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PURPOSE

Pneumothorax requires rapid recognition and accurate interpretation of chest X-rays (CXRs), par-
ticularly in acute settings where delays can have serious consequences. With the emergence of
advanced image interpretation models capable of visual analysis, their diagnostic reliability in ra-
diology practice remains to be determined. This study aimed to assess the diagnostic performance
of three state-of-the-art systems in detecting pneumothorax using a large, well-annotated dataset.

METHODS

A total of 10,675 CXRs from the publicly available SIIM-ACR Pneumothorax Segmentation dataset
were analyzed. Three multimodal models (GPT-40, Gemini 2 Pro, and Claude 4 Sonnet) were evalu-
ated using a uniform, image-based approach. Each model’s binary outputs (presence: 1, absence:
0) were compared with reference results to determine accuracy, sensitivity, specificity, precision,
and F1 scores. Additional subgroup analyses were conducted across pneumothorax size catego-
ries: small, medium, and large. Pairwise statistical comparisons were performed using McNemar’s
test. Sensitivity, specificity, and overall accuracy are reported with corresponding 95% confidence
intervals.

RESULTS

The prevalence of pneumothorax in the dataset was 22.3% (n = 2,379). All models demonstrated
high specificity (above 0.90) but consistently low sensitivity (0.16-0.36). The best overall perfor-
mance was observed with Gemini 2, which achieved an accuracy of 0.79 and specificity of 0.95,
whereas Claude 4 showed greater sensitivity (0.20-0.34) across lesion-size categories. Diagnostic
performance improved with increasing pneumothorax size, but smaller lesions remained difficult
to identify. Pairwise comparisons confirmed statistically significant differences among all evaluated
systems (P < 0.050).

CONCLUSION

In this large-scale evaluation, the tested models exhibited strong reliability in identifying normal
examinations but limited ability to detect subtle or small pneumothoraxes. Despite high specificity,
low sensitivity limits the use of current Multimodal large language models as rule-out tools for
pneumothorax. With continued refinement, these models may eventually support radiologists by
improving workflow efficiency and diagnostic confidence.

CLINICAL SIGNIFICANCE

Automated systems capable of high specificity but low sensitivity should not be relied upon to
exclude pneumothorax. However, they may serve as valuable assistants for confirming positive
findings and prioritizing urgent cases in busy clinical workflows.
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neumothorax is a  potentially
Plife—threatening condition character-

ized by the presence of air within the
pleural space, leading to partial or complete
lung collapse. The diagnostic approach to
pneumothorax should begin with a standard
posteroanterior chest X-ray (CXR), which re-
mains the first-line imaging modality for con-
firming the presence of intrapleural air and
assessing its extent. Recent clinical guide-
lines highlight that timely and accurate inter-
pretation of CXRs is critical, as management
decisions often depend on prompt recogni-
tion and precise evaluation of pneumotho-
rax size and severity.!

Over the past decade, deep learning
(DL) has shown strong performance in the
automated detection and segmentation of
pneumothorax on CXR. Several systematic
reviews and large studies have reported high
diagnostic accuracy across different datasets,
underscoring the potential role of DL as a tri-
age or second-reader tool.* These advances
were made possible not only by improve-
ments in algorithms but also by the avail-
ability of large, open datasets that helped
standardize benchmarking in pneumothorax
detection.*

Multimodal large language models
(MLLMs) are general-purpose artificial intel-
ligence (Al) systems capable of processing
both visual and textual inputs. Although
prior studies have reported promising re-
sults when such models are provided with
combined image and clinical context, their
performance in image-only diagnostic tasks
remains inconsistent.*'® However, most cur-
rent MLLMs are not specifically trained for
medical imaging tasks, which may limit their
spatial localization and diagnostic preci-
sion, particularly when relying solely on im-
age-based inputs. In this context, evaluating
MLLMs not only on small patient cohorts but
also on large, well-curated datasets is crucial
to establishing their reliability and diagnostic
validity.

* Multimodal large language models (GPT-40,
Claude 4, Gemini 2) were evaluated on more
than 10,000 chest X-rays for pneumothorax
detection.

* All models achieved high specificity but low
sensitivity, in all sizes.

* They may serve as potential rule-in aids for
radiologists, but their low sensitivity makes
rule-out use clinically unsafe.

In this study, we aimed to evaluate the
performance of MLLMs in detecting pneu-
mothorax on CXRs using a large-scale data-
set. In addition, we assessed the ability of
different MLLMs to identify pneumothorax-
es of varying sizes. We hypothesized that
the diagnostic performance of general-pur-
pose MLLMs for pneumothorax detection
on CXRs would differ between models and
across pneumothorax size categories. Given
the critical importance of rapid diagnosis in
emergency settings, our study also sought to
explore the practical applicability and limita-
tions of these rapidly evolving models in the
detection of pneumothorax.

Methods

Dataset

We used the publicly available SIIM-ACR
Pneumothorax Segmentation Dataset, orig-
inally developed for the 2019 Kaggle chal-
lenge." The dataset provides CXRs in DICOM
format, annotated with pixel-level segmen-
tation masks for pneumothorax. No exclu-
sion criteria were applied, as the dataset is
a publicly available, pre-curated benchmark
dataset with standardized annotation and
quality control procedures. All DICOM im-
ages were successfully processed, and no
preprocessing failures or unreadable imag-
es were encountered. After preprocessing,
a total of 10,675 radiographs were included
in the analysis. Each radiograph was classi-
fied as pneumothorax-positive or -negative
according to the presence or absence of a
segmentation mask, derived from the SIIM-
ACR radiologist annotations, which served
as the reference standard. For positive cas-
es, the lesion area was calculated from the
mask and used for size categorization. The
overall study workflow, including data pre-
processing, model inference via application
programming interface (API), and compara-
tive performance evaluation, is summarized
in Figure 1.

Image preprocessing

All DICOM images were converted into
8-bit grayscale PNG format using a standard-
ized a Python-based workflow was imple-
mented using the Pydicom library (Pydicom,
Boston, MA, USA) and the Pillow imaging
library (Python Imaging Library, San Fran-
cisco, CA, USA). The pipeline ensured consis-
tent windowing, normalization, and resizing
across all studies to maintain compatibility
and reproducibility.
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Figure 1. Overview of the study workflow, showing
sequential steps from data input and preprocessing
to model inference and results comparison.

Each DICOM file was decoded using Py-
dicom, and the corresponding modality and
VOI LUT transformations were applied to pre-
serve true intensity values.

Pixel values were normalized to the
0-255 range through percentile-based clip-
ping (0.5"-99.5") to reduce the influence of
outliers and scanner-specific variations. All
images were resized to 1024 x 1024 pixels,
preserving the original aspect ratio via zero
padding to avoid geometric distortion.

Each image was saved as an 8-bit gray-
scale PNG file suitable for MLLM inference. A
conversion manifest linking each PNG to its
source DICOM (SOPInstanceUID) was auto-
matically generated for traceability (Figure 2).

Models and APl access

Three MLLMs were evaluated: GPT-40
(OpenAl), Gemini 2 Pro (Google Deep-
Mind), and Claude 4 Sonnet (Anthropic).

Giizel et al.



Each model was accessed through its official
APl during October and November 2025.
Exact model version strings and API access
dates are provided in Supplementary Table
1. All images were submitted as standard-
ized 8-bit PNG files prepared during prepro-
cessing. Models were used as provided by
the vendors, without additional fine-tuning
or training. To ensure comparability, infer-
ence was run with deterministic decoding
(temperature: 0) and a capped output bud-
get (maximum 512 tokens). For each case,
the model response, image identifier, time-
stamp, and model name were recorded to
comma-separated files and subsequently
merged with the master analysis table by
filename/Imageld for performance calcula-
tions. All inferences were executed via paid
APl accounts procured by the authors; the
vendors had no role in study design, analysis,
or manuscript preparation.

Prompting strategy and output handling

A single, model-agnostic prompt was
used for all systems to minimize bias. The ex-
act instruction was:

“You are a radiology assistant. Carefully
analyze this CXR for pneumothorax.

Return exactly ONE character: 1 if pneu-
mothorax is present or strongly suspected,
and 0 if absent.

Answer only with 1 or 0

The prompt intentionally avoided exam-
ples or narrative phrasing to reduce stylistic
drift between models and to standardize out-
puts. Returned texts were parsed with a strict
rule set that extracted the first valid numeric
character; if the output was non-conforming,
defined as any response that did not contain
a single numeric character (“1” or “0"), such
as textual answers (“Yes,”“No," “Present,” “Ab-

[°}
PYDICOM

Image
Preporcessing

sent”), symbols, or blank strings, the request
was repeated once to allow for correction.
Persistently unparsable cases (i.e., outputs
that remained non-numeric after two it-
erations) were flagged and subsequently
re-submitted to the API as a separate batch.
The new responses were manually verified
and recorded by the study team to ensure
completeness and consistency.

The full Python scripts used for prepro-
cessing, API-based inference, and evaluation
are publicly available.™

Reference standard and lesion categoriza-
tion

The ground truth was defined by the
segmentation masks provided in the SIIM-
ACR dataset. Pneumothorax lesion area was
computed in pixels. For pneumothorax-pos-
itive cases, lesion size was quantified as the
total number of pixels within the segmen-
tation mask after standardization to a 1024
x 1024 grid. Histogram analysis showed a
right-skewed distribution: most cases were <
10,000 pixels, although a minority extended
above 100,000 pixels. Percentile analysis re-
vealed that the 25, 50 (median), 75%, 90",
and 95" percentiles corresponded to 4,043,
8,666, 18,732, 34,979, and 48,550 pixels, re-
spectively. Based on this distribution, and
to ensure clinically meaningful and statisti-
cally balanced subgroups, we defined three
categories: small (< 10,000 pixels), medium
(10,000-35,000 pixels), and large (> 35,000
pixels). These thresholds were established
a priori (before model evaluation) to avoid
bias, and were chosen to reflect both the
quartile distribution of lesion sizes and the
expected clinical conspicuity of different
pneumothorax volumes. In cases with mul-
tiple separate regions, the total combined
mask area was used for categorization.
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Figure 2. DICOM-to-PNG preprocessing workflow for standardized image conversion.

Statistical analysis

Diagnostic performance was evaluated
at the case level using standard classifica-
tion metrics, including sensitivity, specificity,
accuracy, precision, and F1 score. Reporting
followed recommended practices for diag-
nostic accuracy studies.’ Metrics were cal-
culated for the overall dataset and separately
for each lesion size category (small, medium,
large). True-positive, false-positive, true-neg-
ative, and false-negative counts were derived
from model predictions and reference labels.
Pairwise comparisons between models were
conducted using McNemar’s test to assess
significant differences in classification per-
formance. A P value < 0.050 was considered
statistically significant. All analyses were con-
ducted in Python (version 3.10) using pandas
(version 2.2) for data management and scikit-
learn (version 1.5) for metric computation.

Ethical considerations

This study was approved by the izmir
City Hospital Ethical Committee (approval
number: 2025/550, date: 08.10.2025). As the
SIIM-ACR dataset is publicly available and ful-
ly de-identified, the requirement for individ-
ual informed consent was waived. The study
complies with the principles of the Declara-
tion of Helsinki.

Results

Dataset characteristics

A total of 10,675 CXRs were included in
the analysis. Of these, 2,379 (22.3%) were la-
beled as pneumothorax-positive and 8,296
(77.7%) as negative. Among the positive cas-
es, 1,302 (54.7%) were categorized as small,
839 (35.3%) as medium, and 238 (10.0%) as
large pneumothoraxes.

Model performance

All three MLLMs were evaluated against
the reference standard. Their performance
metrics, including accuracy, sensitivity, spec-
ificity, precision, and F1 score, are summa-
rized in Table 1.

Although individual results varied across
models, all systems achieved high specificity
with comparatively lower sensitivity values.

Pairwise comparisons using McNemar’s
test showed statistically significant differenc-
es among the models (P < 0.001). Gemini 2
demonstrated higher overall accuracy and
specificity than both Claude 4 and GPT-40 (P
< 0.001). Claude 4 exhibited higher sensitivi-
ty than Gemini 2 (P = 0.033). GPT-40 showed
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significantly lower performance compared
with both models across all evaluated met-
rics (P < 0.001). Detailed statistical compari-
sons are presented in Table 2.

Performance by pneumothorax size

When performance was analyzed by
pneumothorax size, metric values differed
across subgroups (Table 3).

For small pneumothoraxes (n = 1,302),
accuracies ranged from 0.90 (GPT-40) to 0.93

(Gemini 2), sensitivities from 0.17 to 0.20, and
F1 scores from 0.28 to 0.34.

For medium pneumothoraxes (n = 839),
accuracies were between 0.92 and 0.94,
sensitivities between 0.16 and 0.25, and F1
scores between 0.28 and 0.40.

For large pneumothoraxes (n = 238), ac-
curacies ranged from 0.98 to 0.99, sensitivi-
ties from 0.19t0 0.36, and F1 scores from 0.32
to 0.53 across the three models.

Visual representation

The visual overview of model perfor-
mance highlights how sensitivity increases
with pneumothorax size and how true and
false classifications are distributed across the
dataset, offering an intuitive understanding
of the results (Figures 3 and 4).

Table 1. Overall performance of multimodal large language models in pneumothorax detection

Model Accuracy Sensitivity Specificity Precision F1 score

GPT-40 0.75 0.17 0.92 0.36 0.23

Claude 4 0.77 0.23 0.92 0.46 0.31

Gemini 2 0.79 0.22 0.95 0.56 0.31

Table 2. Pairwise McNemar test for differences in model performance

Comparison Accuracy (P) Sensitivity (P) Specificity (P) Direction of difference

Gemini 2 vs. Claude 4 <0.001 0.033 <0.001 Gemini 2: higher accuracy, specificity
Claude 4: higher sensitivity

Gemini 2 vs. GPT-40 <0.001 <0.001 <0.001 Gemini 2: higher in all metrics

Claude 4 vs. GPT-40 <0.001 <0.001 0.21 (ETel5 3 ] EIAN IS, S 7

No difference in specificity

Table 3. Performance stratified by pneumothorax size

Model Size
Small
GPT-40 Medium
Large
Small
Claude 4 Medium
Large
Small
Gemini 2 Medium

Large

0.6

0.5

Sensitivity
o o
w o

o
N

0.1

0.0

Accuracy Sensitivity
0.90 0.17
0.92 0.16
0.98 0.19
0.91 0.20
0.93 0.25
0.98 0.34
0.93 0.17
0.94 0.24
0.99 0.36

Sensitivity by Pneumothorax Size Category

Small Medium

F1 score
0.28
0.28
0.32
0.34
0.40
0.50
0.29
0.39
0.53

mm GPT-40
mm Claude 4
= Gemini 2

Large

Figure 3. Sensitivity across pneumothorax size categories. All models improved with increasing lesion size, with Gemini 2 consistently achieving the highest

sensitivity.
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Figure 4. Combined confusion matrices for GPT-40, Claude 4, and Gemini 2 on the full cohort (n = 10,675;
positives: 2,379; negatives: 8,296). Cells display case counts and row-wise percentages within the true class
(True 0/True 1); higher diagonal values indicate correct classifications (TN, TP), with axes labeled “True”

(rows) and “Predicted” (columns).

TN, true negative; TP, true positive.

Discussion

This large-scale evaluation demonstrat-
ed that MLLMs achieve high specificity but
consistently low sensitivity for pneumo-
thorax detection on CXRs. This study eval-
uated three state-of-the-art MLLMs (GPT-
40, Claude 4, and Gemini 2) on the task of
pneumothorax detection from CXRs using
the SIIM-ACR dataset. The results revealed a
consistent pattern: all three models achieved
high specificity (> 0.90), whereas sensitivity
remained low across all pneumothorax cate-
gories, ranging from 0.16 to 0.36. These find-
ings highlight a critical limitation of current
MLLMs, raising substantial concerns about
their potential use in clinical scenarios such
as pneumothorax, where rapid diagnosis
and timely intervention are essential.

Numerous Al studies based on imaging
data have been conducted to address emer-
gency conditions such as pneumothorax,
where clinicians and radiologists must make
rapid diagnostic decisions. DL-based ap-
proaches, particularly convolutional neural
networks, have shown remarkable potential
for the automatic detection and localization
of pneumothorax on CXRs. For example,
Cho et al." investigated a DL-based method
for detecting and localizing pneumotho-
rax on CXRs, aiming to enhance diagnostic
accuracy and support clinical workflows in
emergency settings. They demonstrated
that their approach can accurately identify
pneumothorax on CXRs, reduce diagnostic
delays, and support more effective clinical
decision-making and patient care. Similarly,
Hillis et al. reported that an Al model could
reliably identify both pneumothorax and
tension pneumothorax on CXRs. Thian et al.'®
conducted a multicenter external validation
study evaluating DL systems for pneumo-
thorax detection on CXRs. Their model was
tested on datasets from multiple institutions

and demonstrated robust generalizability,
achieving area under the curve values rang-
ing from 0.91 to 0.98 across external cohorts.

By contrast, there are only a limited num-
ber of studies investigating the use of LLMs
for pneumothorax detection. Among them,
Ostrovsky' evaluated the performance of
ChatGPT in interpreting CXRs across various
thoracic pathologies. In the pneumothorax
subgroup consisting of 200 patients, the
model achieved a sensitivity of 0.77 and a
specificity of 0.89, demonstrating moderate
diagnostic capability in this emergency set-
ting. In our study, MLLMs showed noticeably
lower diagnostic performance when com-
pared with Al tools developed specifically for
image interpretation. Using a large publicly
available dataset of more than 10,000 im-
ages, our evaluation indicates that current
MLLMs still lack the reliability required for
routine use in radiology practice.

There are inherent risks associated with
integrating Al applications and MLLMs into
clinical practice without fully testing their
reliability and validity. In this context, the
low sensitivity observed in our study could
lead to serious problems in clinical practice,
particularly in emergency settings. Clini-
cians relying entirely on these systems for
decision-making may delay necessary inter-
ventions, potentially worsening the patient’s
condition. Conversely, the specificity rates
exceeding 90% observed in our study sug-
gest that, in their current state, MLLMs may
be more suitable for rule-in purposes rather
than definitive diagnosis.

In recent years, numerous studies have
evaluated the performance of MLLMs in in-
terpreting medical images in the field of ra-
diology. In the study conducted by Sonoda
et al.® the diagnostic performance of GPT-
40, Claude 3 Opus, and Gemini 1.5 Pro was
systematically compared using RSNA Diag-

nosis Please cases. The results showed that
Claude 3 Opus achieved the highest prima-
ry diagnostic accuracy at 54%, followed by
GPT-40 at 41%, and Gemini 1.5 Pro at 33.9%.
Moreover, the proportion of cases where the
correct diagnosis was included within the
top three differential diagnoses was 62%,
49.4%, and 41%, respectively. Similarly, a
study conducted by Suh et al.'* compared
GPT-4V and Gemini Pro Vision using only
image inputs against board-certified radiol-
ogists. The results demonstrated that GPT-4V
reached an accuracy of 49% and Gemini Pro
Vision achieved 39%, both falling below the
61% accuracy observed among radiologists.
Hirano et al.” evaluated multiple MLLMs on
the Japanese Diagnostic Radiology Board Ex-
amination using image-based questions and
found that 03 achieved 72% accuracy, o4-
mini and Gemini 2.5 Pro each reached 70%,
and Claude 3.7 Sonnet received lower legit-
imacy scores. Similarly, Nakaura et al.*® com-
pared several models on board examination
items and reported that GPT-40 achieved the
highest accuracy (45%), with Claude 3 Opus
performing best in text-only tasks (46%).

Despite the varying results across differ-
ent imaging modalities, one thing is clear:
MLLMs are improving rapidly. Hou et al.?’
reported that next-generation models, such
as ol and GPT-40, demonstrated substan-
tial performance gains compared with their
predecessors, with diagnostic accuracy
approaching that of human experts in cer-
tain scenarios. Although their integration
into routine radiology workflows may seem
challenging at the moment, it is important
to remember that MLLMs have received no
training specifically focused on radiologic di-
agnosis. Given their rapid progress, it seems
likely that they may soon perform at a level
comparable to dedicated radiology Al sys-
tems.

This study has several limitations. First,
the evaluated MLLMs were not specifical-
ly trained for medical imaging, reflecting a
limitation inherent to model design. Second,
although these models can process multi-
modal inputs, the evaluation in this study
was limited to image-only prompts, exclud-
ing potentially informative clinical or textu-
al context that might enhance diagnostic
performance. The use of a simplified binary
output format restricted the models’ ability
to convey diagnostic uncertainty, which may
have affected their ability to detect border-
line cases. Third, the SIIM-ACR Pneumotho-
rax dataset, although large and well-curated,
originates from a single competition source
and may not reflect the full diversity of re-
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al-world imaging conditions, acquisition pa-
rameters, or institutional variations, limiting
generalizability. Fourth, the reproducibility
of our findings is inherently limited by the
use of APl-based MLLMs. These systems are
subject to ongoing backend updates and
undocumented changes implemented by
vendors, which may alter model behavior
over time, even when identical prompts and
inference parameters are used. Lastly, the
findings were derived from a single dataset
without external validation; future studies
using independent or real-world hospital
data are required to confirm robustness and
clinical applicability.

In this large-scale evaluation using the
SIIM-ACR Pneumothorax dataset, MLLMs
demonstrated high specificity but low sen-
sitivity in detecting pneumothorax on CXRs.
From a clinical perspective, this finding indi-
cates that current MLLMs may serve as rule-
in aids for confirming pneumothorax but are
unsuitable for rule-out use. Although models
such as Gemini 2 and Claude 4 showed rela-
tively better overall performance than GPT-
40, all systems missed the majority of small
pneumothoraxes, limiting their clinical reli-
ability in emergency or screening contexts.
These findings indicate that current MLLMs,
which are not specifically trained for radio-
logic interpretation, are not yet suitable for
standalone diagnostic use. Nevertheless, fu-
ture iterations or domain-adapted versions
of MLLMs may eventually support radiolo-
gists by improving workflow efficiency and
enhancing diagnostic confidence, particular-
ly as model architectures and training strate-
gies continue to evolve.

Footnotes
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