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Large-scale evaluation of multimodal large language models for 
pneumothorax detection

PURPOSE
Pneumothorax requires rapid recognition and accurate interpretation of chest X-rays (CXRs), par-
ticularly in acute settings where delays can have serious consequences. With the emergence of 
advanced image interpretation models capable of visual analysis, their diagnostic reliability in ra-
diology practice remains to be determined. This study aimed to assess the diagnostic performance 
of three state-of-the-art systems in detecting pneumothorax using a large, well-annotated dataset.

METHODS
A total of 10,675 CXRs from the publicly available SIIM-ACR Pneumothorax Segmentation dataset 
were analyzed. Three multimodal models (GPT-4o, Gemini 2 Pro, and Claude 4 Sonnet) were evalu-
ated using a uniform, image-based approach. Each model’s binary outputs (presence: 1, absence: 
0) were compared with reference results to determine accuracy, sensitivity, specificity, precision, 
and F1 scores. Additional subgroup analyses were conducted across pneumothorax size catego-
ries: small, medium, and large. Pairwise statistical comparisons were performed using McNemar’s 
test. Sensitivity, specificity, and overall accuracy are reported with corresponding 95% confidence 
intervals.

RESULTS
The prevalence of pneumothorax in the dataset was 22.3% (n = 2,379). All models demonstrated 
high specificity (above 0.90) but consistently low sensitivity (0.16–0.36). The best overall perfor-
mance was observed with Gemini 2, which achieved an accuracy of 0.79 and specificity of 0.95, 
whereas Claude 4 showed greater sensitivity (0.20–0.34) across lesion-size categories. Diagnostic 
performance improved with increasing pneumothorax size, but smaller lesions remained difficult 
to identify. Pairwise comparisons confirmed statistically significant differences among all evaluated 
systems (P < 0.050).

CONCLUSION
In this large-scale evaluation, the tested models exhibited strong reliability in identifying normal 
examinations but limited ability to detect subtle or small pneumothoraxes. Despite high specificity, 
low sensitivity limits the use of current Multimodal large language models as rule-out tools for 
pneumothorax. With continued refinement, these models may eventually support radiologists by 
improving workflow efficiency and diagnostic confidence.

CLINICAL SIGNIFICANCE
Automated systems capable of high specificity but low sensitivity should not be relied upon to 
exclude pneumothorax. However, they may serve as valuable assistants for confirming positive 
findings and prioritizing urgent cases in busy clinical workflows.
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Pneumothorax is a potentially 
life-threatening condition character-
ized by the presence of air within the 

pleural space, leading to partial or complete 
lung collapse. The diagnostic approach to 
pneumothorax should begin with a standard 
posteroanterior chest X-ray (CXR), which re-
mains the first-line imaging modality for con-
firming the presence of intrapleural air and 
assessing its extent. Recent clinical guide-
lines highlight that timely and accurate inter-
pretation of CXRs is critical, as management 
decisions often depend on prompt recogni-
tion and precise evaluation of pneumotho-
rax size and severity.1

Over the past decade, deep learning 
(DL) has shown strong performance in the 
automated detection and segmentation of 
pneumothorax on CXR. Several systematic 
reviews and large studies have reported high 
diagnostic accuracy across different datasets, 
underscoring the potential role of DL as a tri-
age or second-reader tool.2-5 These advances 
were made possible not only by improve-
ments in algorithms but also by the avail-
ability of large, open datasets that helped 
standardize benchmarking in pneumothorax 
detection.4

Multimodal large language models 
(MLLMs) are general-purpose artificial intel-
ligence (AI) systems capable of processing 
both visual and textual inputs. Although 
prior studies have reported promising re-
sults when such models are provided with 
combined image and clinical context, their 
performance in image-only diagnostic tasks 
remains inconsistent.6-10 However, most cur-
rent MLLMs are not specifically trained for 
medical imaging tasks, which may limit their 
spatial localization and diagnostic preci-
sion, particularly when relying solely on im-
age-based inputs. In this context, evaluating 
MLLMs not only on small patient cohorts but 
also on large, well-curated datasets is crucial 
to establishing their reliability and diagnostic 
validity.

In this study, we aimed to evaluate the 
performance of MLLMs in detecting pneu-
mothorax on CXRs using a large-scale data-
set. In addition, we assessed the ability of 
different MLLMs to identify pneumothorax-
es of varying sizes. We hypothesized that 
the diagnostic performance of general-pur-
pose MLLMs for pneumothorax detection 
on CXRs would differ between models and 
across pneumothorax size categories. Given 
the critical importance of rapid diagnosis in 
emergency settings, our study also sought to 
explore the practical applicability and limita-
tions of these rapidly evolving models in the 
detection of pneumothorax.

Methods

Dataset

We used the publicly available SIIM-ACR 
Pneumothorax Segmentation Dataset, orig-
inally developed for the 2019 Kaggle chal-
lenge.11 The dataset provides CXRs in DICOM 
format, annotated with pixel-level segmen-
tation masks for pneumothorax. No exclu-
sion criteria were applied, as the dataset is 
a publicly available, pre-curated benchmark 
dataset with standardized annotation and 
quality control procedures. All DICOM im-
ages were successfully processed, and no 
preprocessing failures or unreadable imag-
es were encountered. After preprocessing, 
a total of 10,675 radiographs were included 
in the analysis. Each radiograph was classi-
fied as pneumothorax-positive or -negative 
according to the presence or absence of a 
segmentation mask, derived from the SIIM-
ACR radiologist annotations, which served 
as the reference standard. For positive cas-
es, the lesion area was calculated from the 
mask and used for size categorization. The 
overall study workflow, including data pre-
processing, model inference via application 
programming interface (API), and compara-
tive performance evaluation, is summarized 
in Figure 1.

Image preprocessing

All DICOM images were converted into 
8-bit grayscale PNG format using a standard-
ized a Python-based workflow was imple-
mented using the Pydicom library (Pydicom, 
Boston, MA, USA) and the Pillow imaging 
library (Python Imaging Library, San Fran-
cisco, CA, USA). The pipeline ensured consis-
tent windowing, normalization, and resizing 
across all studies to maintain compatibility 
and reproducibility.

Each DICOM file was decoded using Py-
dicom, and the corresponding modality and 
VOI LUT transformations were applied to pre-
serve true intensity values. 

Pixel values were normalized to the 
0–255 range through percentile-based clip-
ping (0.5th–99.5th) to reduce the influence of 
outliers and scanner-specific variations. All 
images were resized to 1024 × 1024 pixels, 
preserving the original aspect ratio via zero 
padding to avoid geometric distortion.

Each image was saved as an 8-bit gray-
scale PNG file suitable for MLLM inference. A 
conversion manifest linking each PNG to its 
source DICOM (SOPInstanceUID) was auto-
matically generated for traceability (Figure 2). 

Models and API access

Three MLLMs were evaluated: GPT-4o 
(OpenAI), Gemini 2 Pro (Google Deep-
Mind), and Claude 4 Sonnet (Anthropic).  

Main points

•	 Multimodal large language models (GPT-4o, 
Claude 4, Gemini 2) were evaluated on more 
than 10,000 chest X-rays for pneumothorax 
detection.

•	 All models achieved high specificity but low 
sensitivity, in all sizes. 

•	 They may serve as potential rule-in aids for 
radiologists, but their low sensitivity makes 
rule-out use clinically unsafe.

Figure 1. Overview of the study workflow, showing 
sequential steps from data input and preprocessing 
to model inference and results comparison.
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Each model was accessed through its official 
API during October and November 2025. 
Exact model version strings and API access 
dates are provided in Supplementary Table 
1. All images were submitted as standard-
ized 8-bit PNG files prepared during prepro-
cessing. Models were used as provided by 
the vendors, without additional fine-tuning 
or training. To ensure comparability, infer-
ence was run with deterministic decoding 
(temperature: 0) and a capped output bud-
get (maximum 512 tokens). For each case, 
the model response, image identifier, time-
stamp, and model name were recorded to 
comma-separated files and subsequently 
merged with the master analysis table by 
filename/ImageId for performance calcula-
tions. All inferences were executed via paid 
API accounts procured by the authors; the 
vendors had no role in study design, analysis, 
or manuscript preparation.

Prompting strategy and output handling

A single, model-agnostic prompt was 
used for all systems to minimize bias. The ex-
act instruction was:

“You are a radiology assistant. Carefully 
analyze this CXR for pneumothorax.

Return exactly ONE character: 1 if pneu-
mothorax is present or strongly suspected, 
and 0 if absent.

Answer only with 1 or 0.” 

The prompt intentionally avoided exam-
ples or narrative phrasing to reduce stylistic 
drift between models and to standardize out-
puts. Returned texts were parsed with a strict 
rule set that extracted the first valid numeric 
character; if the output was non-conforming, 
defined as any response that did not contain 
a single numeric character (“1” or “0”), such 
as textual answers (“Yes,” “No,” “Present,” “Ab-

sent”), symbols, or blank strings, the request 
was repeated once to allow for correction. 
Persistently unparsable cases (i.e., outputs 
that remained non-numeric after two it-
erations) were flagged and subsequently 
re-submitted to the API as a separate batch. 
The new responses were manually verified 
and recorded by the study team to ensure 
completeness and consistency. 

The full Python scripts used for prepro-
cessing, API-based inference, and evaluation 
are publicly available.12

Reference standard and lesion categoriza-
tion

The ground truth was defined by the 
segmentation masks provided in the SIIM-
ACR dataset. Pneumothorax lesion area was 
computed in pixels. For pneumothorax-pos-
itive cases, lesion size was quantified as the 
total number of pixels within the segmen-
tation mask after standardization to a 1024 
× 1024 grid. Histogram analysis showed a 
right-skewed distribution: most cases were < 
10,000 pixels, although a minority extended 
above 100,000 pixels. Percentile analysis re-
vealed that the 25th, 50th (median), 75th, 90th, 
and 95th percentiles corresponded to 4,043, 
8,666, 18,732, 34,979, and 48,550 pixels, re-
spectively. Based on this distribution, and 
to ensure clinically meaningful and statisti-
cally balanced subgroups, we defined three 
categories: small (< 10,000 pixels), medium 
(10,000–35,000 pixels), and large (> 35,000 
pixels). These thresholds were established 
a priori (before model evaluation) to avoid 
bias, and were chosen to reflect both the 
quartile distribution of lesion sizes and the 
expected clinical conspicuity of different 
pneumothorax volumes. In cases with mul-
tiple separate regions, the total combined 
mask area was used for categorization.

Statistical analysis

Diagnostic performance was evaluated 
at the case level using standard classifica-
tion metrics, including sensitivity, specificity, 
accuracy, precision, and F1 score. Reporting 
followed recommended practices for diag-
nostic accuracy studies.13 Metrics were cal-
culated for the overall dataset and separately 
for each lesion size category (small, medium, 
large). True-positive, false-positive, true-neg-
ative, and false-negative counts were derived 
from model predictions and reference labels. 
Pairwise comparisons between models were 
conducted using McNemar’s test to assess 
significant differences in classification per-
formance. A P value < 0.050 was considered 
statistically significant. All analyses were con-
ducted in Python (version 3.10) using pandas 
(version 2.2) for data management and scikit-
learn (version 1.5) for metric computation. 

Ethical considerations

This study was approved by the İzmir 
City Hospital Ethical Committee (approval 
number: 2025/550, date: 08.10.2025). As the 
SIIM-ACR dataset is publicly available and ful-
ly de-identified, the requirement for individ-
ual informed consent was waived. The study 
complies with the principles of the Declara-
tion of Helsinki.

Results

Dataset characteristics

A total of 10,675 CXRs were included in 
the analysis. Of these, 2,379 (22.3%) were la-
beled as pneumothorax-positive and 8,296 
(77.7%) as negative. Among the positive cas-
es, 1,302 (54.7%) were categorized as small, 
839 (35.3%) as medium, and 238 (10.0%) as 
large pneumothoraxes. 

Model performance

All three MLLMs were evaluated against 
the reference standard. Their performance 
metrics, including accuracy, sensitivity, spec-
ificity, precision, and F1 score, are summa-
rized in Table 1.

Although individual results varied across 
models, all systems achieved high specificity 
with comparatively lower sensitivity values.

Pairwise comparisons using McNemar’s 
test showed statistically significant differenc-
es among the models (P < 0.001). Gemini 2 
demonstrated higher overall accuracy and 
specificity than both Claude 4 and GPT-4o (P 
< 0.001). Claude 4 exhibited higher sensitivi-
ty than Gemini 2 (P = 0.033). GPT-4o showed Figure 2. DICOM-to-PNG preprocessing workflow for standardized image conversion.
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significantly lower performance compared 
with both models across all evaluated met-
rics (P < 0.001). Detailed statistical compari-
sons are presented in Table 2.

Performance by pneumothorax size

When performance was analyzed by 
pneumothorax size, metric values differed 
across subgroups (Table 3).

For small pneumothoraxes (n = 1,302), 
accuracies ranged from 0.90 (GPT-4o) to 0.93 

(Gemini 2), sensitivities from 0.17 to 0.20, and 
F1 scores from 0.28 to 0.34.

For medium pneumothoraxes (n = 839), 
accuracies were between 0.92 and 0.94, 
sensitivities between 0.16 and 0.25, and F1 
scores between 0.28 and 0.40.

For large pneumothoraxes (n = 238), ac-
curacies ranged from 0.98 to 0.99, sensitivi-
ties from 0.19 to 0.36, and F1 scores from 0.32 
to 0.53 across the three models.

Visual representation

The visual overview of model perfor-
mance highlights how sensitivity increases 
with pneumothorax size and how true and 
false classifications are distributed across the 
dataset, offering an intuitive understanding 
of the results (Figures 3 and 4).

Table 2. Pairwise McNemar test for differences in model performance

Comparison Accuracy (P) Sensitivity (P) Specificity (P) Direction of difference

Gemini 2 vs. Claude 4 < 0.001 0.033 < 0.001 Gemini 2: higher accuracy, specificity 
Claude 4: higher sensitivity

Gemini 2 vs. GPT-4o < 0.001 < 0.001 < 0.001 Gemini 2: higher in all metrics

Claude 4 vs. GPT-4o < 0.001 < 0.001 0.21 Claude 4: higher accuracy, sensitivity 
No difference in specificity

Table 3. Performance stratified by pneumothorax size

Model Size Accuracy Sensitivity F1 score

GPT-4o

Small 0.90 0.17 0.28

Medium 0.92 0.16 0.28

Large 0.98 0.19 0.32

Claude 4

Small 0.91 0.20 0.34

Medium 0.93 0.25 0.40

Large 0.98 0.34 0.50

Gemini 2

Small 0.93 0.17 0.29

Medium 0.94 0.24 0.39

Large 0.99 0.36 0.53

Figure 3. Sensitivity across pneumothorax size categories. All models improved with increasing lesion size, with Gemini 2 consistently achieving the highest 
sensitivity.

Table 1. Overall performance of multimodal large language models in pneumothorax detection

Model Accuracy Sensitivity Specificity Precision F1 score

GPT-4o 0.75 0.17 0.92 0.36 0.23

Claude 4 0.77 0.23 0.92 0.46 0.31

Gemini 2 0.79 0.22 0.95 0.56 0.31
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Discussion
This large-scale evaluation demonstrat-

ed that MLLMs achieve high specificity but 
consistently low sensitivity for pneumo-
thorax detection on CXRs. This study eval-
uated three state-of-the-art MLLMs (GPT-
4o, Claude 4, and Gemini 2) on the task of 
pneumothorax detection from CXRs using 
the SIIM-ACR dataset. The results revealed a 
consistent pattern: all three models achieved 
high specificity (> 0.90), whereas sensitivity 
remained low across all pneumothorax cate-
gories, ranging from 0.16 to 0.36. These find-
ings highlight a critical limitation of current 
MLLMs, raising substantial concerns about 
their potential use in clinical scenarios such 
as pneumothorax, where rapid diagnosis 
and timely intervention are essential.

Numerous AI studies based on imaging 
data have been conducted to address emer-
gency conditions such as pneumothorax, 
where clinicians and radiologists must make 
rapid diagnostic decisions. DL–based ap-
proaches, particularly convolutional neural 
networks, have shown remarkable potential 
for the automatic detection and localization 
of pneumothorax on CXRs. For example, 
Cho et al.14 investigated a DL–based method 
for detecting and localizing pneumotho-
rax on CXRs, aiming to enhance diagnostic 
accuracy and support clinical workflows in 
emergency settings. They demonstrated 
that their approach can accurately identify 
pneumothorax on CXRs, reduce diagnostic 
delays, and support more effective clinical 
decision-making and patient care. Similarly, 
Hillis et al.15 reported that an AI model could 
reliably identify both pneumothorax and 
tension pneumothorax on CXRs. Thian et al.16 
conducted a multicenter external validation 
study evaluating DL systems for pneumo-
thorax detection on CXRs. Their model was 
tested on datasets from multiple institutions 

and demonstrated robust generalizability, 
achieving area under the curve values rang-
ing from 0.91 to 0.98 across external cohorts. 

By contrast, there are only a limited num-
ber of studies investigating the use of LLMs 
for pneumothorax detection. Among them, 
Ostrovsky17 evaluated the performance of 
ChatGPT in interpreting CXRs across various 
thoracic pathologies. In the pneumothorax 
subgroup consisting of 200 patients, the 
model achieved a sensitivity of 0.77 and a 
specificity of 0.89, demonstrating moderate 
diagnostic capability in this emergency set-
ting. In our study, MLLMs showed noticeably 
lower diagnostic performance when com-
pared with AI tools developed specifically for 
image interpretation. Using a large publicly 
available dataset of more than 10,000 im-
ages, our evaluation indicates that current 
MLLMs still lack the reliability required for 
routine use in radiology practice. 

There are inherent risks associated with 
integrating AI applications and MLLMs into 
clinical practice without fully testing their 
reliability and validity. In this context, the 
low sensitivity observed in our study could 
lead to serious problems in clinical practice, 
particularly in emergency settings. Clini-
cians relying entirely on these systems for 
decision-making may delay necessary inter-
ventions, potentially worsening the patient’s 
condition. Conversely, the specificity rates 
exceeding 90% observed in our study sug-
gest that, in their current state, MLLMs may 
be more suitable for rule-in purposes rather 
than definitive diagnosis.

In recent years, numerous studies have 
evaluated the performance of MLLMs in in-
terpreting medical images in the field of ra-
diology. In the study conducted by Sonoda 
et al.,8 the diagnostic performance of GPT-
4o, Claude 3 Opus, and Gemini 1.5 Pro was 
systematically compared using RSNA Diag-

nosis Please cases. The results showed that 
Claude 3 Opus achieved the highest prima-
ry diagnostic accuracy at 54%, followed by 
GPT-4o at 41%, and Gemini 1.5 Pro at 33.9%. 
Moreover, the proportion of cases where the 
correct diagnosis was included within the 
top three differential diagnoses was 62%, 
49.4%, and 41%, respectively. Similarly, a 
study conducted by Suh et al.18 compared 
GPT-4V and Gemini Pro Vision using only 
image inputs against board-certified radiol-
ogists. The results demonstrated that GPT-4V 
reached an accuracy of 49% and Gemini Pro 
Vision achieved 39%, both falling below the 
61% accuracy observed among radiologists. 
Hirano et al.19 evaluated multiple MLLMs on 
the Japanese Diagnostic Radiology Board Ex-
amination using image-based questions and 
found that o3 achieved 72% accuracy, o4-
mini and Gemini 2.5 Pro each reached 70%, 
and Claude 3.7 Sonnet received lower legit-
imacy scores. Similarly, Nakaura et al.20 com-
pared several models on board examination 
items and reported that GPT-4o achieved the 
highest accuracy (45%), with Claude 3 Opus 
performing best in text-only tasks (46%).

Despite the varying results across differ-
ent imaging modalities, one thing is clear: 
MLLMs are improving rapidly. Hou et al.21 
reported that next-generation models, such 
as o1 and GPT-4o, demonstrated substan-
tial performance gains compared with their 
predecessors, with diagnostic accuracy 
approaching that of human experts in cer-
tain scenarios. Although their integration 
into routine radiology workflows may seem 
challenging at the moment, it is important 
to remember that MLLMs have received no 
training specifically focused on radiologic di-
agnosis. Given their rapid progress, it seems 
likely that they may soon perform at a level 
comparable to dedicated radiology AI sys-
tems.

This study has several limitations. First, 
the evaluated MLLMs were not specifical-
ly trained for medical imaging, reflecting a 
limitation inherent to model design. Second, 
although these models can process multi-
modal inputs, the evaluation in this study 
was limited to image-only prompts, exclud-
ing potentially informative clinical or textu-
al context that might enhance diagnostic 
performance. The use of a simplified binary 
output format restricted the models’ ability 
to convey diagnostic uncertainty, which may 
have affected their ability to detect border-
line cases. Third, the SIIM-ACR Pneumotho-
rax dataset, although large and well-curated, 
originates from a single competition source 
and may not reflect the full diversity of re-

Figure 4. Combined confusion matrices for GPT-4o, Claude 4, and Gemini 2 on the full cohort (n = 10,675; 
positives: 2,379; negatives: 8,296). Cells display case counts and row-wise percentages within the true class 
(True 0/True 1); higher diagonal values indicate correct classifications (TN, TP), with axes labeled “True” 
(rows) and “Predicted” (columns).

TN, true negative; TP, true positive.
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al-world imaging conditions, acquisition pa-
rameters, or institutional variations, limiting 
generalizability. Fourth, the reproducibility 
of our findings is inherently limited by the 
use of API-based MLLMs. These systems are 
subject to ongoing backend updates and 
undocumented changes implemented by 
vendors, which may alter model behavior 
over time, even when identical prompts and 
inference parameters are used. Lastly, the 
findings were derived from a single dataset 
without external validation; future studies 
using independent or real-world hospital 
data are required to confirm robustness and 
clinical applicability.

In this large-scale evaluation using the 
SIIM-ACR Pneumothorax dataset, MLLMs 
demonstrated high specificity but low sen-
sitivity in detecting pneumothorax on CXRs. 
From a clinical perspective, this finding indi-
cates that current MLLMs may serve as rule-
in aids for confirming pneumothorax but are 
unsuitable for rule-out use. Although models 
such as Gemini 2 and Claude 4 showed rela-
tively better overall performance than GPT-
4o, all systems missed the majority of small 
pneumothoraxes, limiting their clinical reli-
ability in emergency or screening contexts. 
These findings indicate that current MLLMs, 
which are not specifically trained for radio-
logic interpretation, are not yet suitable for 
standalone diagnostic use. Nevertheless, fu-
ture iterations or domain-adapted versions 
of MLLMs may eventually support radiolo-
gists by improving workflow efficiency and 
enhancing diagnostic confidence, particular-
ly as model architectures and training strate-
gies continue to evolve.

Footnotes
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