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PURPOSE

To develop and validate a deep learning-based model utilizing lesion-specific segmentation to
determine the changed/unchanged status of consolidation and pleural effusion in paired chest
radiographs (CRs).

METHODS

The model was trained using 5.178 CRs from a single institution for lesion segmentation. Paired
CRs from the emergency department (ED) and intensive care unit (ICU) were used to determine
the thresholds for change and temporal validation. Model performance was evaluated through the
area under the receiver operating characteristic curve (AUC), and its accuracy was compared with
that of a thoracic radiologist.

RESULTS

In the ED, the model achieved AUCs of 0.988 and 0.883 for consolidation and pleural effusion, re-
spectively, with accuracies of 0.900 (36/40) and 0.825 (33/40). The radiologist showed accuracies of
0.975 (39/40) and 0.950 (38/40), respectively. In the ICU, model AUCs were 0.970 (consolidation) and
0.955 (pleural effusion), with accuracies of 0.875 (35/40) and 0.800 (32/40), respectively. Radiologist
performance was 0.975 (39/40) for consolidation and 1.000 (40/40) for pleural effusion. No signif-
icant accuracy differences were observed between the model and radiologist for consolidation in
the ICU or both targets in the ED (all P > 0.05), except for pleural effusion in the ICU (P = 0.01).

CONCLUSION
The lesion-specific deep learning model was feasible for identifying interval changes in consolida-
tion and pleural effusion on follow-up CRs.

CLINICAL SIGNIFICANCE
It could potentially be utilized for prioritizing interpretation, generating alerts, and extracting
time-series data from multiple follow-up CRs.

KEYWORDS
Radiography, thoracic, follow-up studies, diagnosis, computer-assisted, artificial intelligence, seg-
mentation

hest radiography is a widely used medical imaging modality due to its cost-effective-

ness and low radiation exposure. Chest radiographs (CRs) detect thoracic abnormalities

and track changes during follow-ups. Monitoring abnormalities such as pleural effusion
or consolidation is crucial for evaluating disease progression and treatment response.’* How-
ever, frequent follow-up CRs increase workload. For example, in intensive care units (ICUs), CR
is often performed daily for patients who are critically ill or after device adjustments, generat-
ing millions of ICU CRs annually in the United States.>® Consequently, the timely and accurate
interpretation of follow-up CRs is becoming more challenging.
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Since follow-up CRs primarily detect
changes between exams, analyzing CR pairs
rather than relying solely on single-image
abnormality detection is necessary. One
line of currently developed deep learning
methods detects overall changes using im-
age registration to identify all CR findings.”®
It operates independently of detectable
abnormality types and lesion-specific seg-
mentation performance. However, it lacks
information on which lesions have changed
and the nature of these changes, which are
essential in clinical practice. Furthermore, in
settings such as the ICU, where various med-
ical devices are attached, even simple reposi-
tioning, addition, or removal of a device may
be recorded as a change, making it difficult to
accurately determine whether a true change
has occurred in the finding of interest.

Some methods have targeted specific ab-
normalities. For example, Li et al.® compared
lung infiltration on serial CRs of patients with
Coronavirus Disase-19, Huang et al.’® quan-
tified pleural effusion severity on individual
CRs, and Lim et al."" estimated lung nodule
volume from serial CRs. Although these stud-
ies demonstrated the feasibility or potential
applicability of abnormality-specific moni-
toring, their scope was restricted to a single
lesion type. An alternative approach that en-
ables the simultaneous tracking of different
abnormalities is lesion segmentation. Singh
et al.’”? developed a deep learning algorithm
that segments specific abnormalities and de-
termines their changed/unchanged status
based on the persistence of segmentation
masks for lesions. The study reported an area
under the receiver operating characteristic
curve (AUC) of 0.758 for evaluating changes
in pulmonary opacities over follow-up CRs.
However, the algorithm was unable to deter-

* Using lesion-specific segmentation, a
deep-learning model determines consoli-
dation and pleural effusion changes in chest
radiographs (CRs) by assessing changes in
their extent.

* A deep-learning model achieved an area
under the curve of 0.970-0.988 for deter-
mining the changed/unchanged status of
consolidation and 0.883-0.955 for pleural
effusion in follow-up CRs from emergency
department and intensive care unit data-
sets.

* With a predefined threshold, the model
demonstrated an accuracy of 0.875-0.900
for changed/unchanged determination in
consolidation and 0.800-0.825 for pleural
effusion.

mine the changed/unchanged status when
their extent varied despite persistence. De-
spite its limitations, an algorithm that auton-
omously detects, segments, and assesses the
changed/unchanged status of various ab-
normalities based on the degree of observed
changes would be valuable.

Therefore, this study aims to develop a
deep learning-based classifier for determin-
ing changed/unchanged status in paired
CRs, using automatic lesion segmentation
and extent comparison for consolidation and
pleural effusion, and to validate its feasibility.

Methods

This retrospective study was approved by
the institutional review board of Asan Medi-
cal Center, which waived the requirement for
written informed consent (approval number:
2023-0810, date: 2023-07-01). Of the 5.178
CRs used for training, 4.593 were utilized in
a previous study to develop a model for de-
tecting five abnormalities.’* However, our
model is not related to the model from that
study.

Training and validation datasets

In the classifier pipeline, the training set
for abnormality segmentation was derived
from CRs of adult patients (=18 years) ob-
tained at a tertiary referral hospital between
January 2015 and December 2018 (Figure 1).
The training set consisted of three types: nor-
mal CR, abnormal CR (with consolidation or
pleural effusion), and CR with medical devic-
es (Appendix S1). Radiologist-labeled lesion
masks that had been developed and validat-
ed in the previous work were used.”®> How-
ever, the lesion segmentation algorithm,
the paired radiograph comparison, and the
change-detection framework were newly
developed in this study. During the training
process for the segmentation component of
the model, the training set was further divid-
ed into a 9:1 ratio for model development
and tuning.

After developing a lesion segmentation
algorithm, CRs obtained from the emergen-
cy department (ED) and ICU between Janu-
ary 2019 and December 2019 were collected
to determine the changed/unchanged clas-
sifier threshold. For each patient, one pair
of CRs was randomly selected while main-
taining the chronological order. The pairing
principle was applied regardless of the CR
projection type (posteroanterior or antero-
posterior). However, due to the nature of the
ED and ICU settings with patients who are
critically ill, most radiographs were antero-
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posterior. Two thoracic radiologists (BLIND-
ED and BLINDED, with 7 and 17 years of ex-
perience in thoracic imaging, respectively),
blinded to the radiologic report, interpreted
the changed/unchanged status, as well as
the presence of target abnormality (i.e., con-
solidation and pleural effusion), in queried
CR pairs in a random order until the target
number of each dataset was reached. Both
the changed/unchanged status and type of
abnormality were determined in consensus
by the two radiologists.

For temporal validation of the changed/
unchanged classifier, CRs obtained from
the ED and ICU between January 2020 and
December 2020 were collected, each con-
taining a single abnormality (consolidation
or pleural effusion). To compare the perfor-
mance between the model and radiologist,
another thoracic radiologist (BLINDED, with
27 years of experience in thoracic imaging)
independently reviewed the temporal vali-
dation set and determined the changed/un-
changed status. This review was conducted
blinded to the reference standard result but
with knowledge of the target abnormality
type (consolidation vs. pleural effusion).

Architecture of the lesion-specific classifier

Our model included two pipelines: 1) ab-
normality segmentation and 2) lesion area
quantification and decision-making within
pairs (Figure 2). First, the nnU-Net, a U-Net-
based medical segmentation model known
for its robust and high performance, served
as the base model. Its structure and training
options were modified for enhanced pulmo-
nary lesion segmentation performance.” To
improve the model’s generalization ability, a
multi-task learning (MTL) approach that jointly
performs segmentation and classification was
adopted, thereby improving the model’s capa-
bility to differentiate between lesions in simi-
lar anatomical locations and medical devices
and reducing potential segmentation errors.
Two auxiliary classifiers were incorporated at
the nnU-Net bottleneck for MTL: one for lesion
presence classification and the other for lesion
type classification (Appendix S2). The mod-
ified nnU-Net was trained for 1,000 epochs
using 5-fold cross-validation, and the final le-
sion segmentation masks were generated by
ensembling the inferred masks from each fold.

In the changed/unchanged classifier,
lesion areas in each generated mask were
quantified by multiplying the number of pix-
els in each lesion class by the pixel spacing
of the corresponding CR. Changes in lesion
quantities were calculated as the absolute
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Training set

CR obtained from all department
between Jan. 2015 and Dec. 2018

| 1700 normal CR | | 2643 abnormal CR | | 585 device CR*

1420 consolidation | | 1223 pleural effusion

Validation & Temporally separated sets

CR obtained from ICU
between Jan. 2019 and Dec. 2020

fssseeesess Exclusion
No follow-up CR (n=33267)

| 190153 CR from 3699 adult patients |

l

| 3699 CR pairs |

|+——— Selected in random order
Radiologists’ annotation

I |

CR obtained from ED
between Jan. 2019 and Dec. 2020

presseeneeer Exclusion
No follow-up CR (n=14468)

| 62214 CR from 31846 adult patients ‘

l

| 31846 CR pairs

|+—— Selected in random order
Radiologists’ annotation

l |

Consolidation Pleural effusion

Validation (2019) Validation (2019)
+ 20 changed pair 20 changed pair
+ 20 unchanged pair 20 unchanged pair

Temporally separated test (2020)
* 20 changed pair
* 20 unchanged pair

Temporally separated test (2020)
20 changed pair
20 unchanged pair

Consolidation Pleural effusion
Validation (2019) Validation (2019)

20 changed pair 20 changed pair
10 unchanged pair 10 unchanged pair

Temporally separated test (2020)
20 changed pair
20 unchanged pair

Temporally separated test (2020)
20 changed pair
20 unchanged pair

Figure 1. Flowchart illustrating dataset inclusion. *CRs containing medical devices include endotracheal tubes, drainage catheters, central lines, peripherally
inserted central catheters, nasogastric tubes, chemoports, and electrocardiogram leads. CR, chest radiograph; ED, emergency department; ICU, intensive care unit.

Pre-processing

Lesion Segmentation

Lesion Change
Assessment

Training

—————————— ~
0 ey b
1 Llesion presence |
N - - ————
£
h (
Auxiliary classifier 1
nnU-Net for lesion presence v
Framework

Pre-processed
X-ray image

image follow-up pair
(test set)

Input dataset .
- s ‘ Generated paired masks
Min-max |
normalization Lesion Quantification
Eron d 2 Generated :
Intensity-based X-ray image T Q(baseline),
. (train set) Auxiliary classifier 2 s 1l
Chpplng for lesion type Q(fo ow-up)
4
nnU-Net basic I "
. )
preprocessing & v Liesion_type !
augmentation ; s
g Decision Making H
- Inference : :
= 5. [ |@fottowup — @hasetine| :
y | :
f . max (Q[ol!owup B Qbaset[ne) H
- : { H H
> y \ H 0
‘ - Trained model |y \ : > threshold : Changed 2
J else : Unchanged E
Pre-processed X-ray E .
Generated . g

paired masks

tamssssssssssssEsssssssmmssannnnnnns®

Figure 2. Schematic illustrating the model workflow. The process includes three stages: preprocessing (image normalization and augmentation), lesion
segmentation (using a modified nnU-Net with auxiliary classifiers to generate lesion masks), and lesion change assessment (quantifying lesion changes to classify

them as changed or unchanged).

difference in quantified lesion areas divided
by the larger of the two values to determine
the relative change. The tuning set was used
to optimize the threshold for changed/un-
changed decision-making (Appendix S3).
The calculated ratio was then used to classify
each paired image as changed/unchanged
based on a predefined threshold (Supple-
mentary Figure 1).

|Qottowup = Qbasetine|

> threshold : "changed"
“‘ax(ofollawup » anseh‘ne)

else : "unchanged"

Model training was done using the Py-
torch framework and NVIDIA NVIDIA TITAN
RTX 24GB GPU (NVIDIA Corporation, Santa
Clara, CA, USA). The code for the model ar-
chitecture is available on GitHub (https://
github.com/ provbs/CR_DL_FU/).

Statistical analysis

The segmentation performance of the
model for consolidation and pleural effu-
sion was evaluated using Dice scores. T-tests
were conducted to compare models, and P
values were calculated for their differences.
The performance of the model in classify-
ing changed/unchanged was evaluated us-
ing the radiologists’ results as the reference
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standard. The AUC was calculated, and the
optimal threshold was determined using
the Youden index based on the tuning set
results. The accuracy, sensitivity, specificity,
positive predictive value, negative predic-
tive value, and F1 score of the temporal val-
idation set were then calculated using the
predetermined threshold. The model and ra-
diologist accuracy were compared using the
McNemar test. All statistical analyses were
conducted using R version 4.3.1 (R Founda-
tion for Statistical Computing).

Results

Dataset characteristics

The training dataset consisted of 1.700
normal CRs, 1.223 with pleural effusion,
1.420 with consolidation, and 585 with med-
ical devices. For the changed/unchanged
classifier tuning and temporal validation,
3.699 CR pairs from the ICU and 31.846 from
the ED were generated after excluding single
CRs without follow-up.

In the ED dataset, 30 pleural effusion pairs
(20 changed, 10 unchanged) and 30 consol-
idation pairs (20 changed, 10 unchanged)
from 2019 were included for the changed/
unchanged classifier tuning. For tempo-
ral validation, 40 pleural effusion pairs (20
changed, 20 unchanged) and 40 consolida-
tion pairs (20 changed, 20 unchanged) from
2019 were selected. In the ICU dataset, 40
pleural effusion pairs (20 changed, 20 un-
changed) and 40 consolidation pairs (20
changed, 20 unchanged) from 2019 were
used for the changed/unchanged classifier
tuning, whereas the same numbers of pleu-
ral effusion and consolidation pairs from
2020 were used for temporal validation.

The median interval between CR pairs
was 10 days (interquartile range: 1-100 days)
in the tuning set and 15 days (interquartile
range: 1-72 days) in the temporal validation
set.Table 1 shows the demographics in detail.

Performance of lesion segmentation

The nnU-Net with MTL (using two auxilia-
ry classifiers) and medical equipment masks
in the training dataset was the best-perform-
ing segmentation model, with Dice scores
of 0.848 for pleural effusion and 0.841 for
consolidation (Table 2 and Supplementary
Figure 2).

Incorporating medical equipment labels
during training enhanced the Dice score for
consolidation by approximately 0.044, al-
though it decreased that for pleural effusion
by 0.043, resulting in no major change in the
average Dice score. Nevertheless, the quali-
tative results showed that the model trained
with medical equipment labelling consid-
erably reduced misclassification of medical
equipment as lesions, a critical distinction in
ICU and ED settings. Furthermore, integrat-
ing MTL and medical equipment labels im-
proved the average Dice score by 0.015, re-
ducing the difference between lesion types

Consolidation

Pleural Effusion

Original

Input + Mask

and achieving a more balanced performance
(Figure 3).

Performance of lesion-specific change de-
tection

In the tuning set, the AUCs of the model
were 0.747 for consolidation and 0.850 for
pleural effusion in the ED, and 0.980 for con-
solidation and 0.800 for pleural effusion in
the ICU (Supplementary Figure 3). To account
for different clinical settings, thresholds were
determined separately for the ED and ICU.
The optimal thresholds derived from the
tuning set were 0.26 for consolidation and
0.29 for pleural effusion in the ED and 0.40 for
consolidation and 0.55 for pleural effusion in
the ICU.

In the temporal validation set, the AUCs of
the model were 0.988 for consolidation and
0.883 for pleural effusion in the ED and 0.970
for consolidation and 0.955 for pleural effu-
sion in the ICU (Figure 4). The AUC for consol-

Original
Input

+ Mask

Figure 3. Lesion segmentation results using the best-performing model. The first column shows the original
images, and the second column shows the model output in the emergency department (ED) and intensive
care unit (ICU). Yellow indicates consolidation, and sky blue indicates pleural effusion.

Table 1. Baseline characteristics for the tuning and temporal validation sets

Tuning set Temporal validation set
Characteristics ED ICU ED ICU
Number of patients 80 60 80 80
Age, years® 66.8+13.7 64.4+13.6 720+ 14.2 613+12.6
Sex
Male 49 (61.2%) 29 (48.3%) 50 (62.5%) 51 (63.8%)
Female 31 (38.8%) 31 (51.7%) 30 (37.5%) 29 (36.2%)
Interval between baseline and follow-up CRP 4.0(1.0,84.5) 23.0 (5.5, 156.5) 13.5(1.0, 124.0) 15.5 (3.5, 44.0)

2Data are mean * standard deviation.

"Data are median with interquartile range in parentheses.

CR, chest radiograph; ED, emergency department; ICU, intensive care unit.
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idation was similar between the ED and ICU,
whereas the AUC for pleural effusion in the
ED was slightly lower than that in the ICU.

Comparisons between the model and the
thoracic radiologist

In the ED, the model achieved an accuracy
of 0.900 (36/40) for consolidation, with a sen-
sitivity of 1.000 for “changed” and a specificity
of 0.800 for “unchanged.” For pleural effusion,
the accuracy was 0.825 (33/40), with a sensi-
tivity of 0.850 and specificity of 0.800 (Figure
5). The accuracy of the thoracic radiologist
was 0.975 (39/40) for consolidation and 0.950
(38/40) for pleural effusion (Table 3).

In the ICU, the model achieved an accu-
racy of 0.875 (35/40) for consolidation, with
a sensitivity of 0.900 for “changed” and a
specificity of 0.850 for “unchanged.” For pleu-
ral effusion, the accuracy of the model was
0.800 (32/40), with a sensitivity of 0.600 and
specificity of 1.000 (Supplementary Figures 4
and 5). The accuracy of the thoracic radiolo-
gist was 0.975 (39/40) for consolidation and
1.000 (40/40) for pleural effusion (Table 3
and Supplementary Figure 5).

When comparing the accuracy of the
model and the thoracic radiologist, no signif-
icant difference was found for consolidation
in the ED [0.900 (36/40) vs. 0.975 (39/40), P
= 0.371], pleural effusion in the ED [0.825
(33/40) vs. 0.950 (38/40), P = 0.182], and con-
solidation in the ICU [0.875 (35/40) vs. 0.975
(39/40), P = 0.221]. However, for pleural effu-
sion in the ICU, the radiologist outperformed
the model [1.000 (40/40) vs. 0.800 (32/40), P
=0.013] (Supplementary Figure 6).

Discussion

Multiple CRs for follow-up are common
in clinical practice. However, current inter-
pretation techniques are largely limited to
single images, and automated methods for
follow-up CR analysis remain underdevel-
oped. In this study, we developed and vali-
dated a deep-learning model for assessing
the changed/unchanged status through
lesion-specific segmentation. In validation
within the ED and ICU settings, the model
classified the changed/unchanged status
with an accuracy of 0.875-0.900 for consoli-
dation and 0.800-0.825 for pleural effusion,

Table 2. Comparison of lesion segmentation performance across different training settings

comparable to that of the radiologist, except
for pleural effusion in the ICU.

Interpreting follow-up CRs poses chal-
lenges for both radiologists and deep-learn-
ing algorithms due to changes in the tho-
racic cage caused by variations in posture
or inspiration status, as well as background
changes such as alterations in medical de-
vices. Consequently, few studies focus on
the automated interpretation of CR pairs.”#'?
The approach of determining changes or no
changes in the overall image landscape can
help prioritize worklists and improve work-
flow efficiency,’® although it lacks details on
the specific objects involved or the extent of
the changes. Unlike previous approaches, we
aimed to develop a model that identifies spe-
cific abnormal changes. Lesion-specific inter-
pretation is straightforward and enables the
detection of clinically relevant changes, such
as consolidation increases in patients with
pneumonia. With further refinement, it could
become a component of an autonomous re-
porting system. To achieve this, we focused
on two major abnormalities—consolidation
and pleural effusion—that are commonly
monitored for treatment response. These
abnormalities were tested in the ED and ICU
settings, where they are more prevalent and

Dice score . . . L.
dynamic than in outpatient clinics or general
Learning method Consolidation  Pleural Average wards.
effusion
nnU-Net (without device labels) 0.821° 0.838 0.830 Our model achieved an AUC of 0.883-
nnU-Net (with device labels) 0.866" 0794 0.830 0.988, outperforming a previous study (AUC:
i ) 0.687 for pulmonary opacity changes and
nnU-Net + MTL (with device labels) 0.841 0.848 0.845 0.782 for pleural effusion changes) that de-
*P < 0.10, **P < 0.05, ***P < 0.001. MTL, multi-task learning. termined Changed/u nchanged status sole-
Table 3. Evaluation metrics assessed on the temporal validation set
Evaluator Lesion type AUC Accuracy Sensitivity Specificity PPV NPV F1 score
ED
. 0.988 0.900 (36/40) 1.000 (20/20) 0.800 (16/20) 0.833 (20/24)  1.000 (16/16)
odel Consolidation [0.968,1.000] [0.763,0972]  [0.832,1.000]  [0.563,0943]  [0.626,0953] [0.794,1.000] °20°
ode
Al cfisiem 0.883 0.825 (33/40) 0.850(17/20) 0.800 (16/20) 0.810(17/21) 0.842(16/19) 0.829
[0.800, 0.993] [0.672,0.927] [0.621,0.968] [0.563,0.943] [0.581,0.946] [0.604, 0.966] ’
. 0.975 (39/40) 1.000 (20/20) 0.950 (19/20) 0.952 (20/21)  1.000 (19/19)
ot Consolidation - [0.868,0999]  [0.832,1.000]  [0.751,0999]  [0.762,0.999] [0.824,1.000] °*°'°
adiologist
g Pleural effusion _ 0.950 (38/40) 0.950 (19/20) 0.950 (19/20) 0.950 (19/20)  0.950 (19/20) 0950
[0.831,0.994] [0.751,0.999] [0.751,0.999] [0.751,0.999] [0.751, 0.999] ’
ICU
Consolidation 0.970 0.875 (35/40) 0.900 (18/20) 0.850 (17/20) 0.857 (18/21)  0.895(17/19) 0878
Model [0.931, 1.000] [0.732,0.958] [0.683, 0.988] [0.621, 0.968] [0.637,0.970] [0.669, 0.987] ’
ode
Pleural effusion 0.955 0.800 (32/40) 0.600 (12/20) 1.000 (20/20) 1.000 (12/12)  0.714(20/28) 0750
[0.908, 1.000] [0.644, 0.909] [0.361, 0.809] [0.832, 1.000] [0.735,1.000] [0.513, 0.868] ’
P 0.975 (39/40) 1.000 (20/20) 0.950 (19/20) 0.952 (20/21)  1.000 (19/19)
oo Consolidation [0.868,0999]  [0.832,10001  [0.751,0999]  [0.762,0999] [0824,1.000] °°7°
adiologist
Pleural effusion _ 1.000 (40/40) 1.000 (20/20) 1.000 (20/20) 1.000 (20/20)  1.000 (20/20) 1.000

[0.912, 1.000] [0.832, 1.000]

[0.832, 1.000]

[0.832,1.000] [0.832,1.000]

Data in the parentheses are the number of CR pairs. AUC, area under curve; ED, emergency department; ICU, intensive care unit; NPV, negative predictive value; PPV, positive

predictive value.
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ly based on lesion persistence.” It was also
similar to prior non-lesion-specific models,
which have AUCs of 0.800-0.858.78 This per-
formance may be due to the accurate lesion
segmentation of our model, achieving a Dice
score of up to 0.845 in the training set, and its

reduced misclassification of medical devices
as lesions. Singh et al.’? reported that the
mis-segmentation of medical devices as pul-
monary opacities is a challenge. To address
this, we specifically trained our model on CRs
with medical devices, ensuring robust per-
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Figure 4.ROC curvesillustrating algorithm performance for each department and lesion type in the temporal
validation set. The shaded areas represent the area under the ROC curves. ED, emergency department; ICU,
intensive care unit; ROC, receiver operating characteristic.

b

formance in the ICU and ED settings where
they are almost always present.

The accuracy of our model was similar
to that of the radiologist for consolidation
in the ICU and ED and for pleural effusion
in the ED, though slightly lower. The deci-
sion of the radiologist on whether a condi-
tion had changed or remained unchanged
closely aligns with the reference standard.
Although consolidation and pleural effusion
are typically assessed qualitatively in routine
practice, the threshold of readers may be in-
terchangeable. Our model showed consider-
ably lower performance than that of the ra-
diologist for pleural effusion in the ICU. This
may be related to the position of the patient
in the ICU. In patients in the supine position,
both consolidation and pleural effusion
can appear as diffusely increased opacity,
making differentiation difficult. Pleural fluid
tends to spread under gravity, making the
margins of effusion indistinct. Radiologists
also assess changes in pleural effusion while
considering positional changes, which may
be challenging for our model. Notably, all
incorrect ICU pleural effusion classifications
occurred in “changed” cases, whereas the
model correctly identified all stable cases.
We therefore consider that the model can

ICU

Figure 5. Examples of determining changed/unchanged status in the emergency department (ED) and intensive care unit (ICU). (a, b) In the ED, a right pleural
effusion increased between baseline (a) and follow-up chest radiograph (CR) (b). The model detected and segmented the effusion (sky-blue areas) and classified
it as changed. The pixel difference was 19.299 (75% ratio). (c, d) In the ICU, patchy consolidation in both lower lobes (arrows) remained unchanged between
baseline (c) and follow-up CR (d), matching the reference standard. The model segmented the consolidation (yellow areas) and classified it as unchanged. The pixel

difference was —2.253 (36.9% ratio).

38 « January 2026 - Diagnostic and Interventional Radiology

Kim et al.



adequately triage stable pleural effusion,
but reduced sensitivity in supine patients
remains an important limitation that war-
rants further refinement. In addition, the
limited size of the tuning set (40 pairs) may
have led to overfitting of the threshold for
pleural effusion, contributing to skewed re-
sults. Although this should be addressed in
future studies, our findings provide proof of
concept for the feasibility of lesion-specific
segmentation in change status detection.

Unlike preexisting non-lesion-specific
models, which primarily filter grossly stable
CR pairs, our lesion-specific model offers
dual functionality. It can inform and prioritize
changes for physician review while simulta-
neously filtering stable cases. Previous ap-
proaches based on registration and subtrac-
tion within pairs are limited compared with a
segmentation-based method, which has the
potential to be applied to multiple CRs in lon-
gitudinal follow-up, enabling the extraction
of lesion extent as time-series data with
quantification. Recent advances in language
models have enabled training on large-scale,
weakly labeled data for multi-label, multi-
class change detection and even automated
report generation.''¢ In contrast, our model
leverages radiologist-provided hard label-
ing, which ensures disease-specific accura-
cy and offers interpretable, intuitive visual
explanations of the degree of change. These
strengths may provide potential applicabili-
ty, working synergistically with text genera-
tion models as part of automated reporting
systems. However, our model is currently lim-
ited to two abnormalities: consolidation and
pleural effusion. Expanding its capabilities
to include other major abnormalities, such
as nodules or interstitial opacities, may be a
valuable next step. Furthermore, improving
lesion segmentation and consideration of
position change are warranted.

Our study has some limitations. First, as
a single-center retrospective study, it may
have selection bias and limited generalizabil-
ity. Second, the experiment was conducted
using datasets from the same institution.
Although the datasets do not overlap, true
external validation was not performed. Third,
the tuning and temporal validation sets
were relatively small. Since our model was
designed specifically for consolidation and
pleural effusion, only patients with at least

one of these abnormalities were eligible.
This may contribute to the performance dif-
ferences between the tuning and temporal
validation sets. Further validation in a larger
population is necessary.

In conclusion, lesion-specific segmenta-
tion enables the deep-learning-based mod-
el to determine the changed/unchanged
status of consolidation and pleural effusion
based on changes in their extent.
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Appendix S1. Medical equipment data in
final segmentation training

Using the 4.593 chest radiographs (CRs) of
general patients, we trained a nnU-Net mod-
el with default settings for lesion segmenta-
tion. The training was conducted for 1.000
epochs using the Pytorch framework on an
NVIDIA TITAN RTX 24GB GPU. The 250 imag-
es from the additional CR dataset, containing
only labeled medical devices from patients in
the intensive care unit (ICU), were then pro-
cessed using the trained segmentation mod-
el. This inference generated 250 CR images
with both pulmonary lesions and medical
devices altogether.

We did not evaluate or optimize the le-
sion segmentation performance specifically
for this 250 CR dataset, as it represents a rela-
tively small proportion of the entire training
dataset in terms of lesion data. Its primary
purpose is to provide the final model with
explicit information on medical devices rath-
er than lesion-related information.

By including this dataset in our final train-
ing dataset, we aimed to enable the model
to semantically learn to better differenti-
ate medical equipment from lesions in ICU
and emergency department (ED) datasets,
thereby reducing the misclassification of
medical devices as lesions, resulting in bet-
ter segmentation performance in general. As
shown in Table 1, this additional dataset con-
tributed to improving the performances of
our final segmentation model by addressing
this challenge effectively.

Appendix S2. Details of the segmentation
model

Input preprocessing

The CRs in the training/tuning/temporal
validation datasets were all preprocessed
with the following steps: Firstly, intensi-

ty-based clipping was implemented, where
the top and bottom 0.5% of pixel intensities
were clipped. This was done to mitigate the
influence of high-intensity outliers, such as
L&R markers or other unexpected artifacts
on the CR. Secondly, min-max normalization
was conducted to scale pixel values of the
images within the range of 0-1. Both steps
were done to ensure consistency and facili-
tated convergence during the segmentation
model training explained after. Other prepro-
cessing and augmentations were conducted
in accordance with the nnU-Net methodol-
ogy, accounting for median shape, distribu-
tion of spacings, intensity distribution, and
image modality within the training dataset.

Model structure and training details

The model employed in this study is a
modified nnU-Net with two auxiliary clas-
sifiers incorporated between the encoder
and segmentation decoder. The auxiliary
classifiers used here are quite simple: two
fully connected layers with a RelLu activa-
tion in between. These auxiliary classifiers
are intended to enable the shared encoder
to progressively focus on features related to
lesion type and presence during its training,
thereby passing more pertinent information
to the segmentation decoder. The total loss
was calculated as the sum of the original
nnU-Net segmentation loss and the losses
from the auxiliary classifiers, lesion presence
and lesion type classifier, as follows:

L..=L.+(L ) (1)

total seg Iesion,presence+ lesion_type’

Severe augmentations, including Gauss-
ian noise and Gaussian blur transformations,
were adopted to enhance segmentation per-
formance on the noisier ICU/ED CRs.

During inference, we excluded regions
with fewer than 50 pixels in the predicted
mask to eliminate insignificant noise, as
most mask sizes exceed 2000 x 2000 pixels,
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with some surpassing 3000 pixels on one
side. This threshold was chosen based on the
observation that smaller regions often rep-
resent false positives or artifacts rather than
meaningful predictions.

Appendix S3. Optimal threshold determi-
nation for assessment decision-making

To select the optimal threshold, we em-
ployed Youden’s J statistic, which measures
the effectiveness of a threshold in terms
of maximizing the true positive rate while
minimizing the false positive rate. For each
threshold t, where t, increases by 0.01 from
0.00 to 1.00, the true positive ratio (TPR) and
false positive ratio (FPR) can be computed,
and the value of J at t is calculated as:

J(t) = TPR(t) - FPR(t) (2)

The optimal threshold can be determined
by identifying the highest value of J, repre-
senting the most balanced threshold be-
tween sensitivity and specificity:

t =argmax, J (t) (3)

optimal

If multiple values of toptimal exist, we select-
ed the lowest threshold value to increase
sensitivity and reduce the chance of false

negatives:

b oected = min(tomimal’i), fori=1,2..,n (4)

This approach minimizes the misclassifi-
cation of true positives as negatives, which is
crucial in settings such as the ICU/ED, where
timely intervention is essential. We have in-
ferenced the tuning set using the trained
segmentation model and then calculated
the optimal threshold accordingly.

Kim et al.



Supplementary Figures
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Supplementary Figure 1. Determination of unchanged/changed in the ED and ICU. The yellow area
represents consolidation, while the sky-blue area indicates pleural effusion. ED, emergency department;
ICU, intensive care unit.

Input image

a
nnU-Net nnU-Net nnU-Net + MTL
Ground truth mask (without device labels) (with device labels) (with device labels)
b d
Dice for Consolidation : 0.6397 0.6745 0.7710
Dice for Pleural effusion : 0.6866 0.6777 0.7361

Supplementary Figure 2. Segmentation results across models with various training settings. (a) Original input image. (b) The ground-truth mask by a thoracic
radiologist. The red area represents a consolidation, while the green area indicates pleural effusion. (c) Segmentation results from three different settings. The
yellow area represents consolidation, while the sky-blue area indicates pleural effusion. Green areas represent the segmentation of medical devices. The Dice
score was calculated for each abnormality. MTL, multi-task learning.
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Supplementary Figure 3. Receiver operating characteristic (ROC) curves show the performance of the
algorithm for each department and the abnormality lesion in the tuning set. Area means the area under the
ROC curves. ED, emergency department; ICU, intensive care unit.

a b

Supplementary Figure 4. Example of failure in detecting “changed” in pleural effusion in the intensive
care unit. (a) Baseline chest radiograph (CR) obtained in a semi-supine position showed no clear fluid level,
but the model segmented increased opacity along both hemidiaphragms as pleural effusion (sky-blue
areas). The presence of true effusion could not be confirmed on CR alone. (b) In the follow-up CR acquired
in an upright position, overt right pleural effusion (arrows) was evident and correctly segmented by the
model (sky-blue areas). The radiologist interpreted this case as “changed,’ whereas the model classified it as
“unchanged”
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Supplementary Figure 5. Example of failure in detecting “unchanged” pleural effusion in the intensive care
unit. () Baseline chest radiograph (CR) and (b) follow-up CR obtained in the supine position both showed
diffuse left pleural effusion opacifying the left hemithorax. Due to slight rightward rotation on the baseline
CR, the segmented area for pleural effusion (sky-blue areas) appeared smaller, leading the model to classify
the case as “changed,’ whereas the radiologist interpreted it as “unchanged.”
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Supplementary Figure 6. Comparisons between the model and radiologist in assessing change/unchanged
status of consolidation or pleural effusion. (a) for consolidation in the emergency department (ED), (b) for
effusion in the ED, (c) for consolidation in the intensive care unit (ICU), and (d) for effusion in the ICU. P values
were calculated using the McNemar test to compare accuracy.
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