because different types of BC behave 
differently to NACT, and studies including 
various types of BC might have heterogene-
ity that influences the results of the AI model 
in the future.

In terms of conventional analysis, after 
logistic regression analysis, we found that 
the parameters that might help identify 
NACT predictors in TNBC were the tumor 
proliferation index (Ki-67) and volume. Pre-
vious studies have shown that tumor Ki-67 
values can predict response to NACT.27 In a 
study by Penault-Llorca et al.,28 which exam-
ined the predictive performance of various 
pathological markers for NACT in different 
types of BC with 710 patients, high Ki-67 val-
ues were found to be significant in predicting 
complete response, consistent with our find-
ings. Similarly, MacGrogan et al.29 identified 
high Ki-67 as an independent predictor of 
NACT response in patients with BC (n = 128). 
By contrast, Petit et al.30 observed higher Ki-
67 values in the complete response group 
but reported that the difference was not 
statistically significant. Additionally, studies 
by Bottini et al.31 and Estévez et al.32 found 
that Ki-67 was not a key predictor of NACT 
response. These different results are thought 
to arise from variations in patient groups and 
treatment protocols.

Figure 3. Deep learning model. The features extracted from the pre-contrast T1-weighted image (T1WI), 
post-contrast T1WI, and diffusion-weighted image (DWI) sequences were combined for each lesion, 
and classification was performed through a fully connected network with 1,792,896, and 256 neurons, 
respectively, in three dense layers. 

*Note: We tested alternative model configurations using multiple sequences (pre-T1WI, post-T1WI, DWI); 
however, the final reported model uses post-contrast T1WI only. CNN, convolutional neural network.
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Besides conventional analysis, several 
studies support the potential of AI in predict-
ing NACT outcomes. However, most of these 

studies used either one imaging method 
or one sequence, both pre-treatment and 
post-treatment images in combination, or 

all subtypes of the BC for the dataset. For 
instance, Herrero Vicent et al.24 combined 
multiparametric MRIs and clinical data to 
create a machine learning model. This study, 
conducted on a small group of 58 patients, 
achieved an accuracy of 0.87 using only ra-
diological imaging features.24 Similarly, our 
study achieved high accuracy despite using 
a small patient group, demonstrating that AI 
models can perform well even with limited 
data. 

Skarping et al.23 developed an AI model 
using pre-treatment digital mammograms 
to predict pCR in all BC subtypes. This mod-
el was applied to 453 lesions, and an AUC 
score of 0.7123  was achieved. Although their 
model used pre-treatment mammographic 
data, ours focused on MRI, demonstrating 
the versatility of imaging modalities in AI 
applications. In addition, we used different 
sequences to better understand the informa-
tion in each sequence. In another study, Qu 
et al.26 tested deep learning models on differ-
ent imaging sets, including pre- and post-ne-
oadjuvant T1WIs. Their model using only 
pre-treatment images had a lower AUC score 
of 0.55, but the combined model achieved a 
high AUC of 0.97.26 This suggests that com-
bining imaging datasets could substantially 
improve prediction accuracy; however, our 
study achieved stronger performance by only 
using pre-treatment images. Ha et al.25 devel-
oped a CNN using pre-neoadjuvant MRI data 
from 141 patients, achieving an impressive 
AUC score of 0.98. This high accuracy high-
lights the potential of deep learning meth-
ods in predicting therapy responses. These 
findings suggest that with more data and re-

Table 1. Descriptive results of the dataset indicate that tumor size (mm), tumor volume (mm3), and proliferation index (Ki67-) are significantly 
different between pCR and non-pCR groups

pCR Non-pCR

Total 20 29

Age (years) mean (± SD) 50.1 (10.9) 48.9 (13.3) P = 0.732

Mammographic density BIRADS

A (%) 2 (50%) 2 (50%) P = 0.556

B (%) 10 (50%) 10 (50%)

C (%) 5 (27.7%) 13 (72.3%)

D (%) 3 (42.8%) 4 (57.2%)

Tumor size (mm) median (Q1; Q3) 28.5 (22.5; 32.0) 35.5 (24.25; 56.5) P = 0.041

Tumor volume post-contrast T1WI (mm3) median 
(Q1; Q3) 9,243 (3,714; 13,665) 19,453 (5,029; 58,595) P = 0.030

Background parenchymal enhancement BIRADS

Minimal (%) 13 (44.8%) 16 (55.2%) P = 0.782

Mild (%) 5 (38.5%) 8 (61.5%)

Moderate (%) 2 (40%) 3 (60%)

Marked (%) 0 (0%) 2 (100%)

Proliferation (Ki-67) median (Q1; Q3) 80 (50; 80) 50 (30; 77.5) P = 0.027

SD, standard deviation; pCR, pathological complete response; T1WI, T1-weighted image.

Table 2. Multivariable logistic regression analysis of predictors for pathological complete 
response

Adjusted OR (95% Cl) P

Tumor size (mm) 1.05 (0.96–1.17) 0.299

Tumor volume, post-contrast T1WI (mm3) 1.00 (1.00–1.00) 0.040

Proliferation (Ki-67) 1.04 (1.01–1.07) 0.018

Pseudo R² (Nagelkerke): 0.422, Hosmer–Lemeshow P = 0.702, likelihood ratio test P < 0.001; OR, odds ratio; CI, 
confidence interval; T1WI, T1-weighted image.

Figure 4. Receiver operating characteristic curve for the best-performing convolutional neural network 
model using post-contrast T1-weighted imaging to differentiate pathological complete response (pCR) 
from non-pCR in the test set (n = 11). 
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fined methodologies, the performance of AI 
models such as that presented in this study 
could be further enhanced. Zhou et al.33 de-
veloped an AI model focusing solely on TNBC, 
using MRI datasets collected before and after 
four cycles of NACT. This study achieved an 
accuracy of 0.77, and using open-source data 
allowed them to expand their patient group 
to 162. Furthermore, this study used both 
pre-treatment and post-treatment images to 
increase the performance, but they failed to 
note whether they tried only pre-treatment 
images for any model.33 Previous studies are 
summarized in Table 3.

Overall, these studies highlight the prom-
ise of AI-based models in predicting NACT 
responses. As seen in the literature and our 
study, AI can provide high accuracy in pre-
dicting therapy outcomes, although larger 
patient groups and refined methodologies 
are necessary to enhance performance. Inte-
grating clinical and radiological data and AI 
can substantially aid clinical decision-making 
processes. 

This study has several limitations. First, 
the cohort size and small test set constrain 
statistical power and widen uncertainty 
around performance estimates. Second, clin-

ical staging at diagnosis was not consistently 
available across centers, which precluded 
stage-stratified analyses and may introduce 
clinical heterogeneity. Third, although we 
initially evaluated multiple MRI sequences, 
T2WIs were excluded because complete, 
high-quality series were insufficiently availa-
ble across patient cohorts and centers; more-
over, in other models within our sample, add-
ing DWIs and/or pre-contrast T1WIs did not 
improve discrimination over post-contrast 
T1WIs alone. These factors may limit gener-
alizability and should be addressed in larger, 
prospectively curated, multi-institutional co-
horts. Moreover, patients with non-mass en-
hancement were excluded due to difficulties 
in tumor segmentation. Although rare, this 
exclusion limits the model’s applicability to 
specific patient subgroups. Finally, this study 
evaluates a single residual CNN backbone 
without head-to-head comparisons against 
alternative deep learning architectures or 
classic machine learning approaches using 
hand-crafted radiomics, which restricts the 
scope for architectural comparison. 

Future research focusing on external 
validation across multiple institutions and 
scanners, prospective enrollment to ensure 

complete clinical staging and acquisition 
protocols, and development of multimod-
al models that fuse imaging-derived rep-
resentations with clinical biomarkers (e.g., 
Ki-67) might improve discrimination, calibra-
tion, and decision utility. With larger datasets 
and more complete sequence availability, 
we will revisit multi-sequence inputs and ex-
plore end-to-end 3D architectures and other 
architectural designs to test whether addi-
tional sequences and different architectures 
(e.g., T2WIs, DWIs) provide incremental value 
beyond post-contrast T1WIs.  

In conclusion, AI-based models hold con-
siderable potential in predicting NACT re-
sponses, particularly for aggressive subtypes 
such as TNBC. These models can improve 
clinical outcomes by optimizing treatment 
plans and personalizing care. However, ex-
panding research with larger, multicenter 
datasets is necessary to enhance the models’ 
generalizability and ensure broader clinical 
application. With continued advancements, 
AI can play a crucial role in the future of per-
sonalized BC treatment. 

Figure 5. Examples of the artificial intelligence (AI) model’s prediction. The upper-left tumor has a median size of 70 mm, a volume of 68,870 mm3, and a Ki-67 value 
of 35, with no response. By contrast, the upper-right tumor has a median size of 25 mm, a volume of 3,714 mm3, and a Ki-67 value  of 50, with a complete response. 
pCR, pathological complete response.
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