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Radiomics-based differentiation of benign and malignant breast masses 
on contrast-enhanced mammography: a reproducible workflow using 
open-source tools

PURPOSE
To differentiate benign and malignant breast masses by extracting radiomic features from low-en-
ergy and recombined contrast-enhanced mammography (CEM) images and to evaluate the diag-
nostic performance of multiple machine learning classifiers.

METHODS
In this retrospective, single-center study, 145 patients who underwent CEM between February 2019 
and January 2022 were included. Radiomic features were extracted from manually segmented re-
gions of interest on low-energy and recombined images using an open-source workflow (ITK-SNAP 
and PyRadiomics). The dataset was split at the patient level into a training set (75%) and an in-
dependent test set (25%); within the training set, feature selection and model optimization were 
performed using 10-fold cross-validation. Diagnostic performance [as measured by area under the 
curve (AUC), accuracy, sensitivity, specificity, positive predictive value, and negative predictive val-
ue] was reported on the held-out independent test set.

RESULTS
Ensemble learning demonstrated the best performance for both image types. The highest accu-
racy and AUC were 91.8% and 0.978 for recombined images and 89.7% and 0.968 for low-energy 
images, respectively. For recombined images, ensemble learning yielded the highest sensitivity 
(91.8%), whereas neural networks achieved the highest specificity (95.8%). For low-energy images, 
ensemble learning reached the highest sensitivity (98.0%), and decision trees achieved the highest 
specificity (91.7%).

CONCLUSION
Radiomics analysis of CEM images can effectively differentiate between benign and malignant 
breast masses, potentially enhancing diagnostic accuracy in breast imaging.

CLINICAL SIGNIFICANCE
A radiomics workflow based on recombined CEM images and open-source tools may complement 
conventional CEM interpretation, improve non-invasive lesion characterization, and support fur-
ther research toward clinically validated decision-support applications.
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Breast cancer is the most commonly di-
agnosed malignancy in women and a 
leading cause of cancer-related mortal-

ity.1 Early detection, predicting treatment re-
sponse, and estimating prognosis are crucial 
for improving survival rates.2 Mammography 
remains the primary screening modality, re-
ducing breast cancer mortality by approxi-
mately 30%.3 However, its sensitivity is limit-
ed in dense breasts.

Contrast-enhanced mammography (CEM) 
is a digital mammographic technique that 
provides functional and morphological in-
formation using iodinated contrast agents. 
The technique has been shown to have high-
er sensitivity than standard mammography 
and comparable performance to breast mag-
netic resonance imaging (MRI) while reduc-
ing false positives, and it is not affected by 
breast density.4 CEM has been increasingly 
used for lesion characterization, staging, and 
treatment monitoring.

In CEM, benign and malignant lesions 
are differentiated based on tumor shape, 
contour, contrast enhancement patterns, 
and kinetic characteristics. However, med-
ical images contain quantitative data that 
are invisible to the human eye but can pro-
vide valuable diagnostic insights. Radiom-
ics involves extracting and analyzing these 
high-dimensional features to characterize 
tissue properties. The radiomics workflow in-
cludes feature extraction through statistical, 
filtering, and morphological techniques, fol-
lowed by feature selection to retain the most 
diagnostically relevant parameters. Machine 
learning algorithms then classify lesions as 
benign or malignant based on these features. 

Although radiomics has been widely studied 
in non-contrast mammography and MRI, its 
application in CEM is relatively new. Prelim-
inary studies have demonstrated that ra-
diomics analysis of CEM images can achieve 
classification accuracies ranging from 80% to 
90% in tumor classification and holds prom-
ise for distinguishing subtypes, assessing 
invasiveness, and predicting tumor grade.5-9

This study extracts radiomic features from 
CEM images for benign–malignant mass dif-
ferentiation and evaluates their diagnostic 
performance using machine learning algo-
rithms.

Methods

Study population 

A total of 145 patients with suspicious 
breast masses on CEM were retrospective-
ly included, yielding 164 breast masses (73 
benign and 91 malignant) for the final ra-
diomics analysis. Patients who had contra-
indications to iodinated contrast agents or 
incomplete imaging data were excluded. 
Malignant lesions were one per patient (91 
lesions in 91 patients); the higher number of 
lesions than patients was due to the benign 
group, in which 58 patients contributed 73 
benign lesions (i.e., multiple lesions occurred 
only in the benign subgroup). Each lesion 
was segmented and analyzed as a separate 
lesion-level sample. The patient and lesion 
selection process is summarized in Figure 1. 
This retrospective study was approved by the 
Institutional Review Board of Karadeniz Tech-
nical University (approval number: 2022/121, 
date: June 2, 2022), and the requirement for 
informed consent was waived.

Imaging protocol 

CEM was performed using a digital mam-
mography unit (Senographe Essential, GE 
Healthcare, Buc, France). An intravenous con-
trast agent (1.5 mL/kg, 50–120 mL) was ad-
ministered at 3 mL/s. Craniocaudal (CC) and 
mediolateral oblique (MLO) views of both 
breasts were acquired, starting approximate-
ly 2 minutes after contrast injection, and all 
views were completed within 6–7 minutes, 
generating low-energy and recombined im-
ages.

Radiomics analysis

Image assessment and segmentation

CEM images were evaluated using a dedi-
cated mammography workstation by two ra-
diologists with 20 and 3 years of experience 

in breast imaging, respectively. Lesion size 
and histopathological type were recorded 
for each patient.

All images were stored in DICOM format 
and processed using ITK-SNAP 3.8 (Univer-
sity of Pennsylvania, Philadelphia, PA, USA; 
www.itksnap.org), an open-source image 
segmentation tool. The radiologist with 3 
years of experience manually segmented the 
lesions, ensuring that the region of interest 
(ROI) strictly encompassed the lesion itself 
(Figure 2). This segmentation was applied to 
all low-energy and recombined CC and MLO 
images.

Feature extraction and selection

Radiomic feature extraction was con-
ducted using PyRadiomics (AIM-Harvard, 
Boston, MA, USA), an open-source Python 
package for radiomic feature extraction from 
two-dimensional and three-dimensional im-
ages. No pre-processing was applied before 
extraction. A total of 102 radiomic features 
were computed, categorized into the follow-
ing matrices:

• Shape-based features

• First-order statistical features

•	Gray-Level Co-occurrence Matrix (GLCM)

•	Gray-Level Run Length Matrix (GLRLM)

• Gray-Level Size Zone Matrix (GLSZM)

• Gray-Level Dependence Matrix (GLDM)

• Neighboring Gray-Tone Difference Ma-
trix (NGTDM) (Supplementary Table 1)

To reduce dimensionality and improve 
model efficiency, minimum redundancy–
maximum relevance, ReliefF, and ANOVA 
algorithms were implemented in MATLAB 
R2022b (MathWorks, Inc., Natick, MA, USA). 
Each algorithm generated a ranking based 
on feature importance scores. The top 10 
most significant features were selected by 
each algorithm (Figures 3 and 4). A total of 
22 features for recombined images and 25 
features for low-energy images were select-
ed for analysis (Supplementary Table 2).

Classification and model optimization

Supervised machine learning classifiers 
were developed to classify ROIs as benign 
or malignant. All analyses were performed 
using MATLAB R2022b. Prior to model devel-
opment, the dataset was split at the patient 
level into a training set (75%) and an inde-
pendent test set (25%) to prevent informa-
tion leakage. When multiple benign lesions 

Main points

•	 Radiomics-based analysis of recombined 
contrast-enhanced mammography (CEM) 
images achieved high diagnostic perfor-
mance in differentiating benign from malig-
nant breast masses.

•	 An open-source workflow using ITK-SNAP 
and PyRadiomics provides a transparent 
and reproducible pipeline that can be imple-
mented in radiology departments equipped 
with digital mammography systems.

•	 Shape- and texture-based radiomic features 
derived from CEM may serve as quantitative 
biomarkers to support lesion characteriza-
tion and risk stratification research in breast 
imaging.

•	 Recombined CEM images outperformed 
low-energy images across multiple machine 
learning classifiers, highlighting the added 
value of contrast-enhanced information for 
lesion characterization.
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were present in the same patient, all lesions 
from that patient were kept within the same 
split. The independent test set was not used 
at any stage of feature selection, model tun-
ing, or model selection.

The following classifiers were evaluat-
ed: ensemble learning, decision trees, naïve 
Bayes, support vector machines, and neural 
networks (Supplementary Table 3). Within 
the training set, 10-fold cross-validation was 
used for model optimization and selection. 
The final selected model was then trained 
on the full training set and evaluated on the 
held-out independent test set. Performance 
was assessed using area under the receiver 
operating characteristic curve (ROC) AUC, 
accuracy, sensitivity, specificity, positive pre-
dictive value (PPV), and negative predictive 
value (NPV).

All steps of the radiomics workflow, in-
cluding image acquisition, lesion segmenta-
tion, feature extraction, feature selection, and 
model training, are summarized in Figure 5.

Statistical analysis

Descriptive statistics for continuous vari-
ables were expressed as mean ± standard 
deviation, and categorical variables as num-
bers and percentages. The machine learn-
ing workflow, including patient-level data 
partitioning, cross-validation, and leakage 
prevention, is described in the “Classification 
and Model Optimization” section. Diagnostic 
performance metrics (AUC, accuracy, sensi-
tivity, specificity, PPV, and NPV) were report-
ed for the held-out independent test set.

Results

Patient characteristics 

A total of 164 ROIs were analyzed. Of 
these, 44.5% (73) were benign, and 55.5% 
(91) were malignant. The mean age was 48.1 
± 9.5 years for benign cases and 49.9 ± 10.5 
years for malignant cases. Invasive ductal 
carcinoma was the most common malignant 
diagnosis (57%), and stable follow-up mass-

es were the most common benign findings 
(41%). The mean lesion size was 23.2 ± 20.6 
mm in the benign group and 35.7 ± 21.5 mm 
in the malignant group (Tables 1 and 2).

Performance of radiomics analysis 

All reported performance metrics repre-
sent results from the held-out independent 
test set (25% of patients). Model selection 
and optimization were performed within the 
training set using 10-fold cross-validation.

The classification performance of five 
different machine learning algorithms was 
evaluated. The confusion matrices and ROC 
curves for recombined images are illustrat-
ed in Supplementary Figure 1. Among all 
models, ensemble learning exhibited the 
best diagnostic performance, achieving an 
AUC value of 0.9783. The corresponding AUC 
values for the other classifiers were 0.9728 
for neural networks, 0.9583 for support vec-
tor machines, 0.8793 for decision trees, and 
0.8520 for naïve Bayes.

Figure 1. Flowchart of patient and lesion selection. Flow diagram showing the selection of patients and lesions for inclusion in the radiomics analysis. During 
the study period, 145 patients who underwent diagnostic contrast-enhanced mammography for suspicious clinical or radiological findings were screened. After 
application of the inclusion and exclusion criteria, 145 patients with 164 breast masses (73 benign and 91 malignant) were included in the final study cohort.

Figure 2. Representative malignant breast mass and manual segmentation on contrast-enhanced mammography. Contrast-enhanced mammography images 
of a biopsy-proven malignant breast mass. The region of interest is manually delineated on both low-energy and recombined images, precisely including only 
the enhancing tumor and excluding surrounding parenchyma, skin, and vessels. The same segmentation strategy was applied to all low-energy and recombined 
craniocaudal mediolateral and oblique images before radiomic feature extraction.
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Figure 3. Top 10 most relevant radiomic features in recombined images. Bar chart showing the 10 most relevant radiomic features selected from recombined contrast-
enhanced mammography images by the feature selection algorithms (minimum redundancy–maximum relevance, ReliefF, and ANOVA). Feature importance scores 
are normalized to allow visual comparison of the relative contribution of each feature. ANOVA, analysis of variance; MCC, maximal correlation coefficient.

Figure 4. Top 10 most relevant radiomic features in low-energy images. Bar chart showing the 10 most relevant radiomic features selected from low-energy contrast-
enhanced mammography images by the same feature selection algorithms (minimum redundancy–maximum relevance, ReliefF, and ANOVA). As in recombined 
images, texture- and shape-based features predominate among the highest-ranking variables. ANOVA, analysis of variance; MCC, maximal correlation coefficient.
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The classification results for low-energy 
images are depicted in Supplementary Fig-
ure 2. As with recombined images, ensemble 
learning exhibited the highest classification 
performance, with an AUC value of 0.9677. 
The AUC values for the other classifiers were 
0.9418 for neural networks, 0.9332 for sup-
port vector machines, 0.8695 for decision 
trees, and 0.8818 for naïve Bayes.

The accuracy and AUC values for each 
classifier in both recombined and low-en-
ergy images are summarized in Table 3. The 
ensemble learning classifier achieved the 
highest accuracy, with values of 91.75% for 
recombined images and 89.69% for low-en-

ergy images. The performance of the other 
classifiers is outlined below:

•	For recombined images, the accura-
cy rates were as follows: neural networks 
(89.85%), support vector machines (89.69%), 
decision trees (84.74%), and naïve Bayes 
(84.54%).

•	For low-energy images, the accura-
cy rates were as follows: neural networks 
(87.63%), support vector machines (85.57%), 
decision trees (86.60%), and naïve Bayes 
(82.47%).

Table 4 summarizes the sensitivity, spec-
ificity, PPV, and NPV of each classifier. In re-

combined images, ensemble learning and 
support vector machines exhibited the high-
est sensitivity (91.83% and 91.82%, respec-
tively). The highest specificity and PPV were 
obtained with the neural network classifier 
(95.83% and 95.34%, respectively). Ensemble 
learning achieved the highest NPV at 91.66%.

For low-energy images, ensemble learning 
exhibited the highest sensitivity (97.95%) 
and NPV (95.50%). The highest specificity 
(91.66%) and PPV (90.90%) were achieved us-
ing the decision tree classifier.

Figure 5. Radiomics workflow for contrast-enhanced mammography-based lesion classification. Schematic overview of the radiomics workflow applied in this 
study. Following diagnostic labeling, the dataset was split at the patient level into a training set (75%) and an independent test set (25%). Within the training set, 
feature selection and model optimization were performed using 10-fold cross-validation. Final performance metrics were calculated on the held-out test set to 
differentiate benign from malignant breast masses on contrast-enhanced mammography (CEM). 

Table 1. Demographic characteristics of the study cohort (lesion-based analysis, n = 164)

n (%)

Definitive diagnosis (n = 164) Benign 73 (44.5)

Malignant 91 (55.5)

Age (n = 164)

< 40 19 (26.0)

Benign 40–49 20 (27.4)

50–59 22 (30.1)

≥ 60 12 (16.4)

Mean ± SD: 48.1 ± 9.5; median: 49; range: 30–65

< 40 16 (17.6)

Malignant
40–49 28 (30.8)

50–59 25 (27.5)

≥ 60 22 (24.2)

Mean ± SD: 49.9 ± 10.5; median: 50; range: 26–75

Percentages are calculated within each subgroup (benign/malignant) for age categories; overall percentages are reported for the total sample where applicable. SD, standard 
deviation.
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Table 2. Final diagnosis and maximum tumor diameter of masses (n = 164)

A) Final diagnosis, n (%)

Diagnosis/category n (%)

Benign (n = 73)

Fibroadenoma 2 (2.7)

Papilloma 8 (11.0)

Mastitis 11 (15.1)

Fibrocystic disease 2 (2.7)

Epithelial hyperplasia 2 (2.7)

Stable on follow-up 30 (41.1)

Other benign 18 (24.7)

Malignant (n = 91)

Invasive ductal carcinoma 52 (57.1)

Invasive lobular carcinoma 8 (8.8)

IDC + ILC 4 (4.4)

IDC + ductal carcinoma in situ 14 (15.4)

Other malignant 13 (14.3)

B) Maximum tumor diameter categories, n (%)

Maximum diameter n (%)

Benign (n = 73)

< 10 mm 28 (38.4)

11–20 mm 16 (21.9)

21–30 mm 11 (15.1)

31–40 mm 8 (11.0)

41–50 mm 3 (4.1)

> 51 7 (9.6)

Mean ± SD, mm: 23 ± 20; median: 18; range: 4–90

Malignant (n = 91)

<10 mm 3 (3.3)

11–20 mm 17 (18.7)

21–30 mm 31 (34.1)

31–40 mm 15 (16.5)

41–50 mm 9 (9.9)

> 51 16 (17.6)

Mean ± SD, mm: 36 ± 22; Median: 28; Range: 10–95

Percentages are calculated within the benign (n = 73) and malignant (n = 91) subgroups. IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma; SD, standard deviation.

Table 3. Accuracy and AUC values ​​of five different models for recombined and low-energy images

Recombined images Low-energy images

Model Accuracy (%) AUC Accuracy (%) AUC

Ensemble learning 91.75 0.9783 89.69 0.9677

Neural network 89.85 0.9728 87.63 0.9418

Support vector machine 89.69 0.9583 85.57 0.9332

Decision trees 84.74 0.8793 86.60 0.8695

Naïve Bayes 84.54 0.8520 82.47 0.8818

Performance metrics are reported for the held-out test set; 10-fold cross-validation was used within the training set for model optimization. AUC, area under the curve.
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Discussion
CEM enhances the diagnostic accuracy of 

digital mammography by visualizing tumor 
neovascularity through iodinated contrast 
administration. The CEM technique enables 
the concurrent evaluation of morphological 
and enhancement characteristics, achieving 
a sensitivity range of 96%–100%, compara-
ble to that of MRI, and improving the speci-
ficity of digital mammography from 42% to 
87.7%.10,11

Radiomics is an emerging field that uses 
extracted quantitative imaging biomarkers 
to enhance diagnostic accuracy and improve 
patient management. By analyzing texture, 
shape, and statistical features, radiomics 
provides an objective and reproducible as-
sessment of tumor characteristics. Although 
most radiomics studies have focused on MRI, 
CEM offers a unique advantage by combin-
ing mammographic and contrast-enhanced 
information, positioning it as a promising 
modality for radiomics analysis.2,5,12

In the present study, 102 radiomic fea-
tures, including first-order, shape-based, 
and texture-based metrics (GLCM, GLRLM, 
GLSZM, NGTDM, and GLDM), were evaluated. 
Compared with previous radiomics studies 
using CEM, our models achieved numerically 
higher AUCs and accuracies in differentiating 
benign from malignant lesions (Supplemen-
tary Table 4).5,9,13-17 The more comprehensive 
feature set used in this study may have con-
tributed to these improved results.

Our findings indicate that recombined 
CEM images outperform low-energy im-
ages in distinguishing benign from malig-
nant masses. Ensemble learning achieved 
the highest accuracy for both image types, 
whereas neural networks demonstrated the 

best specificity for recombined images, and 
support vector machines performed best for 
low-energy images.

Clinical relevance and practical applicabil-
ity

The current study aims to bridge the gap 
between advanced image-based computa-
tional analysis and clinical decision-making 
in breast imaging. By using widely acces-
sible open-source tools such as ITK-SNAP 
and PyRadiomics and integrating standard 
segmentation and feature selection algo-
rithms, the proposed methodology can be 
feasibly replicated in radiology departments 
equipped with digital mammography infra-
structure. The selected radiomic features, 
particularly shape- and texture-based de-
scriptors, may aid in distinguishing benign 
from malignant lesions and complement 
routine CEM assessment. However, this ret-
rospective study did not evaluate integration 
with established clinical assessment systems 
(e.g., BI-RADS), perform comparisons with 
radiologist interpretation, or conduct deci-
sion-threshold and clinical-utility analyses, 
meaning the potential impact on clinical de-
cision-making (including biopsy decisions) 
should be interpreted cautiously. With addi-
tional multi-reader robustness testing, exter-
nal validation in larger multicenter cohorts, 
and prospective clinical-utility assessment, 
this approach could serve as a foundation for 
future decision-support tools.

This retrospective, single-center study has 
several limitations. First, the sample size was 
modest, with an imbalanced distribution of 
benign and malignant lesions. Second, le-
sions were manually segmented by a single 
reader; thus, interobserver agreement and 
segmentation robustness (e.g., intraclass cor-
relation coefficient-based feature stability) 

could not be assessed, which may affect re-
producibility. Third, no external validation 
cohort was available, and the extremely high 
AUC values may partly reflect optimistic per-
formance and potential overfitting in a lim-
ited dataset with high-dimensional radiomic 
features. Future research should incorporate 
larger, multicenter datasets, harmonization 
strategies, multi-reader or automated seg-
mentation approaches, and external valida-
tion.

In conclusion, radiomics analysis of 
CEM—particularly recombined images—
showed strong discrimination between be-
nign and malignant breast masses within 
an open-source and reproducible workflow. 
These findings highlight the potential of 
integrating radiomics-derived quantitative 
biomarkers into artificial intelligence-based 
decision-support systems for breast lesion 
characterization. Future studies should eval-
uate model generalizability and robustness 
in larger cohorts by incorporating multi-read-
er segmentation robustness assessment and 
independent external multicenter validation 
and by benchmarking performance against 
standard clinical assessment frameworks.

Footnotes
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Supplementary Figures link: https://
d2v96fxpocvxx.cloudfront.net/a2440bda-
5c5c-4e7b-8a75-abf1691c9260/content-imag-
es/2a992cf0-f48c-46af-91a6-632f17f2a4af.pdf

Supplementary Tables link: https://
d2v96fxpocvxx.cloudfront.net/87200e80-
fa4b-4309-8816-eff4c4e638c8/content-imag-
es/60a4326b-2e21-4bcd-8d2e-bb3cafc4ee99.pdf

Table 4. Sensitivity, specificity, and positive and negative predictive values ​​of five different models for recombined and low-energy images

Model Sensitivity (%) Specificity (%) Positive predictive 
value (%)

Negative predictive 
value (%)

Recombined images

Ensemble learning 91.83 91.66 91.83 91.66

Neural network 83.67 95.83 95.34 85.18

Support vector 
machine 91.82 87.50 88.23 91.30

Decision trees 85.71 83.33 84.00 85.10

Naïve Bayes 89.79 79.16 81.48 88.37

Low-energy images

Ensemble learning 97.95 81.25 84.21 97.50

Neural network 87.75 87.50 87.75 87.50

Support vector 
machine 85.71 85.41 85.71 85.41

Decision trees 81.63 91.66 90.90 83.01

Naïve Bayes 87.75 77.08 79.62 86.04

https://d2v96fxpocvxx.cloudfront.net/a2440bda-5c5c-4e7b-8a75-abf1691c9260/content-images/2a992cf0-f48c-46af-91a6-632f17f2a4af.pdf
https://d2v96fxpocvxx.cloudfront.net/87200e80-fa4b-4309-8816-eff4c4e638c8/content-images/60a4326b-2e21-4bcd-8d2e-bb3cafc4ee99.pdf
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