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Prospective quantitative analysis of hyperparameter and input 
optimization in GPT-5: comparative contribution to radiologist 
performance in abdominal radiology

PURPOSE
This study aims to evaluate the effect of input format and hyperparameter settings on GPT-5 and 
explore the contribution of GPT-5 assistance to radiologists’ performance in abdominal cases.

METHODS
In this prospective study, 86 abdominal cases were evaluated, with GPT-5 evaluated in two de-
ployment contexts: browser-based GPT-5 (default, non-configurable sampling settings) and GPT-5 
accessed via the OpenAI application programming interface (API) with different temperature and 
top-p settings. First, the diagnostic and differential diagnosis performance of browser-based GPT-5 
in these cases was assessed using two different input formats: “only visual” and “visual with imaging 
findings and clinical presentation.” Subsequently, its performance was evaluated at varying tem-
perature (0, 0.5, 1, 1.5) and top-p (0, 0.5, 1) values; the values at which the model performs best are 
considered “optimal settings.” Finally, two junior radiologists evaluated the same cases with and 
without GPT-5 assistance with washout periods. Their performances were compared internally and 
with that of an abdominal radiologist. 

RESULTS
With the “only visual” input format, browser-based GPT-5 achieved a diagnostic accuracy of 12%, 
increasing to 58% when imaging findings and clinical presentations were provided (P < 0.001). 
Hyperparameter optimization further improved GPT-5 performance, with diagnostic accuracy in-
creasing to 73% at the optimal settings (temperature: 1.5, top-p: 1) and mean differential diagnosis 
scores improving from 3.44 to 3.84. The radiologists’ diagnostic accuracy increased from 73% and 
71% without assistance to 87% and 86% with browser-based GPT-5 assistance and further to 94% 
with GPT-5 with optimal settings assistance. Differential diagnosis performance similarly improved 
from median scores of 4 (range: 3–5) without assistance to 5 (range: 4–5) with GPT-5 (with optimal 
settings) assistance.

CONCLUSION
 

Using hyperparameter and input optimization settings with GPT-5 could improve its clinical utility.

CLINICAL SIGNIFICANCE
This study evaluates GPT-5 performance in a single-source, open-access abdominal case set. In this 
study, GPT-5 performance improved with structured text inputs and API-based hyperparameter 
optimization, and large language model (LLM) assistance was associated with improved diagnos-
tic and differential diagnosis performance among junior radiologists. These findings suggest that 
documenting and standardizing hyperparameter settings (e.g., temperature and top-p) may be im-
portant for future LLM-based decision-support applications.
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The development of large language 
models (LLMs) and, more recently, 
large multimodal models (LMMs) and 

vision-language models (VLMs) marks a ma-
jor advance in artificial intelligence (AI), with 
the potential to transform various fields.1 
LLMs are developed using extensive datasets 
and sophisticated algorithms, enabling them 
to generate human-like text accurately. This 
capability has garnered considerable interest 
from both academia and industry, particular-
ly for complex decision-making in data-rich 
fields such as medicine.2 Within healthcare, 
LLMs hold promise for enhancing clinical 
workflows, offering diagnostic insights, 
supporting documentation, and facilitating 
patient education.3,4 Unlike text-only LLMs, 
LMMs can jointly process multiple input 

modalities such as text and images. A major 
subgroup of LMMs are VLMs, which integrate 
image understanding with natural language 
processing to enable multimodal reasoning.5

Radiology, a specialty that relies heavily 
on precision and detail to establish a cor-
rect diagnosis, stands to benefit immensely 
from integrating multimodal models (LMMs/
VLMs). These models have already demon-
strated notable potential across radiologic 
subspecialties, excelling in tasks such as gen-
erating multiple-choice questions and craft-
ing patient-friendly report impressions.6,7 
Previous studies have underscored their high 
performance in analyzing publicly available 
cases across subspecialties, especially when 
detailed patient histories and imaging find-
ings are provided.8-13

For clinical applications, optimizing the 
performance of these models requires ad-
justment of the hyperparameters, such as 
temperature and top-p, which influence 
response variability and creativity.14,15 Tem-
perature controls the randomness and cre-
ativity of model responses—a higher tem-
perature results in more diverse and creative 
outputs, whereas a lower value makes the 
output more focused and deterministic.16,17 
Top-p limits the model by considering only 
the most probable tokens whose cumulative 
probability meets a specified threshold.15 
Together, these parameters help balance 
creativity and precision in generating out-
puts.14-16 Unlike deterministic models (e.g., 
convolutional neural networks), LLMs are in-
herently variable, producing diverse outputs 
even for identical inputs. This variability can 
affect reliability, a critical factor in radiology.9 
Adjusting these hyperparameters enables 
the model to balance creativity with consis-
tency, fostering dependable LLM-based ap-
plications in imaging interpretation.18

In a recent study, Suh et al.19 investigated 
how temperature settings (0, 0.5, and 1) af-
fect the diagnostic accuracy of multimodal 
LLMs, specifically ChatGPT-4V and Gemini 
Pro Vision, across radiological cases spanning 
multiple subspecialties. They reported mod-
est improvements in diagnostic accuracy 
with increasing temperature for both mod-
els (GPT-4V: 41% to 49%; Gemini Pro Vision: 
29% to 39%).19 This study underscores the 
influence of temperature settings on poten-
tial improvements in the diagnostic perfor-
mance of models.

To the best of our knowledge, no prior 
study has evaluated the effect of top-p and 
temperature settings on GPT-5 performance 
in abdominal radiology. This study addresses 

this gap and explores the impact of GPT-5 as-
sistance on radiologists’ performance.

Methods

Study design 

This experimental prospective study used 
a cross-sectional design with three steps and 
was conducted between July 2024 and No-
vember 2025. The cases used in this study 
were obtained from the Eurorad database, 
established by the European Society of Ra-
diology in April 2000.20 Cases with multisys-
temic etiologies were included if abdominal 
imaging constituted the primary diagnostic 
focus, reflecting the spectrum of conditions 
routinely encountered in abdominal radiolo-
gy practice. Each included case had “imaging 
findings,” “clinical presentation,” “correct diag-
nosis,” and “differential diagnosis” sections. 

The performance of GPT-5 was evaluated 
in two deployment contexts: browser-based 
GPT-5 (https://chatgpt.com), which uses 
default and undisclosed hyperparameter 
settings, and GPT-5 accessed via the Ope-
nAI application programming interface 
(API; https://platform.openai.com), which 
allows explicit control of the temperature 
and top-p settings. The performances of 
browser-based GPT-5 and GPT-5 at different 
temperature and top-p settings using the 
OpenAI API were compared using the same 
cases. The temperature and top-p settings 
at which GPT-5 performs best are called the 
“optimal settings.” The responses of brows-
er-based GPT-5 and GPT-5 with the optimal 
settings for each case were noted. Finally, to 
demonstrate the contribution of GPT-5 assis-
tance to radiologists’ performance, Radiol-
ogist 1 (R1) and Radiologist 2 (R2), both Eu-
ropean Diploma in Radiology certified with 
7 years of experience in general radiology, 
evaluated the same cases with and without 
GPT-5 assistance, and their performances 
were compared with that of an abdominal 
radiologist (AR) with 25 years of experience 
in abdominal radiology. Radiologist 3 (R3) 
and Radiologist 4 (R4), both also EDiR-certi-
fied radiologists with 7 years of experience 
in general radiology, were responsible for 
case selection, the verification of input qual-
ity, and consensus-based evaluation of the 
model and radiologist responses throughout 
the study.

The study methodology adhered to the 
Standards for Reporting Diagnostic Accura-
cy Studies statement and was based on rel-
evant items from the TRIPOD-LLM reporting 
framework for studies involving LLMs and 

Main points

•	 This study evaluated the performance of 
GPT-5 in abdominal radiology by assessing 
its diagnostic accuracy and differential diag-
nosis performance with two different input 
formats (only visual vs. visual with imaging 
findings and clinical presentation) using 
browser-based GPT-5 (default settings) and 
GPT-5 via the OpenAI application program-
ming interface with controlled hyperparam-
eters (temperature/top-p), demonstrating 
the potential contribution of GPT-5 assis-
tance to abdominal radiology.

•	 The diagnostic accuracy of GPT-5 improved 
markedly when supplemented with imag-
ing findings and clinical presentations (from 
12% to 58%). Hyperparameter optimization 
further enhanced the diagnostic and differ-
ential diagnosis performance of the model 
[from 58% to 73% and from 3.44 ± 1.10, 4 
(4–3) to 3.84 ± 0.81, 4 (4–3)]. 

•	 Systematic hyperparameter optimization 
revealed that the optimal settings signifi-
cantly enhanced both diagnostic and dif-
ferential diagnosis performance compared 
with different settings and browser-based 
settings, demonstrating the critical role of 
hyperparameter optimization in large lan-
guage model (LLM) performance.

•	 Radiologists’ performance was markedly 
improved with GPT-5 assistance; unassist-
ed diagnostic accuracy rates of 73% and 
71% increased to 87% and 86% with brows-
er-based GPT-assistance and further to 94% 
with optimal settings assistance, aligning 
their performance with that of an experi-
enced abdominal radiologist [92%, Likert 
score: 5 (5–49)].

•	 These findings underscore the potential of 
optimized LLMs as effective decision-sup-
port tools in abdominal radiology while 
emphasizing the need for further research 
to validate their utility in diverse clinical set-
tings.
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LMMs/VLMs, including explicit reporting of 
the model version, input structure, hyperpa-
rameter configuration, and radiologist–AI in-
teraction.21 This study was not registered; the 
protocol, TRIPOD-LLM checklist, and analysis 
plan were finalized prior to model querying 
and are provided in Supplementary Table 1. 
All data supporting the findings of this study 
are available within the text and Supplemen-
tary Table 2.

The flowchart of the study is illustrated in 
Figure 1. 

Data collection

From the “Abdominal Imaging” section of 
the Eurorad database (https://www.eurorad.
org/advanced-search?filter%5B0%5D=sec-
tion%3A37), 100 cases were randomly select-
ed by R3 and R4, who assessed the responses 
together. A total of 14 cases were excluded 
based on predefined criteria to ensure the in-
tegrity and diagnostic neutrality of the data-
set, including 4 cases excluded due to the 
absence of a specified differential diagnosis 
and 6 cases removed because the correct 
diagnosis was explicitly mentioned within 
the imaging findings section, potentially 
biasing model interpretation. An addition-
al three cases were excluded owing to the 
lack of descriptive findings in the imaging 
findings section, and one case was omitted 
because it contained only a video file with-
out an accompanying static radiologic image 

suitable for model analysis. All the included 
cases were considered abdominal radiology 
cases, comprising both primary abdominal 
pathologies and multisystemic diseases with 
predominant abdominal organ involvement 
(the diagnostic reasoning was driven primar-
ily by abdominal imaging findings).

For each case, multiple radiological imag-
es were available online. From these, R3 se-
lected the two most diagnostically relevant 
images, excluding those with visual cues 
(e.g., arrows or annotations). Images were 
captured as unmodified JPEG screenshots 
and uploaded to GPT-5. The clinical presenta-
tion and imaging findings were transcribed 
verbatim without alteration or preprocess-
ing, as all cases were already anonymized and 
publicly accessible. No additional enhance-
ment or formatting was performed. None of 
the models were pretrained with any specific 
information by authors prior to the study. To 
minimize memory contamination, all cases 
were entered on the same day using seven 
independent accounts across browser-based 
environments, each with distinct tempera-
ture and top-p settings. In addition, to assess 
potential data contamination, we screened 
model outputs for verbatim case-title match-
es and for near-exact reproduction of the 
reference diagnosis phrasing. No verbatim 
title matches were identified, and near-exact 
phrasing overlap was observed in 2/86 cases 
(2.3%), which were retained but flagged in 
the sensitivity analyses. 

Prompting and the hyperparameter tuning 
process

A single structured, zero-shot following 
prompt was used uniformly across all GPT-5 
models: 

“As a highly experienced radiology profes-
sor with 25 years of expertise in abdominal 
radiology, you will help me to solve abdom-
inal cases. I will give you radiological images 
and sometimes give their imaging findings 
and clinical presentations of the cases. Your 
task is to analyze the images, imaging find-
ings, and clinical presentations and then 
combine them to obtain the most likely di-
agnosis for the patient. Give me also the best 
four differential diagnoses.” 

The prompt employed role-based contex-
tualization to emulate senior radiologist rea-
soning, aiming to enhance clinical relevance 
and foster detailed differentials. To prevent 
bias from variable session prompts, one stan-
dardized format was applied without itera-
tive refinement. Prior to the study, the GPT-5 
models received no additional training or au-
thor-provided information that could influ-
ence outcomes.

As the internal settings of browser-based 
GPT-5 are undisclosed and non-configurable, 
its performance was assessed as a baseline. 
To overcome this limitation, additional ex-
periments were conducted via OpenAI’s API, 
enabling manual adjustment of the tempera-

Figure 1. Study flowchart. API, application programming interface. 
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ture and top-p settings, which influence re-
sponse determinism and diversity. Separate 
accounts were used for each setting to avoid 
contamination or memorization. The models 
were first tested across temperature values 
(0, 0.5, 1, 1.5) with a fixed top-p value—high-
er temperature values produced unevaluable 
outputs. The optimal temperature was then 
combined with the three top-p values (0, 0.5, 
1) for further performance optimization.

Browser-based GPT-5

In the first phase of the study, brows-
er-based GPT-5 (https://chatgpt.com; GPT-5-
2025-08-08), which does not allow user con-
trol over the hyperparameter settings, was 
evaluated in two input formats: “only visual” 
and “visual with imaging findings and clini-
cal presentation.” To mitigate version drift, all 
browser-based queries were performed on 
the same day using the same displayed mod-
el build (GPT-5-2025-08-08), and API queries 
were executed using a fixed model identifier. 
For each case, the model was asked to pro-

vide the most likely diagnosis and four differ-
entials (Figure 2). All cases were entered by 
R3 in a single tab and session to avoid mem-
ory contamination. Although this minimized 
inter-session variability, it may have intro-
duced contextual carryover effects between 
cases due to the continuous chat structure.

OpenAI’s application programming inter-
face (GPT-5 with different hyperparameter 
settings)

In the second step, using OpenAI’s API 
(https://platform.openai.com) and allowing 
the explicit adjustment of hyperparameters, 
the same cases were uploaded again to GPT-
5 at different temperature and top-p settings, 
which are the two most important hyperpa-
rameters affecting the randomness, creativi-
ty, and precision of GPT-5 responses. In this 
step, cases were uploaded to GPT-5 in “visual 
with imaging findings and clinical presenta-
tion” format. Temperature was evaluated at 
settings of 0, 0.5, 1, and 1.5. At temperature: 
2, GPT-5 does not respond correctly as text, 

often generating codes instead of text and 
producing answers that cannot be evaluat-
ed; therefore, no evaluation was performed 
in this setting. The temperature setting at 
which GPT-5 has the highest diagnostic ac-
curacy was determined, and the cases were 
uploaded again at this temperature setting 
with different top-p settings (0, 0.5, and 1). 
Although these settings were selected to op-
timize diagnostic performance by balancing 
consistency and creativity, the same cases 
were uploaded again 2 weeks later using the 
optimal settings and the same format to as-
sess short-term response stability and repro-
ducibility; this was referred to as “Round 2.” 

Contribution of GPT-5 assistance to radiolo-
gist performance 

In July 2024, R1 and R2 independently 
evaluated all cases offline using R3’s inter-
net-isolated computer without access to 
ChatGPT. For each case, they recorded the 
most likely diagnosis and four differential 
diagnoses. All evaluations by R1, R2, and AR 
were performed under blinded conditions, 
using personal computers without internet 
access. Each case included clinical history 
and corresponding radiological images.

Following a 13-month washout, in August 
2025, R1 and R2 reassessed the cases in ran-
domized case order but this time reviewing 
anonymized responses from browser-based 
GPT-5 (comprising the model’s most likely 
and differential diagnoses) without knowing 
the source model. After a 3-month washout, 
in November 2025, they repeated the evalua-
tion with GPT-5 outputs generated under the 
optimal settings, again blinded to the model 
identity.

At no step were R1 or R2 informed of the 
correct diagnoses. All model outputs were 
formatted into standardized digital folders 
containing anonymized clinical data, radio-
logical images, and GPT-5 responses. These 
were securely transferred via encrypted 
drives and reviewed on offline systems by 
R3, ensuring complete blinding and data 
isolation. Finally, to better demonstrate the 
contribution of GPT-5’s assistance to radiol-
ogists, AR evaluated the same cases without 
GPT-5 assistance in July 2024, and AR’s per-
formance was compared with those of R1 
and R2.

Fundamentals of response evaluation

Through consensus, R3 and R4 assessed 
the responses of all the models and radiolo-
gists (R1, R2, and AR), categorizing the “most 
likely diagnosis” as either correct (1) or incor-Figure 2. Chat session example with browser-based GPT-5. CT, computed tomography.
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rect (0) and the “differential diagnosis” ac-
cording to a 5-point Likert score:

1: 0/4 differentials are correct

2: 1/4 differentials are correct

3: 2/4 differentials are correct

4: 3/4 differentials are correct

5: 4/4 differentials are correct

The order of the differential diagno-
ses was not considered in the scoring. The 
responses were evaluated by R3 and R4 
through consensus using only the differen-
tials listed in the Supplementary Tables 1 and 
2, and R3 and R4 independently scored a ran-
domly selected subset (25/86 cases; 29.1%) 
prior to reaching consensus. Inter-assessor 
agreement was substantial for diagnostic 
correctness (Cohen’s κ: 0.82) and moderate 
to substantial for the 5-point differential 
diagnosis score (weighted κ: 0.84). No addi-
tional diagnoses were accepted as “correct” 
beyond those provided in the answers. How-
ever, synonyms of the terms used (e.g., “celiac 
disease” vs. “gluten-sensitive enteropathy” or 
“volvulus” vs. “intestinal torsion”) were scored 
as correct when medically equivalent.

This binary scoring (correct or incorrect) 
approach was chosen because each case had 
a clearly defined “most likely” (correct) diag-
nosis derived from the dataset, allowing ob-
jective evaluation. By contrast, a differential 
diagnosis inherently reflects a graded spec-
trum of alternatives and cannot be catego-
rized only through binary scoring; therefore, 
a 5-point Likert scale was used to assess the 
degree of overlap between the responses 
and the reference differential list. The model 
inputs, responses, scoring criteria, and read-
er–AI interaction workflows were predefined 
and documented in accordance with key 
TRIPOD-LLM recommendations to enhance 
reproducibility and interpretability. 

Statistical analysis

Descriptive statistics included mean, 
median, standard deviation, range, and fre-
quencies with percentages. Normality was 
assessed using the Kolmogorov–Smirnov 
test. Diagnostic accuracy differences were 
evaluated using the McNemar test, and the 
Likert scores for GPT-5 and radiologists were 
compared using the Wilcoxon signed-rank 
test. Because comparisons across multiple 
inference settings were exploratory, we re-
port unadjusted P values and interpret find-
ings in the context of potential multiplicity. 
“Most likely diagnosis” and “differential di-
agnosis” Likert scores were not normally dis-

tributed (Kolmogorov–Smirnov, P < 0.001). 
Agreement between GPT-5 with the optimal 
settings and the Round 2 results was as-
sessed using Cohen’s kappa. Analyses were 
performed using SPSS software (version 26.0; 
IBM Corp., Armonk, NY, USA). Statistical sig-
nificance was set at P < 0.05.

Results

Diagnostic and differential diagnosis per-
formance of browser-based GPT-5 and 
across different hyperparameter settings 

Browser-based GPT-5 demonstrated lim-
ited diagnostic accuracy in the “only visual” 
format, correctly answering 12% of cases 
[10/86; 95% confidence interval (CI), 6%–
21%]. When the imaging findings and clini-
cal presentations were added, performance 
markedly improved to 58% (50/86; 95% CI: 
48%–68%) (P = 0.0006; Table 1). Differential 
diagnosis performance similarly improved 
from a mean of 1.85 (95% CI: 1.65–2.05) to 
3.44 (95% CI: 3.25–3.63) (P = 0.0004).

At temperature settings of 0, 0.5, 1, and 
1.5, diagnostic accuracies were 53% (46/86; 
95% CI: 42%–63%), 64% (55/86; 95% CI: 54%–
74%), 66% (57/86; 95% CI: 56%–76%), and 
73% (63/86; 95% CI: 63%–82%), respective-
ly. A significant improvement over brows-
er-based performance was observed only at 
temperature: 1.5 (P = 0.007; Table 2). In the 
differential diagnoses, higher temperatures 
correlated with improved performance, 
with scores increasing from 3.05 (95% CI: 
2.88–3.22; temperature: 0) to 3.84 (95% CI: 
3.66–4.02; temperature: 1.5). Similarly, tun-
ing the top-p parameter revealed a trend 
toward improved differential diagnoses. In 
addition, GPT-5 achieved a mean Likert score 
of 3.19 (95% CI: 3.01–3.37) at top-p: 0, 3.45 
(95% CI: 3.27–3.63) at top-p: 0.5, and 3.84 
(95% CI: 3.66–4.02) at top-p: 1, with top-p: 
1 significantly outperforming top-p: 0 (P = 
0.043; Table 3).

Overall, the optimal settings were defined 
as temperature: 1.5 and top-p: 1, which en-
abled GPT-5 to achieve its best diagnostic 
and differential diagnosis performance. Al-
though there was a minor difference in the 

Table 1. Diagnostic accuracy rates of browser-based GPT-5 with different evaluation formats

Format Accuracy rate (%) P

Only visual 12
P 0.0006Visual with imaging findings 

and clinical presentation 58

P values obtained from McNemar test.

Table 2. Comparison of the diagnostic performances of GPT-5 at different temperature 
settings

Temperature
0

Temperature
0.5

Temperature
1

Temperature
1.5

Diagnostic 
accuracy (%)

Temperature
0 − 0.004 0.013 0.0009 53

Temperature
0.5 0.004 − 0.727 0.057 64

Temperature
1 0.013 0.727 − 0.070 66

Temperature
1.5 0.0009 0.057 0.070 − 73

P values obtained from Wilcoxon test.

Table 3. Comparison of the diagnostic performances of GPT-5 at different top-p settings

Top-p
0

Top-p
0.5

Top-p
1

Mean Likert score

Top-p
0 − 0.004 0.043 3.19

Top-p
0.5 0.004 − 0.048 3.45

Top-p
1 0.043 0.048 − 3.84

P values obtained from Wilcoxon test.
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GPT-5 responses with the optimal settings 
in Round 2, no significant difference was 
observed in diagnostic accuracy (P = 0.41) 
or differential diagnosis performance (P = 
0.36). Agreement between GPT-5 responses 
generated with the optimal settings at base-
line and in the Round 2 evaluation was high, 
with Cohen’s κ: 0.882 (95% CI: 0.80–0.96) for 
the most likely diagnosis and κ: 0.816 for dif-
ferential diagnosis performance, indicating 
strong agreement.

The performance of the browser-based 
GPT-5 and across different hyperparameter 
settings are provided in Figures 3 and 4.

Diagnostic and differential diagnosis per-
formance of radiologists with and without 
GPT-5 assistance

Without GPT-5 assistance, R1 and R2 
demonstrated diagnostic accuracies of 73% 
(63/86; 95% CI: 63%–82%) and 71% (61/86; 
95% CI: 61%–80%), respectively. With brows-
er-based GPT-5 assistance, their accuracy 
significantly improved to 87% (75/86; 95% 
CI: 79%–94%) and 86% (74/86; 95% CI: 78%–
93%), respectively (P = 0.001, P = 0.001). Us-
ing GPT-5 with the optimal settings further 
improved their accuracy to 94% (81/86; 95% 
CI: 88%–99%) (P = 0.031, P = 0.028). Com-
paratively, AR achieved an accuracy of 92% 
(79/86; 95% CI: 85%–97%), which was superi-
or to the accuracy of R1 and R2 without GPT-
5 assistance (P < 0.001) but not significantly 
different from their performances with both 
browser-based GPT-5 and GPT-5 with the op-
timal settings (Table 4).

Figure 3. Differential diagnosis performances at different temperature settings and with browser-based 
GPT-5.

Figure 4. Differential diagnosis performances at different top-p settings and with browser-based GPT-5.

Table 4. Comparison of the diagnostic performances of radiologists with/without GPT-5 assistance and with an abdominal radiologist

Abdominal 
radiologist

R1 without 
GPT-5 
assistance

R1 with 
browser-
based GPT-5 
assistance

R1 with GPT-5 
optimal 
setting 
assistance

R2 without 
GPT-5 
assistance

R2 with 
browser-
based GPT-5 
assistance

R2 with GPT-5 
optimal setting 
assistance

Diagnostic 
accuracy 
(%)

Abdominal radiologist − 0.0006 0.219 0.687 0.0005 0.180 0.125 92

R1 without GPT-5 
assistance 0.0006 − 0.0008 0.0005 0.227 0.001 0.0006 73

R1 with browser-
based GPT-5 
assistance

0.219 0.0008 − 0.031 0.0007 1 0.004 87

R1 with GPT-5 optimal 
setting assistance 0.687 0.0005 0.031 − 0.0002 0.016 0.250 94

R2 without GPT-5 
assistance 0.0005 0.227 0.0007 0.0002 − 0.0006 0.0002 71

R2 with browser-
based GPT-5 
assistance

0.180 0.001 1 0.016 0.0006 − 0.002 86

R2 with GPT-5 optimal 
setting assistance 0.125 0.0006 0.004 0.250 0.0002 0.002 − 94

P values obtained from Wilcoxon test. R1, radiologist 1; R2, radiologist 2.
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The differential diagnosis performance 
(mean Likert score) of R1 and R2 improved 
from 3.85 (95% CI: 3.67–4.03) and 3.90 (95% 
CI: 3.72–4.08) to 4.20 (95% CI: 4.05–4.35) and 
4.24 (95% CI: 4.09–4.39), respectively, with 
browser-based GPT-5 assistance and further 
to 4.56 (95% CI: 4.43–4.69) and 4.49 (95% 
CI: 4.35–4.63), respectively, with the assis-
tance of the optimal settings (P < 0.001, P 
< 0.001) (Table 5). Although AR achieved a 
mean Likert score of 4.40 (95% CI: 4.25–4.55), 
both radiologists outperformed AR in terms 
of differential diagnosis performance when 
assisted by GPT-5 with the optimal settings 
(P = 0.002, P = 0.001; Table 6).

Discussion
The most striking result of our study was 

that optimizing GPT-5’s hyperparameters 
significantly enhanced both diagnostic accu-
racy and differential diagnosis performance 
in abdominal radiology. This improvement 
has important clinical implications, as a 
well-structured differential diagnosis list di-
rectly aids radiologists and clinicians by nar-
rowing diagnostic considerations, reducing 
uncertainty, and potentially helping patient 
management decisions. The improved mod-
el performance following hyperparameter 
optimization likely reflects enhancements in 
the model’s diagnostic reasoning processes. 
Rather than simply generating more creative 

responses, fine-tuning the temperature and 
top-p settings may encourage the model to 
explore a broader but still clinically plausible 
range of diagnostic possibilities, improving 
its capacity to generate comprehensive dif-
ferential diagnoses.14-16 This is particularly 
beneficial in scenarios involving ambiguous 
imaging findings, overlapping disease pre-
sentations, or rare pathologies, where rigid, 
pattern-based outputs may fall short. When 
calibrated appropriately, these settings help 
the model prioritize salient features, propose 
relevant alternatives, and support diagnostic 
reasoning akin to expert human thinking—
ultimately translating into increased diag-
nostic confidence for the radiologist.

Table 5. Distribution of differential diagnosis Likert scores across GPT-5 conditions and radiologists

1 Point (%) 2 Point (%) 3 Point (%) 4 Point (%) 5 Point (%)

Browser-based GPT-5 (only visual) 62 20 3 4 11

Browser-based GPT-5 (visual with imaging findings and clinical 
presentation) 7 7 32 40 14

GPT-5 with optimal settings 3 5 20 55 17

R1 without GPT-5 assistance 0 8 21 45 26

R1 with browser-based GPT-5 assistance 0 8 7 38 47

R1 with GPT-5 optimal setting assistance 0 0 8 22 70

R2 without GPT-5 assistance 0 11 15 46 27

R2 with browser-based GPT-5 assistance 0 9 6 36 49

R2 with GPT-5 optimal setting assistance 0 0 8 28 74

Abdominal radiologist 0 0 12 37 51

Likert score definition; 1: 0/4 correct differentials, 2: 1/4, 3: 2/4, 4: 3/4, 5: 4/4. R1, radiologist 1; R2, radiologist 2.

Table 6. Comparison of the differential diagnosis performances of radiologists with/without GPT-5 assistance and with an abdominal 
radiologist

Abdominal radiologist R1 without 
GPT-5 
assistance

R1 with 
browser-
based 
GPT-5 
assistance  

R1 with 
GPT-5 
optimal 
setting 
assistance

R2 
without 
GPT-5 
assistance

R2 with 
browser-
based GPT-5 
assistance

R2 with GPT-
5 optimal 
setting 
assistance

Mean Likert 
score

Abdominal radiologist − 0.0006 0.002 0.002 0.0005 0.036 0.117 4.40

R1 without GPT-5 
assistance 0.0006 − 0.0008 0.0002 0.285 0.0005 0.0003 3.85

R1 with browser-based 
GPT-5 assistance 0.006 0.0008 − 0.0004 0.0004 0.046 0.0006 4.20

R1 with GPT-5 optimal 
setting assistance 0.002 0.0002 0.0004 − 0.0002 0.0007 0.109 4.56

R2 without GPT-5 
assistance 0.0005 0.285 0.0004 0.0002 − 0.0006 0.0003 3.90

R2 with browser-based 
GPT-5 assistance 0.036 0.0005 0.046 0.0007 0.0006 − 0.001 4.24

R2 with GPT-5 optimal 
setting assistance 0.117 0.0003 0.0006 0.109 0.0003 0.001 − 4.49

P values obtained from Wilcoxon test. R1, radiologist 1; R2, radiologist 2. 



 

 • February 2026 • Diagnostic and Interventional Radiology Çamur et al.

The study by Suh et al.19 suggested that 
temperature may influence multimodal diag-
nostic outputs, although reported improve-
ments were modest and not consistently sig-
nificant. Our study extends these findings by 
systematically evaluating both the tempera-
ture and top-p settings by focusing specifi-
cally on abdominal radiology and assessing 
impacts on diagnostic accuracy, differential 
diagnosis quality, and the contribution to ra-
diologists’ performance.

Another important result of our study is 
that GPT-5 provides more accurate responses 
for the most likely diagnoses and differentials 
when imaging findings and clinical presenta-
tions are provided in addition to radiological 
images. Previous studies have focused on the 
visual performance of ChatGPT.22-26 Dehdab 
et al.24 reported a diagnostic accuracy of 56% 
for ChatGPT-4V in the interpretation of chest 
computed tomography (CT); however, perfor-
mance improved markedly to 83.3% in cases 
of diffuse Coronavirus Disease 2019 involve-
ment, likely due to more conspicuous imaging 
features.Similarly, Kuzan et al.26 demonstrat-
ed that the model exhibited high accuracy 
in identifying magnetic resonance imaging 
(MRI) sequences (approximately 89%) and 
reasonable sensitivity (79.6%) for detecting 
diffusion restriction in acute stroke imaging. 
Conversely, Ren et al.23 observed limited diag-
nostic performance in the detection of osteo-
sarcoma on radiographs, with an overall ac-
curacy of only 20%, underscoring the current 
limitations of LLMs in direct image interpreta-
tion.Horiuchi et al.25 further compared the di-
agnostic capabilities of ChatGPT-4 (text-based 
input) and ChatGPT-4V (image-based input) in 
musculoskeletal imaging, concluding that the 
text-based model demonstrated superior di-
agnostic accuracy. Our study is unique in that 
it reveals how the performance of ChatGPT 
changes when supported by imaging find-
ings and clinical presentations. LLMs use nat-
ural language processing as a starting point; 
because of their nature, it is likely that when 
imaging findings are described and clinical 
presentations provided, LLMs are better able 
to evaluate and analyze this information in a 
text-based manner. 

Previous studies have evaluated the di-
agnostic performance of ChatGPT in various 
sections. Horiuchi et al.25 evaluated the di-
agnostic performance of ChatGPT-4 on 100 
consecutive cases from the American Jour-
nal of Neuroradiology “Case of the Week,” 
reporting that the diagnostic accuracy of 
ChatGPT-4 in these cases was 50%.13 More-
over, Kahalian et al.27 uploaded 52 radiolog-
ical images to ChatGPT-4 in their study on 

oral and maxillofacial pathologies, reporting 
that the model had a diagnostic accuracy of 
56.9% when given a hint of an imaging find-
ing in addition to these images. Similarly, 
our results demonstrate that browser-based 
GPT-5 has a diagnostic accuracy of 58%.

As a diagnostic adjunct, ChatGPT’s recom-
mendations may reinforce radiologist confi-
dence by serving as an AI-driven cognitive 
checklist, potentially reducing diagnostic 
omissions. Alignment between the model’s 
differential output and the radiologist’s im-
pression encourages broader deliberation 
while allowing final synthesis within the 
clinical, laboratory, and imaging context. 
Future research should assess radiologist 
performance under varying conditions—re-
ceiving only the top-ranked diagnosis, only 
the full differential list, or both—to clarify the 
respective contributions of broad versus fo-
cused AI support. Such comparative analyses 
will guide the optimal integration of LLMs 
into radiologic practice, determining wheth-
er expansive reasoning or targeted guidance 
provides the greatest diagnostic benefit. 

We noted that the diagnostic perfor-
mance of radiologists improved with GPT-5 
assistance both with browser-based and 
optimal settings. Similarly, Siepmann et al.28 
evaluated the influence of ChatGPT-4 as-
sistance on radiological interpretation by 
asking six radiologists with varying levels of 
experience to assess 40 different radiological 
images—including X-ray, CT, MRI, and angio-
graphic examinations—in both unassisted 
and ChatGPT-4-assisted sessions. ChatGPT-4 
assistance slightly increased the diagnostic 
accuracy of the radiologists, as evidenced by 
an improvement from 75.4% to 78.3%, but 
this difference was not statistically signifi-
cant.28 This study is the first to demonstrate 
that GPT-5 assistance not only enhances di-
agnostic accuracy but also facilitates more 
comprehensive differential diagnosis formu-
lation, thereby contributing to improved di-
agnostic reasoning.

This study has several limitations. First, it 
was based on a single open-access dataset, 
which raises concerns about data contamina-
tion and limits the generalizability of the re-
sults to the broader, heterogeneous patient 
populations encountered in actual radiolog-
ic practice. Additionally, no real patient data 
were used, which further constrains the ap-
plicability of the findings to clinical settings 
that involve complex comorbidities and sub-
specialty-specific nuances. 

Second, since this study focuses on hy-
perparameter optimization, evaluation with 

different prompts/prompt engineering ef-
fects was not tested. Different prompts may 
affect the success of GPT-5 by providing dif-
ferent results in this regard. Further studies 
evaluating the effect of different prompts are 
needed.

Third, GPT-5 responded to the same cas-
es in different time periods in this study. This 
may have caused differences in the respons-
es due to both the nature of ChatGPT itself 
and the different responses resulting from 
stochasticity and updates made at different 
times within the model; models can improve 
themselves over time with new knowledge 
and updates. We did not conduct controlled 
experiments or probing to infer the default 
hyperparameter settings used by brows-
er-based GPT-5. As such, potential variability 
stemming from undocumented or evolving 
internal configurations may cause perfor-
mance differences at different times. There-
fore, the browser-based GPT-5 responses in-
cluded in the study reflect the responses at 
the time of the study. It should be noted that 
these responses may improve and change in 
the future.

Fourth, despite long washout periods 
and a randomized case order, R1 and R2 con-
tinued routine clinical practice during the 
13-month interval, and a natural learning 
curve may have contributed to improved 
performance. Therefore, the observed gains 
cannot be attributed solely to GPT-5 as-
sistance, and residual confounding from 
time-related improvement cannot be fully 
excluded.

Finally, although the radiologists were 
blinded to the model generating each re-
sponse, the same cases were evaluated at 
different stages of the study. Despite imple-
menting a 3-month washout period to min-
imize recall bias, the potential for learning 
bias cannot be fully excluded. Future studies 
should consider alternative designs or longer 
washout intervals to further reduce this risk.

In conclusion, GPT-5 performance varied 
strongly with different input formats and 
hyperparameter settings. Adding imaging 
findings and clinical presentations increased 
browser-based diagnostic accuracy from 12% 
to 58%, and API tuning improved it further 
to 73% at the optimal setting (temperature: 
1.5, top-p: 1) with better differential diagno-
sis quality. Radiologist accuracy improved 
from 73%/71% unaided to 87%/86% with 
browser-based assistance and to 94%/94% 
with optimized assistance, approaching the 
AR benchmark (92%). These findings indicate 
a need for further studies with standardized, 
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documented hyperparameter configurations 
to develop LLM-assisted decision-support 
systems and improve their contribution to 
radiologist performance.
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