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ABSTRACT
Foundation models (FMs) represent a significant evolution in artificial intelligence (AI), impacting 
diverse fields. Within radiology, this evolution offers greater adaptability, multimodal integration, 
and improved generalizability compared with traditional narrow AI. Utilizing large-scale pre-train-
ing and efficient fine-tuning, FMs can support diverse applications, including image interpretation, 
report generation, integrative diagnostics combining imaging with clinical/laboratory data, and 
synthetic data creation, holding significant promise for advancements in precision medicine. How-
ever, clinical translation of FMs faces several substantial challenges. Key concerns include the in-
herent opacity of model decision-making processes, environmental and social sustainability issues, 
risks to data privacy, complex ethical considerations, such as bias and fairness, and navigating the 
uncertainty of regulatory frameworks. Moreover, rigorous validation is essential to address inherent 
stochasticity and the risk of hallucination. This international collaborative effort provides a compre-
hensive overview of the fundamentals, applications, opportunities, challenges, and prospects of 
FMs, aiming to guide their responsible and effective adoption in radiology and healthcare.
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Artificial intelligence (AI), particularly deep learning (DL), has demonstrated consider-
able efficacy in medical image analysis across various imaging modalities.1,2 Tradition-
ally, however, AI models in healthcare have been mostly developed for narrow tasks 

that are highly specific and limited. The recent emergence of foundation models (FMs) rep-
resents a significant paradigm shift.3,4 These large DL models exhibit broad adaptability to a 
wide range of downstream tasks with minimal task-specific modification.5,6

A notable example of FMs is represented by large language models (LLMs), optimized for 
language-centric tasks, such as summarization, translation, and answering questions.7 Al-
though LLMs primarily process text, the broader category of FMs can encompass multiple 
modalities, including text, images, audio, and a diverse spectrum of unstructured data.8,9 This 
inherent multimodality aligns well with the diverse data types encountered in modern medi-
cine, such as imaging, clinical narratives, laboratory results, and genomic information.10-12

Although current radiology workflows predominantly utilize task-specific models, the mul-
timodal capabilities of FMs make them particularly promising for this field, offering potential 
support across various interpretative and non-interpretative scenarios (Figure 1).13,14 The ca-
pabilities of LLMs have already been explored for several radiology-related tasks, including 
report generation,15 multilingual report translation,16 information extraction from free-text 
reports,17 and the assessment of domain-specific radiological knowledge.18 Despite growing 
interest, the use of FMs in radiology is still in the early stages, with ongoing active research 
and development.13,14,19-21

Received 06 May 2025; revision requested 10 June 2025; 
accepted 22 June 2025.

Corresponding author: Tugba Akinci D’Antonoli

E-mail: tugba.akincidantonoli@unibas.ch

1University Hospital Basel, Department of Diagnostic 
and Interventional Neuroradiology, Basel, Switzerland

2University Children’s Hospital Basel, Department of 
Pediatric Radiology, Basel, Switzerland

3University Hospital Zurich, Institute for Diagnostic 
and Interventional Radiology, Zurich, Switzerland 

4Department of Medicine, Surgery and Dentistry, 
University of Salerno, Baronissi, Italy

5University of Crete School of Medicine, Artificial 
Intelligence and Translational Imaging (ATI) Lab, 
Department of Radiology, Crete, Greece 

6Foundation for Research and Technology 
(ICS-FORTH), Institute of Computer Science, 
Computational Biomedicine Lab, Crete, Greece

7Karolinska Institute, Department of Clinical Science, 
Intervention and Technology (CLINTEC), Division of 
Radiology, Stockholm, Sweden

8University of Naples Federico II, Department of 
Advanced Biomedical Sciences, Naples, Italy

9Başakşehir Çam and Sakura City Hospital, 
Department of Radiology, İstanbul, Türkiye

 Tugba Akinci D’Antonoli1,2

 Christian Bluethgen3

 Renato Cuocolo4

 Michail E. Klontzas5,6,7

 Andrea Ponsiglione8

 Burak Kocak9

Foundation models for radiology: fundamentals, applications, 
opportunities, challenges, risks, and prospects

R E V I E W  A R T I C L E

Diagn Interv Radiol 2025; DOI: 10.4274/dir.2025.253445

Epub: 08.07.2025

Publication date: xx.07.2025

DOI: 10.4274/dir.2025.253445

https://orcid.org/0000-0002-7237-711X
https://orcid.org/0000-0001-7321-5676
https://orcid.org/0000-0002-1452-1574
https://orcid.org/0000-0003-2731-933X
https://orcid.org/0000-0002-0105-935X
https://orcid.org/0000-0002-7307-396X


 

 • July 2025 • Diagnostic and Interventional Radiology Akinci D’Antonoli et al.

To facilitate the development and poten-
tial adoption of FMs, this narrative review 
synthesizes current knowledge about FMs 
and aims to provide a comprehensive over-
view of FMs in the context of radiology. It in-
troduces the fundamental concepts behind 
FMs, examines their potential applications 
in radiology, highlights emerging opportu-
nities, outlines key challenges, and suggests 
future directions in both research and prac-
tice. 

Fundamental concepts of foundation mod-
els

FMs mark a fundamental shift within the 
conceptual hierarchy of AI (Figure 2), mov-
ing beyond conventional, narrowly focused 
AI systems. They are a class of large-scale AI 
models developed through training on vast 
and diverse datasets.3 A defining feature is 
their pre-trained nature; unlike convention-
al models engineered for a single, narrow 
task (e.g., solely lung nodule detection or 
lung segmentation), FMs serve as versatile 
base models (created through pre-training), 
adaptable to numerous downstream ap-
plications (through fine-tuning, continued 
training on smaller, task-specific datasets). 

This inherent adaptability results from 
several key characteristics (Figure 3). First, 
the pre-training stage of FMs usually lever-
ages self-supervised learning, allowing the 
model to learn rich data representations 
from the data itself (e.g., by solving pretext 
tasks, such as predicting masked portions of 
an image or a text) using unstructured, unla-
beled, or weakly labeled data (Figure 4).22,23 
This contrasts sharply with conventional 
methods, which typically require significant 
amounts of high-quality (manually) labeled 
data for each distinct task, a major bottle-

neck due to cost and expert time. Although 
FMs still require labeled data for fine-tuning, 
the reliance on specific data for each applica-
tion can be substantially reduced compared 
with conventional AI methods (Figure 5).

Second, the reduced need for labeled 
data allows FM development on a large scale, 
referring to model size, computational re-
sources, and dataset size.24 This scale enables 
the models to learn more generalizable and 
robust representations that, in turn, support 
the scalability of the FMs themselves (larger 
models become feasible with more training 
data, and more generalizable representa-
tions apply to more possible downstream 
applications). This differentiates FMs from 
conventional models, which often exhibit 
limited generalizability beyond the precise 
conditions (e.g., patient populations or tasks) 
for which they were trained. Additionally, 
scaling models has led to the emergence of 
functionalities beyond the explicit training 
objectives,3 such as instruction following, ca-
pabilities unprecedented (or at least hardly 
detectable) in smaller-scale models.25-27

Finally, self-supervised learning and the 
scale of FMs equip them with strong transfer 
learning capabilities.28-31 The general knowl-
edge acquired during the resource-intensive 
pre-training phase can be effectively uti-
lized for new, specific tasks through minimal 
fine-tuning. This facilitates few-shot learning 
(where only a small number of task-specific 
examples are provided) and zero-shot learn-
ing (using no examples),32-34 where models 
adapt with substantially less specific data 
than conventional approaches demand. For 
instance, an FM pre-trained via self-super-
vised learning on large chest X-ray datasets 
may be fine-tuned for rib fracture detection 
using only dozens of cases, whereas a con-
ventional model may require thousands to 
reach comparable performance.

Developing multimodal foundation mod-
els

FMs first took shape in natural language 
processing (NLP) in the form of LLMs, such as 
Generative Pre-trained Transformer (GPT)-4 
(OpenAI) and Claude (Anthropic). Although 
FMs can be unimodal, focusing exclusively 
on one data type, such as text (in the case 
of LLMs) or images,35,36 a development of 
particular importance for radiology is their 
potential to be multimodal by being able 
to process and integrate diverse data types, 
including images [e.g., X-rays,37-40 computed 
tomography (CT),41,42 and magnetic reso-
nance imaging (MRI)43], text (e.g., reports and 

other electronic health record documents), 
and potentially many more (Figure 1).

Key concepts and modules of FMs con-
cerning radiological applications are present-
ed in Figure 6. Although architectures vary, 
the transformer design is a frequently used 
backbone.44 Its central feature, the attention 
mechanism, allows it to focus on specific el-
ements of the input sequence. This enables 
the model to capture long-range depen-
dencies and contextual relationships within 
data effectively, which gave rise to its initial 
success in NLP and subsequent adaptation 
for vision and multimodal scenarios.45,46 A 
key concept in handling diverse inputs is the 
use of modality-specific encoders.47 These 
components compress high-dimensional 
inputs (such as CT scans or text reports) into 
lower-dimensional embeddings (i.e., numer-
ical vector representations), capturing essen-
tial features (e.g., tissue density, anatomical 
structures, radiological terms). Common en-
coder architectures include vision transform-
ers and convolutional neural networks for 
images, and transformers for processing text 
data. To enable the model to understand re-
lationships across different data types, tech-
niques such as contrastive learning are often 
employed during pre-training (Figure 7). For 
instance, the model learns that a specific 
chest X-ray and its corresponding report de-
scribe the same case. Model weights are ad-
justed so that the embeddings for a matching 
image–report pair are pulled closer together 
in a conceptual “shared space,” whereas em-
beddings for unrelated pairs (e.g., the same 
chest X-ray paired with a report from a differ-
ent patient) are pushed further apart to learn 
meaningful cross-modal associations. The 
Contrastive Language–Image Pre-Training 
(CLIP) model is a dual neural network trained 
on a variety of image and text data pairs and 
is an early example of FMs created this way.45

After the individual encoders have pro-
cessed their respective inputs, fusion mod-
ules are used to combine this information, 
which can happen in several ways (Figure 8). 
Mechanisms such as cross-attention are par-
ticularly powerful here, allowing the model 
to weigh dynamically the relevance of dif-
ferent parts of one modality based on the 
content of another–for example, attending 
to specific words in a report when analyzing 
a corresponding slice in a CT scan.

Finally, decoders transform these fused 
representations into desired outputs, which 
could range from generating text (e.g., re-
port summaries) and predicting classes or 
outcomes to segmenting relevant image 

Main points

• Foundation models (FMs) are versatile arti-
ficial intelligence (AI) systems pre-trained 
on large, diverse datasets, enabling them to 
adapt to many tasks with minimal fine-tun-
ing.

• FMs with multimodal capacities offer pow-
erful tools for complex radiological applica-
tions, such as report generation and diag-
nostic decision-making.

• FMs have the potential to democratize AI in 
healthcare by requiring less local data for 
fine-tuning, helping under-resourced cen-
ters.

• Major challenges to FM use in imaging in-
clude stochasticity, hallucinated outputs, 
transparency, bias, sustainability, and regu-
lations.
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regions, depending on the specific applica-
tion. Adapting existing FMs to a specific task 
can be achieved through full fine-tuning 
(updating all model parameters) or less com-
putationally expensive parameter-efficient 
fine-tuning techniques that update only a 
small number of parameters (Figure 9).48

These characteristics make FMs versatile, 
adaptable, and data-efficient AI models that 
can integrate multimodal data and capture 
long-range dependencies within high-di-
mensional data and across different modal-
ities that may elude narrower models. This 
uniquely positions FMs to tackle complex 
problems from the field of radiology by pro-
viding potentially richer, more contextual-
ized insights that reflect clinical reality better 
than conventional AI models.47

Applications in radiology

Creating a radiology-specific FM from 
scratch could be highly cost-intensive, as ra-
diology consists of a wide range of imaging 
modalities, including X-rays, ultrasound, nu-
clear imaging, and MRI, that have significant 
variations in their underlying technologies 
and data characteristics.49 Nevertheless, re-
cent advances have shown promising path-
ways to adapt or fine-tune general-purpose 
models for domain-specific tasks and mo-

dalities, leading to a growing number of suc-
cessful applications in radiology.

One core application is medical image 
segmentation, which aims to delineate re-

gions of interest, such as lesions or organs, 
automatically. DL models, especially those 
using the nnU-Net architecture, have shown 
high accuracy in normal anatomical seg-

Figure 1. Foundation models in radiology with diverse inputs to perform various interpretative and non-interpretative tasks through training and adaptation. CT, 
computed tomography; MRI, magnetic resonance imaging; AI, artificial intelligence; EHR, electronic health record. 

Figure 2. Oversimplified conceptual hierarchy, illustrating the relationship and progression of key domains 
in artificial intelligence towards foundation models with multimodal capabilities. AI, artificial intelligence.
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Figure 3. Summary of three key characteristics of foundation models.

Figure 4. Simplified multimodal self-supervised learning examples. (Top left) Contrastive learning aligns paired image-text embeddings [e.g., brain magnetic 
resonance imaging (MRI) and report], usually by minimizing the distance between positive pairs and maximizing the distance between negative pairs. (Middle left) 
Masked self-prediction reconstructs masked regions of an image or text using cross-modal context. (Bottom left) Cross-modal generation predicts one modality 
from another (e.g., full text reports from image embeddings). (Top right) Text-only prompt-based learning uses a natural language query (e.g., “What abnormality 
is visible?”) to guide generative outputs based on an MRI image input. (Bottom right) Multimodal prompt-based learning uses both current and baseline imaging 
along with text prompts (e.g., “Compare current scan to baseline”) to support complex clinical tasks, such as disease progression assessment or change detection. 
The baseline image serves as a visual prompt.
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mentation tasks.50-52 However, the challenge 
arises when it comes to pathologies, where 
separate models need to be trained for each 
one of them; for example, a model trained for 
liver tumor segmentation cannot be directly 
applied to the lung tumor or prostate cancer 
segmentation tasks. 

In April 2023, the Segment Anything Mod-
el (SAM) was introduced, demonstrating the 
potential for a single model to handle various 
segmentation tasks across different domains 
without needing retraining or fine-tuning.53 

Despite this, SAM’s performance on com-
plex medical segmentation tasks, such as 
those involving the pancreas and spine, has 
not been satisfactory.51,54,55 Vision FMs, such 
as SAM, can serve as starting points, which 
are then adapted into modality/task-specific 
FMs (e.g., Medical SAM 2) optimized by lever-
aging the unique characteristics of medical 
imaging modalities.37,56,57

Another notable development is Uni-
verSeg, a single task-agnostic model trained 
using a large and diverse set of open-access 
medical datasets.58 This model can general-

ize to the anatomies and segmentation tasks 
that were not in the training set or were never 
seen by the model previously. Notably, Uni-
verSeg significantly outperformed existing 
few-shot methods across all held-out data-
sets. However, it is important to note that the 
model was only applied to two-dimensional 
data and single-label segmentation, and its 
performance for three-dimensional medical 
image data remains unclear.

FMs have also shown promise for lesion 
identification and characterization in differ-
ent clinical scenarios.19,59 For example, CXR-
Base was developed using a large collection 
of unlabeled chest X-ray images through 
self-supervised learning.59 This approach was 
sequentially applied to both natural images 
from ImageNet-1k and chest X-ray images 
from various public datasets, encompassing 
a total of 1.1 million chest X-ray images. The 
model demonstrated good performance 
across multiple datasets from different cen-
ters for diagnosing diseases such as corona-
virus disease 2019, pneumonia, and tubercu-
losis.

Radiology report generation and compre-
hension represent further promising areas 
for multimodal FMs. In the task of generating 
radiology reports, these models can identify 
abnormalities within images from various 
modalities while incorporating the patient’s 
medical history and clinical examination 
findings.60 By integrating both text and imag-
es, these models can generate precise radiol-
ogy reports, help standardize report quality 
by detecting inconsistencies or omissions, 
and subsequently reduce the workload for 
radiologists.61 Additionally, these models can 
generate reports in multiple languages and 
adjust the complexity of the language to suit 
the target audience, providing detailed con-
tent for specialists and simplified versions for 
general practitioners.16,62

For the comprehension task, physicians 
can also use multimodal models to enhance 
case comprehension by engaging in text-
based dialogues that focus on specific image 
sections, allowing for detailed descriptions 
of those areas.63 Furthermore, the reports 
generated by FMs can offer preliminary diag-

Figure 5. Comparison of conventional artificial intelligence (AI) and foundation models (FMs). Conventional AI requires large, labeled datasets tailored to each 
specific task and produces models limited to that task. For example, Task A (e.g., lung nodule detection on chest X-ray) and Task B (e.g., lung opacity classification) 
each require separate models trained on task-specific labeled data. In contrast, FMs are pre-trained on massive unlabeled data and can be adapted to various 
downstream tasks using smaller labeled datasets. FMs also support zero-shot learning, where the model performs new tasks, such as Task C (e.g., pneumonia 
detection) and Task D (e.g., pleural effusion identification) without fine-tuning or labeled data. Instruction tuning allows the model to learn from instruction–output 
pairs (i.e., prompt > output or prompt + image > output) and match expected outputs by adjusting itself when errors occur. This enables it to perform complex tasks, 
such as Task E (e.g., automated lung report generation) and Task F (e.g., triage of abnormal chest findings) without needing labeled examples for each. 
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noses, supporting radiologists and clinicians 
in their decision-making process.64 These 
models can potentially propose treatment 
options or recommend additional diagnostic 
tests, enhancing the overall clinical workflow 
for personalized medicine.65

Opportunities for radiology

Building on the capabilities outlined 
above, the adoption of FMs in radiology 
presents several strategic opportunities (Fig-
ure 10). 

A key opportunity lies in the ability to 
fine-tune pre-trained FMs with smaller, local 
datasets.66 This can reduce the inequalities 
related to the availability of data,67 democra-
tizing access to these applications for health-
care systems with limited data or access to 
infrastructure. The lower reliance on large 
datasets can allow their use in centers with 
limited funding or limited population cover-
age, which prevents the collection of a high 
number of cases. 

Fine-tuning the models with local data-
sets can mitigate biases related to underrep-

resented population characteristics or local 
peculiarities related to equipment or radio-
logical protocols. At the same time, leverag-
ing their pre-training on large datasets, FMs 
trained on diverse populations can provide 
more equitable care recommendations, re-
ducing diagnostic errors in underrepresent-
ed groups such as children, ethnic minorities, 
or patients with rare conditions.68

To further address data imbalance, tech-
niques such as synthetic data generation can 
be used. FMs have the potential to create 
synthetic medical images, such as CT scans, 

Figure 6. Key concepts and modules of foundation models, with respect to radiological applications. CT, computed tomography; MRI, magnetic resonance 
imaging; AI, artificial intelligence.
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MRIs, and X-rays, that resemble real-world 
data.69,70 These artificially generated datasets 
can serve as valuable supplements to exist-
ing image collections, particularly when ac-
cess to patient data is restricted due to priva-
cy issues or limited availability. By generating 
variations of medical images, these models 
can help address imbalances in datasets, ef-
fectively representing a broader spectrum of 
pathologies.

The ability to build upon pre-trained 
backbones has the potential to shorten the 
innovation-to-implementation cycle signifi-
cantly. Researchers can build on top of mod-
els trained to capture broad medical imaging 
features and clinical context, rather than cre-
ating new models from scratch.71 Reducing 
the duration of the innovation-to-implemen-
tation cycle can accelerate the development 
of novel applications, simplify cross-institu-
tional collaborations, and allow innovations 
developed in academic settings to be rapidly 
tested and adapted in hospitals, startups, or 
public health agencies.

FMs also offer unique educational bene-
fits. Automatically annotating synthetic or 
real images with detailed descriptions, such 
as the identification of lesions, tumors, or an-
atomical landmarks, can help radiology res-
idents and healthcare professionals quickly 
understand complex images. Furthermore, 
FMs can enhance educational content by 
not only annotating images but also offering 

Figure 7. Simplified illustration of contrastive learning. Paired medical images and reports are encoded into embeddings (i.e., numerical vector representations), 
which are trained to attract matching pairs and repel mismatched ones. This process aligns similar representations in the shared embedding space to improve 
cross-modal understanding.

Figure 8. Simplified illustration of multimodal fusion strategies. Illustration of early, intermediate, and late 
fusion methods for combining medical images and their respective reports. Intermediate fusion (i.e., hybrid 
or deep fusion) is more common in foundation models due to its flexibility and effectiveness in capturing 
cross-modal interactions. CT, computed tomography.
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detailed explanations of pathologies, their 
clinical importance, and treatment options, 
creating an engaging and interactive learn-
ing experience.21

Moreover, patients will be empowered as 
their health data, such as their medical his-
tory and imaging results, could be translated 
into personalized, simplified explanations of 

their condition, treatment options, and pos-
sible outcomes with FMs, thus helping pa-
tients gain a clearer understanding of their 
specific health situation.72,73

FMs introduce a new paradigm in preci-
sion medicine by enabling the integration of 
diverse data types, such as the combination 
of diagnostic images, omics, clinical, and lab-
oratory data.10 Radiologists interpret images 
in light of clinical information and questions 
and combine or harmonize these different 
types of information without much effort in 
their day-to-day jobs. However, existing AI ap-
plications have been inherently less accurate 
than radiologists, wherever such data harmo-
nization was required. With the advance of 
FMs, there has been a significant leap towards 
the combination of multimodal data, which 
enables more accurate prognostication, risk 
stratification, and treatment planning.74

Beyond data integration, FMs also have 
the capacity to support complex diagnostic 
reasoning in uncertain or ambiguous clinical 
situations. In real clinical practice, radiolo-
gists often deal with cases that are not clear-
cut, where the diagnosis is not obvious, and 
decisions have to be made with incomplete 
information, taking into account follow-up 
data. FMs can execute different tasks that 
can help in these situations by offering in-
sights that take the full clinical context into 
account, rather than just giving a simple yes/
no answer.47 Such models can be trained on a 
variety of tasks representing real diagnostic 
scenarios, where the radiologist is present-
ed with imaging examinations that depict a 
series of pathological conditions and require 
complex reasoning. 

To provide a perspective on emerging 
opportunities, a comparative overview of 
conventional AI (single or multimodal), mul-
timodal FMs, radiologist interpretation, and 
a combined radiologist-FM approach is pre-
sented in Table 1.

Challenges and risks for radiology

As discussed so far, although FMs hold 
promise for transforming radiology, they also 
introduce multifaceted challenges. Radiolo-
gists must remain aware of these issues and 
proactively address them to ensure the safe, 
ethical, and effective implementation of FMs 
in radiology (Figure 11). 

One of the main concerns is the stochastic 
nature of these models, where their outputs 
may vary every time they are executed, and 
another is that they can generate plausi-

Figure 9. Simplified overview of adaptation methods for pre-trained models. Linear probing updates only 
the classifier, fine-tuning updates the classifier and optionally parts or all of the pre-trained model, whereas 
parameter-efficient fine-tuning (e.g., LoRA) inserts low-rank matrices (A and B) without updating original 
weights.

Figure 10. Potential opportunities of foundation models in radiology. FM, foundation models.
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ble-sounding yet incorrect or entirely fabri-
cated information (a phenomenon known 
as “hallucination”).7 Beyond these inherent 
issues, FMs present several broader challeng-
es, especially in radiology and healthcare in 
general. These include challenges related to 
sustainability, transparency, ethics, cyberse-
curity, privacy, standardization, and valida-
tion.

Another concern is sustainability and en-
vironmental impact, as the development and 
deployment of FMs are highly resource-in-
tensive. They demand vast computational 
power, energy, and even water. For example, 
generating a single image with a generative 
AI model can consume the equivalent of 
half a smartphone’s battery charge,75 while 
producing 10–50 medium-length chatbot 
responses may require up to half a liter of 
fresh water (Figure 12).76 Since radiology al-
ready depends on energy-intensive imaging 
equipment, implementing these models in 

radiology could further exacerbate environ-
mental burdens.77,78 Addressing these issues 
and promoting sustainable practices are 
essential to reducing the environmental im-
pact of FMs in radiology.

FMs often operate as “black boxes,” pro-
ducing outputs without providing clear ex-
planations of their reasoning processes.79 In 
radiology, transparency and explainability 
are critical. Diagnostic decisions made by ra-
diologists must be evidence-based to guide 
treatment plans and ensure patient safety. If 
a radiologist cannot justify a diagnosis aid-
ed by these tools, their trust in this decision 
may be undermined. Implementing models 
with reasoning capabilities, such as OpenAI’s 
GPT o1 series, or adopting frameworks that 
are designed to facilitate reasoning may help 
improve trust in model outputs.80

Moreover, FMs are prone to perpetuat-
ing or even amplifying biases present in 
the training data, which can contribute to 

healthcare disparities.67 In addition, unequal 
access to such technologies may further dis-
advantage under-resourced institutions.67 
The legal framework surrounding AI in ra-
diology is also still evolving, and questions 
about liability, especially in cases where di-
agnostic errors result from following or ig-
noring AI-aided recommendations, remain 
unresolved.81 Clear ethical guidelines and 
legal standards are needed to navigate these 
challenges responsibly. 

Training FMs requires large datasets that 
may contain sensitive patient information. 
This raises substantial privacy concerns; 
therefore, ensuring rigorous data ano-
nymization practices during the model train-
ing, as well as not using patient data directly 
as input during model implementation, is 
essential.79 FMs may also pose cybersecuri-
ty threats, and these tools could be exploit-
ed by malicious actors to extract sensitive 
patient data through techniques such as 

Table 1. Comparative overview of hypothetical glioma diagnostic pathways using conventional artificial intelligence, multimodal foundation 
models, radiologist interpretation, and a combined radiologist–FM approach, with an optimistic perspective

Aspect Conventional AI (single or 
multimodal)

Multimodal FM Radiologist (human) Radiologist + multimodal FM

Inputs

Brain magnetic resonance 
imaging only + structured 
clinical data (e.g., age, 
simple symptoms)

MRI + clinical notes (e.g., seizures, 
cognitive decline) + structured 
labs (e.g., IDH status if known) + 
prior imaging

MRI + full clinical history + 
prior scans + surgical reports, 
pathology if available

Same as FM (MRI + notes + labs + 
prior imaging)

Processing

Task-specific detection/
classification (e.g., 
identification of mass, 
segmentation of lesion, 
basic grading)

Integration of MRI patterns 
+ textual symptoms + past 
treatments to predict diagnosis, 
with multimodal reasoning

Correlation of imaging patterns 
with clinical context and 
history (e.g., tumor vs. abscess 
vs. gliosis)

FM preliminary synthesis + human 
critical review, correction, and clinical 
judgment

Clinical 
understanding

Limited contextual 
understanding detects 
and segments tumor but 
lacks the ability to interpret 
complex clinical nuances 
not trained for 

Broader contextual reasoning by 
combining multiple modalities, 
such as text and image; may 
suggest differential diagnoses, 
but reliability varies, particularly 
in rare or atypical cases 

Deep contextual 
understanding built from 
experience and training; able 
to integrate subtle imaging 
findings with complex clinical 
backgrounds 

Combines FM rapid synthesis 
with human clinical judgment; 
radiologist can verify, contextualize, 
and override FM suggestions when 
needed

Decision 
support

Reports lesion size, volume, 
location, edema; sometimes 
estimates basic tumor type 
(low-grade vs. high-grade)

Provides full contextual report 
(e.g., type prediction, treatment 
suggestions such as re-operation, 
re-irradiation)

Provides full diagnostic 
impression (e.g., tumor type 
suggestion, progression vs. 
pseudoprogression analysis, 
biopsy guidance)

FM provides draft; radiologist 
validates, corrects, adds nuanced 
interpretation, finally providing an 
optimized report

Adaptability

Low to moderate: Cannot 
dynamically adapt to 
unexpected cases (e.g., rare 
glioma subtypes, atypical 
presentations)

High: Generalizes from large data, 
but can still hallucinate or miss 
rare conditions

Very high: Experienced ones 
adapt to rare, complex, or 
conflicting clinical/imaging 
situations

Potentially highest: However, real 
world performance depends on the 
quality of human–AI interaction (e.g., 
hesitance to override AI outputs ) 

Interaction No interaction: Static 
outputs

Emerging: Can answer prompts 
(e.g., “What is differential 
diagnosis?”)

High: interacts with clinicians, 
neurosurgeons, oncologists, 
and pathologists; discusses 
complex cases

Highest: Radiologist queries FM, 
adjusts outputs, discusses with 
clinicians dynamically

Limitations

Misses context (e.g., prior 
radiation therapy effects); 
cannot explain atypical 
findings

Hallucination risk; lack of 
explainability in complex or rare 
cases

Human variability, fatigue, long 
interpretation times

Human-in-the-loop improves safety, 
but challenges remain (e.g., bias, 
liability concerns, need for clear 
definitions of radiologists’ role in AI-
assisted decision support)

AI, artificial intelligence; FM, foundation models; MRI, magnetic resonance imaging; IDH, isocitrate dehydrogenase.
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jailbreaking or to manipulate model output 
through techniques such as backdoor at-
tacks.82,83 Ensuring robust security protocols 
and continuous monitoring is essential to 
safeguard patient data and maintain trust 
when implementing these tools in radiology.

Evaluating the performance of FMs pres-
ents another set of challenges. Traditional 
metrics, such as accuracy or F1 score, may 
be inadequate for assessing generative out-
puts or for evaluating the model’s genera-
tion quality due to the lack of a reference 
standard.47 Moreover, regulatory guidelines 
for ensuring the clinical safety and efficacy 
of these models are still in their infancy, and 
each country or region creating its own set of 
frameworks makes it harder to disseminate 
these tools (e.g., the AI Act across Europe and 
the Food and Drug Administration medical 
device law across the USA).84 Rigorous vali-
dation processes and international regula-
tory alignment are necessary to overcome 
this hurdle. Besides the aforementioned 
challenges, foundational models introduce 
additional risks. For example, over-reliance 
on AI tools may lead to the deskilling of ra-
diologists, weakening their ability to assess 
critically the AI-aided recommendations.85 
Ongoing education and training for radiolo-
gists are essential to mitigate deskilling and 
ensure appropriate use of these technolo-
gies. 

Prospects

As previously discussed, attention-based 
FMs have represented a technological leap in 

AI capabilities, with a wide range of poten-
tial applications in medical imaging. How-
ever, it should be noted that AI research is in 
continuous development, and even as LLMs 

and FMs are just starting to be employed in 
the radiology domain, novel technologies 
are already aiming to complement or substi-
tute current architectures and improve upon 

Figure 12. Environmental impact of foundation models. AI, artificial intelligence.

Figure 11. Potential risks and challenges ahead for implementing foundation models in radiology.
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their performance, alignment, and other lim-
itations.

Among DL developments, state space 
models and recurrent neural networks cur-
rently represent promising architectures in 
the context of FMs, although the latter is a 
relatively mature technology.86-88 Both meth-
ods, with different specific implementations, 
including hybrid approaches,89 incorporate 
recursive computation and representation of 
longer data sequences compared with “pure” 
transformer-based models. Furthermore, as 
is often the case in AI, these represent, at 
least in part, implementations of concepts 
initially theorized decades ago,90 which have 
found new applications due to an increase in 
computational power and data availability.

Independent of the chosen neural net-
work architecture, in the future, radiologists 
should expect (and increase their demand 
for) greater use of open-source software in 
the setting of generative AI and FMs. At the 
moment, this domain is largely dominated 
by proprietary (i.e., closed) technologies, 
which obfuscate the data used to train these 
tools, the network’s architecture, and the 
specific weights stored within the trained 
model. As previously mentioned, this lack of 
transparency represents a limitation to the 
implementation of FMs in healthcare, as well 
as running contrary to the principles con-
tained within the European Union’s AI regu-
latory framework.91 Nevertheless, high-per-
formance and large-scale FMs, which are also 
open-source, are already available, with Me-
ta’s LLaMA being the most well-known. On 
the other hand, the increase in transparency 
afforded by open-source software comes 
with different considerations and potential 
tradeoffs. Although open-sourcing the mod-
el itself does not inherently compromise the 
privacy of the original training data (which 
are usually kept separate) or the input data, 
ensuring model security, preventing model 

misuse, and mitigating potential risks such 
as cyberattacks requires careful governance; 
this may represent a significant issue in sen-
sitive contexts, such as medical imaging. Fur-
thermore, although open source does not 
represent an outright impediment to patent-
ing, it does present a greater degree of chal-
lenge in protecting the technology behind 
a medical device and allowing a company 
to extract the economic value necessary to 
justify the large-scale investments required 
to develop such devices and the models run-
ning in the backend. This tension between 
private companies and public interest is not 
new to healthcare and has been the object 
of long debates in, for example, the setting 
of pharmaceutics.92-94

AI and FMs can certainly look to these 
lessons to further establish the appropriate 
ethical and regulatory framework as these 
technologies increase their footprint in med-
ical imaging, rather than attempting to rein-
vent the wheel. A clear sign of the relevance 
of these considerations is represented by the 
EU Commission’s recently announced inten-
tion to withdraw the proposed AI Liability 
Directive in its 2025 work program, demon-
strating the regulator’s difficulties in bal-
ancing patient protection and incentivizing 
innovation.95,96

AI and FMs will almost certainly impact 
healthcare, especially medical imaging,97 in 
the future. In this setting, radiologists will 
need to be ready to increase their involve-
ment in multidisciplinary teams. Deploy-
ment (and development) of FMs will require 
the expansion of the expertise requirements 
in imaging departments and closer collab-
oration with information technology, data 
science, and machine learning operations 
professionals. It could also be argued that 
the current vision in this profession regard-
ing the implementation of this type of AI is 
still limited and mostly based on “adding on” 
FM to the current clinical workflow.98 Howev-

er, it is also possible that this may not be the 
best strategy to implement this technology 
and may lead to unmet expectations and low 
impact on patient outcomes.99,100 Rather, the 
time may soon come to face the reality that 
FMs will require a radical rethinking of parts 
of the medical imaging practice: for example, 
regarding the scale of service delivery and 
role of the radiologist.101

Final thoughts

FMs represent a potential paradigm shift 
in AI, offering broad adaptability, multimod-
al integration, and improved generalizability 
across a wide range of tasks. In radiology, 
FMs have an immense potential to enable 
applications spanning image analysis, re-
port generation, and integrative diagnos-
tics across heterogeneous data sources. 
However, realizing this potential requires 
addressing key challenges, including issues 
of transparency, sustainability, data privacy, 
regulatory complexity, and ethical imple-
mentation. The inherent stochasticity and 
risk of bias in these models necessitate rig-
orous validation and continuous monitoring. 
Successful integration will require not only 
technical advancement but also adaptive 
clinical workflows and absolute transpar-
ency, potentially facilitated through open-
source frameworks. Radiologists (along with 
other stakeholders) must play a central role 
in guiding the responsible development and 
deployment of FMs to ensure they augment, 
rather than undermine, the quality, safety, 
and equity of patient care. To this end, the au-
thors of this international collaborative effort 
provide the radiology community with a set 
of practical recommendations based on the 
content extensively discussed in this work, 
to facilitate the better integration of FMs into 
clinical practice (Table 2). The authors hope 
that both the review and the accompanying 
recommendations will serve as a solid foun-
dation for radiologists in adapting to rapidly 
evolving AI technologies, specifically FMs. 
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