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PURPOSE
To develop and validate a deep learning-based model utilizing lesion-specific segmentation to 
determine the changed/unchanged status of consolidation and pleural effusion in paired chest 
radiographs (CRs).

METHODS
The model was trained using 5.178 CRs from a single institution for lesion segmentation. Paired 
CRs from the emergency department (ED) and intensive care unit (ICU) were used to determine 
the thresholds for change and temporal validation. Model performance was evaluated through the 
area under the receiver operating characteristic curve (AUC), and its accuracy was compared with 
that of a thoracic radiologist.

RESULTS
In the ED, the model achieved AUCs of 0.988 and 0.883 for consolidation and pleural effusion, re-
spectively, with accuracies of 0.900 (36/40) and 0.825 (33/40). The radiologist showed accuracies of 
0.975 (39/40) and 0.950 (38/40), respectively. In the ICU, model AUCs were 0.970 (consolidation) and 
0.955 (pleural effusion), with accuracies of 0.875 (35/40) and 0.800 (32/40), respectively. Radiologist 
performance was 0.975 (39/40) for consolidation and 1.000 (40/40) for pleural effusion. No signif-
icant accuracy differences were observed between the model and radiologist for consolidation in 
the ICU or both targets in the ED (all P > 0.05), except for pleural effusion in the ICU (P = 0.01).

CONCLUSION
The lesion-specific deep learning model was feasible for identifying interval changes in consolida-
tion and pleural effusion on follow-up CRs.

CLINICAL SIGNIFICANCE
It could potentially be utilized for prioritizing interpretation, generating alerts, and extracting 
time-series data from multiple follow-up CRs.
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Chest radiography is a widely used medical imaging modality due to its cost-effective-
ness and low radiation exposure. Chest radiographs (CRs) detect thoracic abnormalities 
and track changes during follow-ups. Monitoring abnormalities such as pleural effusion 

or consolidation is crucial for evaluating disease progression and treatment response.1-4 How-
ever, frequent follow-up CRs increase workload. For example, in intensive care units (ICUs), CR 
is often performed daily for patients who are critically ill or after device adjustments, generat-
ing millions of ICU CRs annually in the United States.5,6 Consequently, the timely and accurate 
interpretation of follow-up CRs is becoming more challenging. 

Received 22 July 2025; revision requested 24 August 
2025; accepted 23 September 2025.

Corresponding author: Sang Min Lee

E-mail: sangmin.lee.md@gmail.com 

 Youngjae Kim1,2* 
 Yura Ahn3*

 Sang Min Lee3

 Han Na Noh4

 Jongjun Won2

 Chaewon Kim2

 Hyunna Lee5

1University of Ulsan Faculty of Medicine, Department 
of Biomedical Engineering, AMIST, Asan Medical 
Center, Seoul, Republic of Korea

2University of Ulsan Faculty of Medicine, Department 
of Convergence Medicine, Asan Medical Institute of 
Convergence Science and Technology, Asan Medical 
Center, Seoul, Republic of Korea

3University of Ulsan Faculty of Medicine, Department 
of Radiology and Research Institute of Radiology, 
Asan Medical Center, Seoul, Republic of Korea

4University of Ulsan Faculty of Medicine, Health 
Screening and Promotion Center, Asan Medical 
Center, Seoul, Republic of Korea

5Bigdata Research Center, Asan Institute for Life 
Science, Asan Medical Center, Seoul, Republic of 
Korea

Automated evaluation of pulmonary lesion changes on chest 
radiograph during follow-up using semantic segmentation

Publication date: 02.01.2026

DOI: 10.4274/dir.2025.253567

Diagn Interv Radiol 2026; DOI: 10.4274/dir.2025.253567

*Joint first authors

https://orcid.org/0009-0003-3770-3199
https://orcid.org/0000-0002-9188-1186
https://orcid.org/0000-0001-7627-2000
https://orcid.org/0000-0001-6887-7878
https://orcid.org/0000-0001-8444-1046
https://orcid.org/0009-0006-7010-8967
https://orcid.org/0000-0003-1669-3086


 

34 • January 2026 • Diagnostic and Interventional Radiology Kim et al.

Since follow-up CRs primarily detect 
changes between exams, analyzing CR pairs 
rather than relying solely on single-image 
abnormality detection is necessary. One 
line of currently developed deep learning 
methods detects overall changes using im-
age registration to identify all CR findings.7,8 
It operates independently of detectable 
abnormality types and lesion-specific seg-
mentation performance. However, it lacks 
information on which lesions have changed 
and the nature of these changes, which are 
essential in clinical practice. Furthermore, in 
settings such as the ICU, where various med-
ical devices are attached, even simple reposi-
tioning, addition, or removal of a device may 
be recorded as a change, making it difficult to 
accurately determine whether a true change 
has occurred in the finding of interest.

Some methods have targeted specific ab-
normalities. For example, Li et al. 9 compared 
lung infiltration on serial CRs of patients with 
Coronavirus Disase-19, Huang et al.10 quan-
tified pleural effusion severity on individual 
CRs, and Lim et al.11 estimated lung nodule 
volume from serial CRs. Although these stud-
ies demonstrated the feasibility or potential 
applicability of abnormality-specific moni-
toring, their scope was restricted to a single 
lesion type. An alternative approach that en-
ables the simultaneous tracking of different 
abnormalities is lesion segmentation. Singh 
et al.12 developed a deep learning algorithm 
that segments specific abnormalities and de-
termines their changed/unchanged status 
based on the persistence of segmentation 
masks for lesions. The study reported an area 
under the receiver operating characteristic 
curve (AUC) of 0.758 for evaluating changes 
in pulmonary opacities over follow-up CRs. 
However, the algorithm was unable to deter-

mine the changed/unchanged status when 
their extent varied despite persistence. De-
spite its limitations, an algorithm that auton-
omously detects, segments, and assesses the 
changed/unchanged status of various ab-
normalities based on the degree of observed 
changes would be valuable.

Therefore, this study aims to develop a 
deep learning-based classifier for determin-
ing changed/unchanged status in paired 
CRs, using automatic lesion segmentation 
and extent comparison for consolidation and 
pleural effusion, and to validate its feasibility.

Methods
This retrospective study was approved by 

the institutional review board of Asan Medi-
cal Center, which waived the requirement for 
written informed consent (approval number: 
2023-0810, date: 2023-07-01). Of the 5.178 
CRs used for training, 4.593 were utilized in 
a previous study to develop a model for de-
tecting five abnormalities.13 However, our 
model is not related to the model from that 
study. 

Training and validation datasets

In the classifier pipeline, the training set 
for abnormality segmentation was derived 
from CRs of adult patients (≥18 years) ob-
tained at a tertiary referral hospital between 
January 2015 and December 2018 (Figure 1). 
The training set consisted of three types: nor-
mal CR, abnormal CR (with consolidation or 
pleural effusion), and CR with medical devic-
es (Appendix S1). Radiologist-labeled lesion 
masks that had been developed and validat-
ed in the previous work were used.13 How-
ever, the lesion segmentation algorithm, 
the paired radiograph comparison, and the 
change-detection framework were newly 
developed in this study. During the training 
process for the segmentation component of 
the model, the training set was further divid-
ed into a 9:1 ratio for model development 
and tuning.

After developing a lesion segmentation 
algorithm, CRs obtained from the emergen-
cy department (ED) and ICU between Janu-
ary 2019 and December 2019 were collected 
to determine the changed/unchanged clas-
sifier threshold. For each patient, one pair 
of CRs was randomly selected while main-
taining the chronological order. The pairing 
principle was applied regardless of the CR 
projection type (posteroanterior or antero-
posterior). However, due to the nature of the 
ED and ICU settings with patients who are 
critically ill, most radiographs were antero-

posterior. Two thoracic radiologists (BLIND-
ED and BLINDED, with 7 and 17 years of ex-
perience in thoracic imaging, respectively), 
blinded to the radiologic report, interpreted 
the changed/unchanged status, as well as 
the presence of target abnormality (i.e., con-
solidation and pleural effusion), in queried 
CR pairs in a random order until the target 
number of each dataset was reached. Both 
the changed/unchanged status and type of 
abnormality were determined in consensus 
by the two radiologists. 

For temporal validation of the changed/
unchanged classifier, CRs obtained from 
the ED and ICU between January 2020 and 
December 2020 were collected, each con-
taining a single abnormality (consolidation 
or pleural effusion). To compare the perfor-
mance between the model and radiologist, 
another thoracic radiologist (BLINDED, with 
27 years of experience in thoracic imaging) 
independently reviewed the temporal vali-
dation set and determined the changed/un-
changed status. This review was conducted 
blinded to the reference standard result but 
with knowledge of the target abnormality 
type (consolidation vs. pleural effusion).

Architecture of the lesion-specific classifier

Our model included two pipelines: 1) ab-
normality segmentation and 2) lesion area 
quantification and decision-making within 
pairs (Figure 2). First, the nnU-Net, a U-Net-
based medical segmentation model known 
for its robust and high performance, served 
as the base model. Its structure and training 
options were modified for enhanced pulmo-
nary lesion segmentation performance.14 To 
improve the model’s generalization ability, a 
multi-task learning (MTL) approach that jointly 
performs segmentation and classification was 
adopted, thereby improving the model’s capa-
bility to differentiate between lesions in simi-
lar anatomical locations and medical devices 
and reducing potential segmentation errors. 
Two auxiliary classifiers were incorporated at 
the nnU-Net bottleneck for MTL: one for lesion 
presence classification and the other for lesion 
type classification (Appendix S2). The mod-
ified nnU-Net was trained for 1,000 epochs 
using 5-fold cross-validation, and the final le-
sion segmentation masks were generated by 
ensembling the inferred masks from each fold. 

In the changed/unchanged classifier, 
lesion areas in each generated mask were 
quantified by multiplying the number of pix-
els in each lesion class by the pixel spacing 
of the corresponding CR. Changes in lesion 
quantities were calculated as the absolute 

Main points

•	 Using lesion-specific segmentation, a 
deep-learning model determines consoli-
dation and pleural effusion changes in chest 
radiographs (CRs) by assessing changes in 
their extent.

•	 A deep-learning model achieved an area 
under the curve of 0.970–0.988 for deter-
mining the changed/unchanged status of 
consolidation and 0.883–0.955 for pleural 
effusion in follow-up CRs from emergency 
department and intensive care unit data-
sets.

•	 With a predefined threshold, the model 
demonstrated an accuracy of 0.875–0.900 
for changed/unchanged determination in 
consolidation and 0.800–0.825 for pleural 
effusion.
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difference in quantified lesion areas divided 
by the larger of the two values to determine 
the relative change. The tuning set was used 
to optimize the threshold for changed/un-
changed decision-making (Appendix S3). 
The calculated ratio was then used to classify 
each paired image as changed/unchanged 
based on a predefined threshold (Supple-
mentary Figure 1).

Model training was done using the Py-
torch framework and NVIDIA NVIDIA TITAN 
RTX 24GB GPU (NVIDIA Corporation, Santa 
Clara, CA, USA). The code for the model ar-
chitecture is available on GitHub (https://
github.com/ provbs/CR_DL_FU/).

Statistical analysis

The segmentation performance of the 
model for consolidation and pleural effu-
sion was evaluated using Dice scores. T-tests 
were conducted to compare models, and P 
values were calculated for their differences. 
The performance of the model in classify-
ing changed/unchanged was evaluated us-
ing the radiologists’ results as the reference 

Figure 1. Flowchart illustrating dataset inclusion. *CRs containing medical devices include endotracheal tubes, drainage catheters, central lines, peripherally 
inserted central catheters, nasogastric tubes, chemoports, and electrocardiogram leads. CR, chest radiograph; ED, emergency department; ICU, intensive care unit.

Figure 2. Schematic illustrating the model workflow. The process includes three stages: preprocessing (image normalization and augmentation), lesion 
segmentation (using a modified nnU-Net with auxiliary classifiers to generate lesion masks), and lesion change assessment (quantifying lesion changes to classify 
them as changed or unchanged).
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standard. The AUC was calculated, and the 
optimal threshold was determined using 
the Youden index based on the tuning set 
results. The accuracy, sensitivity, specificity, 
positive predictive value, negative predic-
tive value, and F1 score of the temporal val-
idation set were then calculated using the 
predetermined threshold. The model and ra-
diologist accuracy were compared using the 
McNemar test. All statistical analyses were 
conducted using R version 4.3.1 (R Founda-
tion for Statistical Computing).

Results

Dataset characteristics 

The training dataset consisted of 1.700 
normal CRs, 1.223 with pleural effusion, 
1.420 with consolidation, and 585 with med-
ical devices. For the changed/unchanged 
classifier tuning and temporal validation, 
3.699 CR pairs from the ICU and 31.846 from 
the ED were generated after excluding single 
CRs without follow-up.

In the ED dataset, 30 pleural effusion pairs 
(20 changed, 10 unchanged) and 30 consol-
idation pairs (20 changed, 10 unchanged) 
from 2019 were included for the changed/
unchanged classifier tuning. For tempo-
ral validation, 40 pleural effusion pairs (20 
changed, 20 unchanged) and 40 consolida-
tion pairs (20 changed, 20 unchanged) from 
2019 were selected. In the ICU dataset, 40 
pleural effusion pairs (20 changed, 20 un-
changed) and 40 consolidation pairs (20 
changed, 20 unchanged) from 2019 were 
used for the changed/unchanged classifier 
tuning, whereas the same numbers of pleu-
ral effusion and consolidation pairs from 
2020 were used for temporal validation. 

The median interval between CR pairs 
was 10 days (interquartile range: 1–100 days) 
in the tuning set and 15 days (interquartile 
range: 1–72 days) in the temporal validation 
set. Table 1 shows the demographics in detail.

Performance of lesion segmentation

The nnU-Net with MTL (using two auxilia-
ry classifiers) and medical equipment masks 
in the training dataset was the best-perform-
ing segmentation model, with Dice scores 
of 0.848 for pleural effusion and 0.841 for 
consolidation (Table 2 and Supplementary 
Figure 2).

Incorporating medical equipment labels 
during training enhanced the Dice score for 
consolidation by approximately 0.044, al-
though it decreased that for pleural effusion 
by 0.043, resulting in no major change in the 
average Dice score. Nevertheless, the quali-
tative results showed that the model trained 
with medical equipment labelling consid-
erably reduced misclassification of medical 
equipment as lesions, a critical distinction in 
ICU and ED settings. Furthermore, integrat-
ing MTL and medical equipment labels im-
proved the average Dice score by 0.015, re-
ducing the difference between lesion types 

and achieving a more balanced performance 
(Figure 3).

Performance of lesion-specific change de-
tection 

In the tuning set, the AUCs of the model 
were 0.747 for consolidation and 0.850 for 
pleural effusion in the ED, and 0.980 for con-
solidation and 0.800 for pleural effusion in 
the ICU (Supplementary Figure 3). To account 
for different clinical settings, thresholds were 
determined separately for the ED and ICU. 
The optimal thresholds derived from the 
tuning set were 0.26 for consolidation and 
0.29 for pleural effusion in the ED and 0.40 for 
consolidation and 0.55 for pleural effusion in 
the ICU. 

In the temporal validation set, the AUCs of 
the model were 0.988 for consolidation and 
0.883 for pleural effusion in the ED and 0.970 
for consolidation and 0.955 for pleural effu-
sion in the ICU (Figure 4). The AUC for consol-

Figure 3. Lesion segmentation results using the best-performing model. The first column shows the original 
images, and the second column shows the model output in the emergency department (ED) and intensive 
care unit (ICU). Yellow indicates consolidation, and sky blue indicates pleural effusion.

Table 1. Baseline characteristics for the tuning and temporal validation sets

Tuning set Temporal validation set

Characteristics ED ICU ED ICU

Number of patients 80 60 80 80

Age, yearsa 66.8 ± 13.7 64.4 ± 13.6 72.0 ± 14.2 61.3 ± 12.6

Sex

Male 49 (61.2%) 29 (48.3%) 50 (62.5%) 51 (63.8%)

Female 31 (38.8%) 31 (51.7%) 30 (37.5%) 29 (36.2%)

Interval between baseline and follow-up CRb 4.0 (1.0, 84.5) 23.0 (5.5, 156.5) 13.5 (1.0, 124.0) 15.5 (3.5, 44.0)
aData are mean ± standard deviation.
bData are median with interquartile range in parentheses. 
CR, chest radiograph; ED, emergency department; ICU, intensive care unit.
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idation was similar between the ED and ICU, 
whereas the AUC for pleural effusion in the 
ED was slightly lower than that in the ICU.

Comparisons between the model and the 
thoracic radiologist

In the ED, the model achieved an accuracy 
of 0.900 (36/40) for consolidation, with a sen-
sitivity of 1.000 for “changed” and a specificity 
of 0.800 for “unchanged.” For pleural effusion, 
the accuracy was 0.825 (33/40), with a sensi-
tivity of 0.850 and specificity of 0.800 (Figure 
5). The accuracy of the thoracic radiologist 
was 0.975 (39/40) for consolidation and 0.950 
(38/40) for pleural effusion (Table 3).

In the ICU, the model achieved an accu-
racy of 0.875 (35/40) for consolidation, with 
a sensitivity of 0.900 for “changed” and a 
specificity of 0.850 for “unchanged.” For pleu-
ral effusion, the accuracy of the model was 
0.800 (32/40), with a sensitivity of 0.600 and 
specificity of 1.000 (Supplementary Figures 4 
and 5). The accuracy of the thoracic radiolo-
gist was 0.975 (39/40) for consolidation and 
1.000 (40/40) for pleural effusion (Table 3  
and Supplementary Figure 5).

When comparing the accuracy of the 
model and the thoracic radiologist, no signif-
icant difference was found for consolidation 
in the ED [0.900 (36/40) vs. 0.975 (39/40), P 
= 0.371], pleural effusion in the ED [0.825 
(33/40) vs. 0.950 (38/40), P = 0.182], and con-
solidation in the ICU [0.875 (35/40) vs. 0.975 
(39/40), P = 0.221]. However, for pleural effu-
sion in the ICU, the radiologist outperformed 
the model [1.000 (40/40) vs. 0.800 (32/40), P 
= 0.013] (Supplementary Figure 6).

Discussion
Multiple CRs for follow-up are common 

in clinical practice. However, current inter-
pretation techniques are largely limited to 
single images, and automated methods for 
follow-up CR analysis remain underdevel-
oped. In this study, we developed and vali-
dated a deep-learning model for assessing 
the changed/unchanged status through 
lesion-specific segmentation. In validation 
within the ED and ICU settings, the model 
classified the changed/unchanged status 
with an accuracy of 0.875–0.900 for consoli-
dation and 0.800–0.825 for pleural effusion, 

comparable to that of the radiologist, except 
for pleural effusion in the ICU.

Interpreting follow-up CRs poses chal-
lenges for both radiologists and deep-learn-
ing algorithms due to changes in the tho-
racic cage caused by variations in posture 
or inspiration status, as well as background 
changes such as alterations in medical de-
vices. Consequently, few studies focus on 
the automated interpretation of CR pairs.7,8,12 
The approach of determining changes or no 
changes in the overall image landscape can 
help prioritize worklists and improve work-
flow efficiency,7,8 although it lacks details on 
the specific objects involved or the extent of 
the changes. Unlike previous approaches, we 
aimed to develop a model that identifies spe-
cific abnormal changes. Lesion-specific inter-
pretation is straightforward and enables the 
detection of clinically relevant changes, such 
as consolidation increases in patients with 
pneumonia. With further refinement, it could 
become a component of an autonomous re-
porting system. To achieve this, we focused 
on two major abnormalities—consolidation 
and pleural effusion—that are commonly 
monitored for treatment response. These 
abnormalities were tested in the ED and ICU 
settings, where they are more prevalent and 
dynamic than in outpatient clinics or general 
wards.

Our model achieved an AUC of 0.883–
0.988, outperforming a previous study (AUC: 
0.687 for pulmonary opacity changes and 
0.782 for pleural effusion changes) that de-
termined changed/unchanged status sole-

Table 3. Evaluation metrics assessed on the temporal validation set

Evaluator Lesion type AUC Accuracy Sensitivity Specificity PPV NPV F1 score

ED

Model
Consolidation 0.988

[0.968, 1.000]
0.900 (36/40)
[0.763, 0.972]

1.000 (20/20)
[0.832, 1.000]

0.800 (16/20)
[0.563, 0.943]

0.833 (20/24)
[0.626, 0.953]

1.000 (16/16)
[0.794, 1.000] 0.909

Pleural effusion 0.883
[0.800, 0.993]

0.825 (33/40)
[0.672, 0.927]

0.850 (17/20)
[0.621, 0.968]

0.800 (16/20)
[0.563, 0.943]

0.810 (17/21)
[0.581, 0.946]

0.842 (16/19)
[0.604, 0.966] 0.829

Radiologist
Consolidation - 0.975 (39/40)

[0.868, 0.999]
1.000 (20/20)
[0.832, 1.000]

0.950 (19/20)
[0.751, 0.999]

0.952 (20/21)
[0.762, 0.999]

1.000 (19/19)
[0.824, 1.000] 0.976

Pleural effusion - 0.950 (38/40)
[0.831, 0.994]

0.950 (19/20)
[0.751, 0.999]

0.950 (19/20)
[0.751, 0.999]

0.950 (19/20)
[0.751, 0.999]

0.950 (19/20)
[0.751, 0.999] 0.950

ICU

Model
Consolidation 0.970

[0.931, 1.000]
0.875 (35/40)
[0.732, 0.958]

0.900 (18/20)
[0.683, 0.988]

0.850 (17/20)
[0.621, 0.968]

0.857 (18/21)
[0.637, 0.970]

0.895 (17/19)
[0.669, 0.987] 0.878

Pleural effusion 0.955
[0.908, 1.000]

0.800 (32/40)
[0.644, 0.909]

0.600 (12/20)
[0.361, 0.809]

1.000 (20/20)
[0.832, 1.000]

1.000 (12/12)
[0.735, 1.000]

0.714 (20/28)
[0.513, 0.868] 0.750

Radiologist
Consolidation - 0.975 (39/40)

[0.868, 0.999]
1.000 (20/20)
[0.832, 1.000]

0.950 (19/20)
[0.751, 0.999]

0.952 (20/21)
[0.762, 0.999]

1.000 (19/19)
[0.824, 1.000] 0.976

Pleural effusion - 1.000 (40/40)
[0.912, 1.000]

1.000 (20/20)
[0.832, 1.000]

1.000 (20/20)
[0.832, 1.000]

1.000 (20/20)
[0.832, 1.000]

1.000 (20/20)
[0.832, 1.000] 1.000

Data in the parentheses are the number of CR pairs. AUC, area under curve; ED, emergency department; ICU, intensive care unit; NPV, negative predictive value; PPV, positive 
predictive value.

Table 2. Comparison of lesion segmentation performance across different training settings

Dice score

Learning method Consolidation Pleural 
effusion

Average

nnU-Net (without device labels) 0.821* 0.838 0.830

nnU-Net (with device labels) 0.866** 0.794*** 0.830

nnU-Net + MTL (with device labels) 0.841 0.848 0.845

*P < 0.10, **P < 0.05, ***P < 0.001. MTL, multi-task learning.
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ly based on lesion persistence.12 It was also 
similar to prior non-lesion-specific models, 
which have AUCs of 0.800–0.858.7,8 This per-
formance may be due to the accurate lesion 
segmentation of our model, achieving a Dice 
score of up to 0.845 in the training set, and its 

reduced misclassification of medical devices 
as lesions. Singh et al.12 reported that the 
mis-segmentation of medical devices as pul-
monary opacities is a challenge. To address 
this, we specifically trained our model on CRs 
with medical devices, ensuring robust per-

formance in the ICU and ED settings where 
they are almost always present.

The accuracy of our model was similar 
to that of the radiologist for consolidation 
in the ICU and ED and for pleural effusion 
in the ED, though slightly lower. The deci-
sion of the radiologist on whether a condi-
tion had changed or remained unchanged 
closely aligns with the reference standard. 
Although consolidation and pleural effusion 
are typically assessed qualitatively in routine 
practice, the threshold of readers may be in-
terchangeable. Our model showed consider-
ably lower performance than that of the ra-
diologist for pleural effusion in the ICU. This 
may be related to the position of the patient 
in the ICU. In patients in the supine position, 
both consolidation and pleural effusion 
can appear as diffusely increased opacity, 
making differentiation difficult. Pleural fluid 
tends to spread under gravity, making the 
margins of effusion indistinct. Radiologists 
also assess changes in pleural effusion while 
considering positional changes, which may 
be challenging for our model. Notably, all 
incorrect ICU pleural effusion classifications 
occurred in “changed” cases, whereas the 
model correctly identified all stable cases. 
We therefore consider that the model can 

Figure 5. Examples of determining changed/unchanged status in the emergency department (ED) and intensive care unit (ICU). (a, b) In the ED, a right pleural 
effusion increased between baseline (a) and follow-up chest radiograph (CR) (b). The model detected and segmented the effusion (sky-blue areas) and classified 
it as changed. The pixel difference was 19.299 (75% ratio). (c, d) In the ICU, patchy consolidation in both lower lobes (arrows) remained unchanged between 
baseline (c) and follow-up CR (d), matching the reference standard. The model segmented the consolidation (yellow areas) and classified it as unchanged. The pixel 
difference was −2.253 (36.9% ratio).   

Figure 4. ROC curves illustrating algorithm performance for each department and lesion type in the temporal 
validation set. The shaded areas represent the area under the ROC curves. ED, emergency department; ICU, 
intensive care unit; ROC, receiver operating characteristic. 

a b c d
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adequately triage stable pleural effusion, 
but reduced sensitivity in supine patients 
remains an important limitation that war-
rants further refinement. In addition, the 
limited size of the tuning set (40 pairs) may 
have led to overfitting of the threshold for 
pleural effusion, contributing to skewed re-
sults. Although this should be addressed in 
future studies, our findings provide proof of 
concept for the feasibility of lesion-specific 
segmentation in change status detection.

Unlike preexisting non-lesion-specific 
models, which primarily filter grossly stable 
CR pairs, our lesion-specific model offers 
dual functionality. It can inform and prioritize 
changes for physician review while simulta-
neously filtering stable cases. Previous ap-
proaches based on registration and subtrac-
tion within pairs are limited compared with a 
segmentation-based method, which has the 
potential to be applied to multiple CRs in lon-
gitudinal follow-up, enabling the extraction 
of lesion extent as time-series data with 
quantification. Recent advances in language 
models have enabled training on large-scale, 
weakly labeled data for multi-label, multi-
class change detection and even automated 
report generation.15,16 In contrast, our model 
leverages radiologist-provided hard label-
ing, which ensures disease-specific accura-
cy and offers interpretable, intuitive visual 
explanations of the degree of change. These 
strengths may provide potential applicabili-
ty, working synergistically with text genera-
tion models as part of automated reporting 
systems. However, our model is currently lim-
ited to two abnormalities: consolidation and 
pleural effusion. Expanding its capabilities 
to include other major abnormalities, such 
as nodules or interstitial opacities, may be a 
valuable next step. Furthermore, improving 
lesion segmentation and consideration of 
position change are warranted. 

Our study has some limitations. First, as 
a single-center retrospective study, it may 
have selection bias and limited generalizabil-
ity. Second, the experiment was conducted 
using datasets from the same institution. 
Although the datasets do not overlap, true 
external validation was not performed. Third, 
the tuning and temporal validation sets 
were relatively small. Since our model was 
designed specifically for consolidation and 
pleural effusion, only patients with at least 

one of these abnormalities were eligible. 
This may contribute to the performance dif-
ferences between the tuning and temporal 
validation sets. Further validation in a larger 
population is necessary.

In conclusion, lesion-specific segmenta-
tion enables the deep-learning-based mod-
el to determine the changed/unchanged 
status of consolidation and pleural effusion 
based on changes in their extent.
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Appendix S1. Medical equipment data in 
final segmentation training

Using the 4.593 chest radiographs (CRs) of 
general patients, we trained a nnU-Net mod-
el with default settings for lesion segmenta-
tion. The training was conducted for 1.000 
epochs using the Pytorch framework on an 
NVIDIA TITAN RTX 24GB GPU. The 250 imag-
es from the additional CR dataset, containing 
only labeled medical devices from patients in 
the intensive care unit (ICU), were then pro-
cessed using the trained segmentation mod-
el. This inference generated 250 CR images 
with both pulmonary lesions and medical 
devices altogether. 

We did not evaluate or optimize the le-
sion segmentation performance specifically 
for this 250 CR dataset, as it represents a rela-
tively small proportion of the entire training 
dataset in terms of lesion data. Its primary 
purpose is to provide the final model with 
explicit information on medical devices rath-
er than lesion-related information.

By including this dataset in our final train-
ing dataset, we aimed to enable the model 
to semantically learn to better differenti-
ate medical equipment from lesions in ICU 
and emergency department (ED) datasets, 
thereby reducing the misclassification of 
medical devices as lesions, resulting in bet-
ter segmentation performance in general. As 
shown in Table 1, this additional dataset con-
tributed to improving the performances of 
our final segmentation model by addressing 
this challenge effectively.

Appendix S2. Details of the segmentation 
model

Input preprocessing

The CRs in the training/tuning/temporal 
validation datasets were all preprocessed 
with the following steps: Firstly, intensi-

ty-based clipping was implemented, where 
the top and bottom 0.5% of pixel intensities 
were clipped. This was done to mitigate the 
influence of high-intensity outliers, such as 
L&R markers or other unexpected artifacts 
on the CR. Secondly, min-max normalization 
was conducted to scale pixel values of the 
images within the range of 0–1. Both steps 
were done to ensure consistency and facili-
tated convergence during the segmentation 
model training explained after. Other prepro-
cessing and augmentations were conducted 
in accordance with the nnU-Net methodol-
ogy, accounting for median shape, distribu-
tion of spacings, intensity distribution, and 
image modality within the training dataset.

Model structure and training details

The model employed in this study is a 
modified nnU-Net with two auxiliary clas-
sifiers incorporated between the encoder 
and segmentation decoder. The auxiliary 
classifiers used here are quite simple: two 
fully connected layers with a ReLu activa-
tion in between. These auxiliary classifiers 
are intended to enable the shared encoder 
to progressively focus on features related to 
lesion type and presence during its training, 
thereby passing more pertinent information 
to the segmentation decoder. The total loss 
was calculated as the sum of the original 
nnU-Net segmentation loss and the losses 
from the auxiliary classifiers, lesion presence 
and lesion type classifier, as follows:

Ltotal= Lseg+ (Llesion_presence+Llesion_type) 	 ( 1 )

Severe augmentations, including Gauss-
ian noise and Gaussian blur transformations, 
were adopted to enhance segmentation per-
formance on the noisier ICU/ED CRs. 

During inference, we excluded regions 
with fewer than 50 pixels in the predicted 
mask to eliminate insignificant noise, as 
most mask sizes exceed 2000 × 2000 pixels, 

with some surpassing 3000 pixels on one 
side. This threshold was chosen based on the 
observation that smaller regions often rep-
resent false positives or artifacts rather than 
meaningful predictions.

Appendix S3. Optimal threshold determi-
nation for assessment decision-making

To select the optimal threshold, we em-
ployed Youden’s J statistic, which measures 
the effectiveness of a threshold in terms 
of maximizing the true positive rate while 
minimizing the false positive rate. For each 
threshold ti, where ti increases by 0.01 from 
0.00 to 1.00, the true positive ratio (TPR) and 
false positive ratio (FPR) can be computed, 
and the value of J at ti is calculated as:

J(ti) = TPR(ti) - FPR(ti)    		   ( 2 )

The optimal threshold can be determined 
by identifying the highest value of J, repre-
senting the most balanced threshold be-
tween sensitivity and specificity:

toptimal  = argmaxti J (ti) 		  ( 3 )

If multiple values of toptimal exist, we select-
ed the lowest threshold value to increase 
sensitivity and reduce the chance of false 
negatives:

tselected  = min(toptimal,i),    for i = 1,2...,n   ( 4 )

This approach minimizes the misclassifi-
cation of true positives as negatives, which is 
crucial in settings such as the ICU/ED, where 
timely intervention is essential. We have in-
ferenced the tuning set using the trained 
segmentation model and then calculated 
the optimal threshold accordingly.
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Supplementary Figure 1. Determination of unchanged/changed in the ED and ICU. The yellow area 
represents consolidation, while the sky-blue area indicates pleural effusion. ED, emergency department; 
ICU, intensive care unit. 

Supplementary Figure 2. Segmentation results across models with various training settings. (a) Original input image. (b) The ground-truth mask by a thoracic 
radiologist. The red area represents a consolidation, while the green area indicates pleural effusion. (c) Segmentation results from three different settings. The 
yellow area represents consolidation, while the sky-blue area indicates pleural effusion. Green areas represent the segmentation of medical devices. The Dice 
score was calculated for each abnormality. MTL, multi-task learning.
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Supplementary Figure 3. Receiver operating characteristic (ROC) curves show the performance of the 
algorithm for each department and the abnormality lesion in the tuning set. Area means the area under the 
ROC curves. ED, emergency department; ICU, intensive care unit. 

Supplementary Figure 4. Example of failure in detecting “changed” in pleural effusion in the intensive 
care unit. (a) Baseline chest radiograph (CR) obtained in a semi-supine position showed no clear fluid level, 
but the model segmented increased opacity along both hemidiaphragms as pleural effusion (sky-blue 
areas). The presence of true effusion could not be confirmed on CR alone. (b) In the follow-up CR acquired 
in an upright position, overt right pleural effusion (arrows) was evident and correctly segmented by the 
model (sky-blue areas). The radiologist interpreted this case as “changed,” whereas the model classified it as 
“unchanged.”
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Supplementary Figure 5. Example of failure in detecting “unchanged” pleural effusion in the intensive care 
unit. (a) Baseline chest radiograph (CR) and (b) follow-up CR obtained in the supine position both showed 
diffuse left pleural effusion opacifying the left hemithorax. Due to slight rightward rotation on the baseline 
CR, the segmented area for pleural effusion (sky-blue areas) appeared smaller, leading the model to classify 
the case as “changed,” whereas the radiologist interpreted it as “unchanged.” 

Supplementary Figure 6. Comparisons between the model and radiologist in assessing change/unchanged 
status of consolidation or pleural effusion. (a) for consolidation in the emergency department (ED), (b) for 
effusion in the ED, (c) for consolidation in the intensive care unit (ICU), and (d) for effusion in the ICU. P values 
were calculated using the McNemar test to compare accuracy. 
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