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PURPOSE

To differentiate benign and malignant breast masses by extracting radiomic features from low-en-
ergy and recombined contrast-enhanced mammography (CEM) images and to evaluate the diag-
nostic performance of multiple machine learning classifiers.

METHODS

In this retrospective, single-center study, 145 patients who underwent CEM between February 2019
and January 2022 were included. Radiomic features were extracted from manually segmented re-
gions of interest on low-energy and recombined images using an open-source workflow (ITK-SNAP
and PyRadiomics). The dataset was split at the patient level into a training set (75%) and an in-
dependent test set (25%); within the training set, feature selection and model optimization were
performed using 10-fold cross-validation. Diagnostic performance [as measured by area under the
curve (AUQ), accuracy, sensitivity, specificity, positive predictive value, and negative predictive val-
ue] was reported on the held-out independent test set.

RESULTS

Ensemble learning demonstrated the best performance for both image types. The highest accu-
racy and AUC were 91.8% and 0.978 for recombined images and 89.7% and 0.968 for low-energy
images, respectively. For recombined images, ensemble learning yielded the highest sensitivity
(91.8%), whereas neural networks achieved the highest specificity (95.8%). For low-energy images,
ensemble learning reached the highest sensitivity (98.0%), and decision trees achieved the highest
specificity (91.7%).

CONCLUSION
Radiomics analysis of CEM images can effectively differentiate between benign and malignant
breast masses, potentially enhancing diagnostic accuracy in breast imaging.

CLINICAL SIGNIFICANCE

A radiomics workflow based on recombined CEM images and open-source tools may complement
conventional CEM interpretation, improve non-invasive lesion characterization, and support fur-
ther research toward clinically validated decision-support applications.
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reast cancer is the most commonly di-
Bagnosed malignancy in women and a

leading cause of cancer-related mortal-
ity." Early detection, predicting treatment re-
sponse, and estimating prognosis are crucial
for improving survival rates.> Mammography
remains the primary screening modality, re-
ducing breast cancer mortality by approxi-
mately 30%.> However, its sensitivity is limit-
ed in dense breasts.

Contrast-enhanced mammography (CEM)
is a digital mammographic technique that
provides functional and morphological in-
formation using iodinated contrast agents.
The technique has been shown to have high-
er sensitivity than standard mammography
and comparable performance to breast mag-
netic resonance imaging (MRI) while reduc-
ing false positives, and it is not affected by
breast density. CEM has been increasingly
used for lesion characterization, staging, and
treatment monitoring.

In CEM, benign and malignant lesions
are differentiated based on tumor shape,
contour, contrast enhancement patterns,
and kinetic characteristics. However, med-
ical images contain quantitative data that
are invisible to the human eye but can pro-
vide valuable diagnostic insights. Radiom-
ics involves extracting and analyzing these
high-dimensional features to characterize
tissue properties. The radiomics workflow in-
cludes feature extraction through statistical,
filtering, and morphological techniques, fol-
lowed by feature selection to retain the most
diagnostically relevant parameters. Machine
learning algorithms then classify lesions as
benign or malignant based on these features.

* Radiomics-based analysis of recombined
contrast-enhanced mammography (CEM)
images achieved high diagnostic perfor-
mance in differentiating benign from malig-
nant breast masses.

* An open-source workflow using ITK-SNAP
and PyRadiomics provides a transparent
and reproducible pipeline that can be imple-
mented in radiology departments equipped
with digital mammography systems.

*+ Shape- and texture-based radiomic features
derived from CEM may serve as quantitative
biomarkers to support lesion characteriza-
tion and risk stratification research in breast
imaging.

* Recombined CEM images outperformed
low-energy images across multiple machine
learning classifiers, highlighting the added
value of contrast-enhanced information for
lesion characterization.

Although radiomics has been widely studied
in non-contrast mammography and MRI, its
application in CEM is relatively new. Prelim-
inary studies have demonstrated that ra-
diomics analysis of CEM images can achieve
classification accuracies ranging from 80% to
90% in tumor classification and holds prom-
ise for distinguishing subtypes, assessing
invasiveness, and predicting tumor grade.>®

This study extracts radiomic features from
CEM images for benign—malignant mass dif-
ferentiation and evaluates their diagnostic
performance using machine learning algo-
rithms.

Methods

Study population

A total of 145 patients with suspicious
breast masses on CEM were retrospective-
ly included, yielding 164 breast masses (73
benign and 91 malignant) for the final ra-
diomics analysis. Patients who had contra-
indications to iodinated contrast agents or
incomplete imaging data were excluded.
Malignant lesions were one per patient (91
lesions in 91 patients); the higher number of
lesions than patients was due to the benign
group, in which 58 patients contributed 73
benign lesions (i.e., multiple lesions occurred
only in the benign subgroup). Each lesion
was segmented and analyzed as a separate
lesion-level sample. The patient and lesion
selection process is summarized in Figure 1.
This retrospective study was approved by the
Institutional Review Board of Karadeniz Tech-
nical University (approval number: 2022/121,
date: June 2, 2022), and the requirement for
informed consent was waived.

Imaging protocol

CEM was performed using a digital mam-
mography unit (Senographe Essential, GE
Healthcare, Buc, France). An intravenous con-
trast agent (1.5 mL/kg, 50-120 mL) was ad-
ministered at 3 mL/s. Craniocaudal (CC) and
mediolateral oblique (MLO) views of both
breasts were acquired, starting approximate-
ly 2 minutes after contrast injection, and all
views were completed within 6-7 minutes,
generating low-energy and recombined im-
ages.

Radiomics analysis

Image assessment and segmentation

CEM images were evaluated using a dedi-
cated mammography workstation by two ra-
diologists with 20 and 3 years of experience

« February 2026 - Diagnostic and Interventional Radiology

in breast imaging, respectively. Lesion size
and histopathological type were recorded
for each patient.

All images were stored in DICOM format
and processed using ITK-SNAP 3.8 (Univer-
sity of Pennsylvania, Philadelphia, PA, USA;
www.itksnap.org), an open-source image
segmentation tool. The radiologist with 3
years of experience manually segmented the
lesions, ensuring that the region of interest
(ROI) strictly encompassed the lesion itself
(Figure 2). This segmentation was applied to
all low-energy and recombined CC and MLO
images.

Feature extraction and selection

Radiomic feature extraction was con-
ducted using PyRadiomics (AIM-Harvard,
Boston, MA, USA), an open-source Python
package for radiomic feature extraction from
two-dimensional and three-dimensional im-
ages. No pre-processing was applied before
extraction. A total of 102 radiomic features
were computed, categorized into the follow-
ing matrices:

* Shape-based features

* First-order statistical features

* Gray-Level Co-occurrence Matrix (GLCM)
* Gray-Level Run Length Matrix (GLRLM)

* Gray-Level Size Zone Matrix (GLSZM)

* Gray-Level Dependence Matrix (GLDM)

 Neighboring Gray-Tone Difference Ma-
trix (NGTDM) (Supplementary Table 1)

To reduce dimensionality and improve
model efficiency, minimum redundancy-
maximum relevance, ReliefF, and ANOVA
algorithms were implemented in MATLAB
R2022b (MathWorks, Inc., Natick, MA, USA).
Each algorithm generated a ranking based
on feature importance scores. The top 10
most significant features were selected by
each algorithm (Figures 3 and 4). A total of
22 features for recombined images and 25
features for low-energy images were select-
ed for analysis (Supplementary Table 2).

Classification and model optimization

Supervised machine learning classifiers
were developed to classify ROIs as benign
or malignant. All analyses were performed
using MATLAB R2022b. Prior to model devel-
opment, the dataset was split at the patient
level into a training set (75%) and an inde-
pendent test set (25%) to prevent informa-
tion leakage. When multiple benign lesions

Teymur et al.



Patients who underwent diagnostic
contrast-enhanced mammography for
suspicious clinical or radiological
findings during the study period
(n=145)

=

Exclusion criteria applied:

- Contraindications to iodinated
contrast

- Incomplete imaging data

Final study cohort: 145 patients with 164
breast masses
(73 benign, 91 malignant) included in
the radiomics analysis

=

Figure 1. Flowchart of patient and lesion selection. Flow diagram showing the selection of patients and lesions for inclusion in the radiomics analysis. During
the study period, 145 patients who underwent diagnostic contrast-enhanced mammography for suspicious clinical or radiological findings were screened. After
application of the inclusion and exclusion criteria, 145 patients with 164 breast masses (73 benign and 91 malignant) were included in the final study cohort.

||||||||||||||| '|||||||||||||| ||||||||||||||| ||||||||||%|||||

Figure 2. Representative malignant breast mass and manual segmentation on contrast-enhanced mammography. Contrast-enhanced mammography images
of a biopsy-proven malignant breast mass. The region of interest is manually delineated on both low-energy and recombined images, precisely including only
the enhancing tumor and excluding surrounding parenchyma, skin, and vessels. The same segmentation strategy was applied to all low-energy and recombined
craniocaudal mediolateral and oblique images before radiomic feature extraction.

were present in the same patient, all lesions
from that patient were kept within the same
split. The independent test set was not used
at any stage of feature selection, model tun-
ing, or model selection.

The following classifiers were evaluat-
ed: ensemble learning, decision trees, naive
Bayes, support vector machines, and neural
networks (Supplementary Table 3). Within
the training set, 10-fold cross-validation was
used for model optimization and selection.
The final selected model was then trained
on the full training set and evaluated on the
held-out independent test set. Performance
was assessed using area under the receiver
operating characteristic curve (ROC) AUC,
accuracy, sensitivity, specificity, positive pre-
dictive value (PPV), and negative predictive
value (NPV).

All steps of the radiomics workflow, in-
cluding image acquisition, lesion segmenta-
tion, feature extraction, feature selection, and
model training, are summarized in Figure 5.

Statistical analysis

Descriptive statistics for continuous vari-
ables were expressed as mean + standard
deviation, and categorical variables as num-
bers and percentages. The machine learn-
ing workflow, including patient-level data
partitioning, cross-validation, and leakage
prevention, is described in the “Classification
and Model Optimization” section. Diagnostic
performance metrics (AUC, accuracy, sensi-
tivity, specificity, PPV, and NPV) were report-
ed for the held-out independent test set.

Results

Patient characteristics

A total of 164 ROIs were analyzed. Of
these, 44.5% (73) were benign, and 55.5%
(91) were malignant. The mean age was 48.1
+ 9.5 years for benign cases and 49.9 £ 10.5
years for malignant cases. Invasive ductal
carcinoma was the most common malignant
diagnosis (57%), and stable follow-up mass-

es were the most common benign findings
(41%). The mean lesion size was 23.2 + 20.6
mm in the benign group and 35.7 £ 21.5 mm
in the malignant group (Tables 1 and 2).

Performance of radiomics analysis

All reported performance metrics repre-
sent results from the held-out independent
test set (25% of patients). Model selection
and optimization were performed within the
training set using 10-fold cross-validation.

The classification performance of five
different machine learning algorithms was
evaluated. The confusion matrices and ROC
curves for recombined images are illustrat-
ed in Supplementary Figure 1. Among all
models, ensemble learning exhibited the
best diagnostic performance, achieving an
AUC value of 0.9783.The corresponding AUC
values for the other classifiers were 0.9728
for neural networks, 0.9583 for support vec-
tor machines, 0.8793 for decision trees, and
0.8520 for naive Bayes.

Radiomics of contrast-enhanced mammography for breast masses -
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enhanced mammography images by the feature selection algorithms (minimum redundancy-maximum relevance, ReliefF, and ANOVA). Feature importance scores
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The classification results for low-energy
images are depicted in Supplementary Fig-
ure 2. As with recombined images, ensemble
learning exhibited the highest classification
performance, with an AUC value of 0.9677.
The AUC values for the other classifiers were
0.9418 for neural networks, 0.9332 for sup-
port vector machines, 0.8695 for decision
trees, and 0.8818 for naive Bayes.

The accuracy and AUC values for each
classifier in both recombined and low-en-
ergy images are summarized in Table 3. The
ensemble learning classifier achieved the
highest accuracy, with values of 91.75% for
recombined images and 89.69% for low-en-

ergy images. The performance of the other
classifiers is outlined below:

* For recombined images, the accura-
cy rates were as follows: neural networks
(89.85%), support vector machines (89.69%),
decision trees (84.74%), and naive Bayes
(84.54%).

* For low-energy images, the accura-
cy rates were as follows: neural networks
(87.63%), support vector machines (85.57%),
decision trees (86.60%), and naive Bayes
(82.47%).

Table 4 summarizes the sensitivity, spec-
ificity, PPV, and NPV of each classifier. In re-
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combined images, ensemble learning and
support vector machines exhibited the high-
est sensitivity (91.83% and 91.82%, respec-
tively). The highest specificity and PPV were
obtained with the neural network classifier
(95.83% and 95.34%, respectively). Ensemble
learning achieved the highest NPV at 91.66%.

For low-energy images, ensemble learning
exhibited the highest sensitivity (97.95%)
and NPV (95.50%). The highest specificity
(91.66%) and PPV (90.90%) were achieved us-
ing the decision tree classifier.

ROC curve
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Figure 5. Radiomics workflow for contrast-enhanced mammography-based lesion classification. Schematic overview of the radiomics workflow applied in this
study. Following diagnostic labeling, the dataset was split at the patient level into a training set (75%) and an independent test set (25%). Within the training set,
feature selection and model optimization were performed using 10-fold cross-validation. Final performance metrics were calculated on the held-out test set to
differentiate benign from malignant breast masses on contrast-enhanced mammography (CEM).

Table 1. Demographic characteristics of the study cohort (lesion-based analysis, n = 164)

n (%)
Definitive diagnosis (n = 164) Benign 73 (44.5)
Malignant 91 (55.5)
<40 19 (26.0)
Benign 40-49 20 (27.4)
50-59 22 (30.1)
> 60 12(16.4)
Mean + SD: 48.1 + 9.5; median: 49; range: 30-65
Age (n =164)
<40 16 (17.6)
Malignant 40-49 28 (30.8)
50-59 25(27.5)
> 60 22(24.2)

Mean + SD: 49.9 + 10.5; median: 50; range: 26-75

Percentages are calculated within each subgroup (benign/malignant) for age categories; overall percentages are reported for the total sample where applicable. SD, standard

deviation.

Radiomics of contrast-enhanced mammography for breast masses -



Table 2. Final diagnosis and maximum tumor diameter of masses (n = 164)

A) Final diagnosis, n (%)

Diagnosis/category n (%)
Fibroadenoma 2(2.7)
Papilloma 8(11.0)
Mastitis 11(15.1)
Benign (n=73) Fibrocystic disease 2(2.7)
Epithelial hyperplasia 2(2.7)
Stable on follow-up 30 (41.1)
Other benign 18 (24.7)
Invasive ductal carcinoma 52 (57.1)
Invasive lobular carcinoma 8(8.8)
Malignant (n=91) IDC + ILC 4 (4.4)
IDC + ductal carcinoma in situ 14 (15.4)
Other malignant 13 (14.3)
B) Maximum tumor diameter categories, n (%)
Maximum diameter n (%)
<10 mm 28 (38.4)
11-20 mm 16(21.9)
Benign (n = 73) 21-30 mm 11 (15.1)
31-40 mm 8(11.0)
41-50 mm 3(4.1)
> 51 7(9.6)
Mean + SD, mm: 23 + 20; median: 18; range: 4-90
<10 mm 3(3.3)
11-20 mm 17 (18.7)
Malignant (n = 91) 21-30 mm 31(34.1)
31-40 mm 15(16.5)
41-50 mm 9(9.9)
>51 16 (17.6)

Mean + SD, mm: 36 £ 22; Median: 28; Range: 10-95

Percentages are calculated within the benign (n = 73) and malignant (n = 91) subgroups. IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma; SD, standard deviation.

Table 3. Accuracy and AUC values of five different models for recombined and low-energy images

Recombined images

Low-energy images

Model Accuracy (%) AUC Accuracy (%) AUC

Ensemble learning 91.75 0.9783 89.69 0.9677
Neural network 89.85 0.9728 87.63 0.9418
Support vector machine 89.69 0.9583 85.57 0.9332
Decision trees 84.74 0.8793 86.60 0.8695
Naive Bayes 84.54 0.8520 82.47 0.8818

Performance metrics are reported for the held-out test set; 10-fold cross-validation was used within the training set for model optimization. AUC, area under the curve.
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Table 4. Sensitivity, specificity, and positive and negative predictive values of five different models for recombined and low-energy images

Model Sensitivity (%) Specificity (%) Positive predictive Negative predictive
value (%) value (%)
Ensemble learning 91.83 91.66 91.83 91.66
Neural network 83.67 95.83 95.34 85.18
Recombined images ~ ©UPPOrt vector 91.82 87.50 88.23 91.30
machine
Decision trees 85.71 83.33 84.00 85.10
Naive Bayes 89.79 79.16 81.48 88.37
Ensemble learning 97.95 81.25 84.21 97.50
Neural network 87.75 87.50 87.75 87.50
Low-energy images f\:’a‘z‘r’]‘i’r:te"ed°' 85.71 85.41 85.71 85.41
Decision trees 81.63 91.66 90.90 83.01
Naive Bayes 87.75 77.08 79.62 86.04

Discussion

CEM enhances the diagnostic accuracy of
digital mammography by visualizing tumor
neovascularity through iodinated contrast
administration. The CEM technique enables
the concurrent evaluation of morphological
and enhancement characteristics, achieving
a sensitivity range of 96%-100%, compara-
ble to that of MRI, and improving the speci-
ficity of digital mammography from 42% to
87.7%.101

Radiomics is an emerging field that uses
extracted quantitative imaging biomarkers
to enhance diagnostic accuracy and improve
patient management. By analyzing texture,
shape, and statistical features, radiomics
provides an objective and reproducible as-
sessment of tumor characteristics. Although
most radiomics studies have focused on MRI,
CEM offers a unique advantage by combin-
ing mammographic and contrast-enhanced
information, positioning it as a promising
modality for radiomics analysis.>*'?

In the present study, 102 radiomic fea-
tures, including first-order, shape-based,
and texture-based metrics (GLCM, GLRLM,
GLSZM, NGTDM, and GLDM), were evaluated.
Compared with previous radiomics studies
using CEM, our models achieved numerically
higher AUCs and accuracies in differentiating
benign from malignant lesions (Supplemen-
tary Table 4).>°'*17 The more comprehensive
feature set used in this study may have con-
tributed to these improved results.

Our findings indicate that recombined
CEM images outperform low-energy im-
ages in distinguishing benign from malig-
nant masses. Ensemble learning achieved
the highest accuracy for both image types,
whereas neural networks demonstrated the

best specificity for recombined images, and
support vector machines performed best for
low-energy images.

Clinical relevance and practical applicabil-
ity

The current study aims to bridge the gap
between advanced image-based computa-
tional analysis and clinical decision-making
in breast imaging. By using widely acces-
sible open-source tools such as ITK-SNAP
and PyRadiomics and integrating standard
segmentation and feature selection algo-
rithms, the proposed methodology can be
feasibly replicated in radiology departments
equipped with digital mammography infra-
structure. The selected radiomic features,
particularly shape- and texture-based de-
scriptors, may aid in distinguishing benign
from malignant lesions and complement
routine CEM assessment. However, this ret-
rospective study did not evaluate integration
with established clinical assessment systems
(e.g., BI-RADS), perform comparisons with
radiologist interpretation, or conduct deci-
sion-threshold and clinical-utility analyses,
meaning the potential impact on clinical de-
cision-making (including biopsy decisions)
should be interpreted cautiously. With addi-
tional multi-reader robustness testing, exter-
nal validation in larger multicenter cohorts,
and prospective clinical-utility assessment,
this approach could serve as a foundation for
future decision-support tools.

This retrospective, single-center study has
several limitations. First, the sample size was
modest, with an imbalanced distribution of
benign and malignant lesions. Second, le-
sions were manually segmented by a single
reader; thus, interobserver agreement and
segmentation robustness (e.g., intraclass cor-
relation coefficient-based feature stability)

could not be assessed, which may affect re-
producibility. Third, no external validation
cohort was available, and the extremely high
AUC values may partly reflect optimistic per-
formance and potential overfitting in a lim-
ited dataset with high-dimensional radiomic
features. Future research should incorporate
larger, multicenter datasets, harmonization
strategies, multi-reader or automated seg-
mentation approaches, and external valida-
tion.

In conclusion, radiomics analysis of
CEM—particularly recombined images—
showed strong discrimination between be-
nign and malignant breast masses within
an open-source and reproducible workflow.
These findings highlight the potential of
integrating radiomics-derived quantitative
biomarkers into artificial intelligence-based
decision-support systems for breast lesion
characterization. Future studies should eval-
uate model generalizability and robustness
inlarger cohorts by incorporating multi-read-
er segmentation robustness assessment and
independent external multicenter validation
and by benchmarking performance against
standard clinical assessment frameworks.
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