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Artificial intelligence (Al) is entering routine radiology practice, but most studies evaluate algo-
rithms in isolation rather than their interaction with radiologists in clinical workflows. This narra-
tive review summarizes current knowledge on human-Al interaction in radiology and highlights
practical risks and opportunities for clinical teams. First, simple conceptual models of human-Al
collaboration are described, such as diagnostic complementarity, which explain when radiologists
and Al can achieve synergistic performance exceeding that of either alone. Then, Al tool integration
strategies along the imaging pathway are reviewed, from acquisition and triage to interpretation,
reporting, and teaching, outlining common interaction models and physician-in-the-loop work-
flows. Cognitive and professional effects of Al integration are also discussed, including automation
bias, algorithmic aversion, deskilling, workload management, and burnout, with specific vulner-
abilities for trainees. Furthermore, key elements of responsible implementation are summarized,
such as liability and oversight implications, continuous monitoring for performance drift, usable
explanations, basic Al literacy, and co-design with radiology teams. Finally, emerging systems are
introduced, including vision-language models and adaptive learning loops. This review aims to
provide a clear and accessible overview to help the radiology community recognize where human-
Al collaboration can add value, where it can cause harm, and which questions future studies must
address.
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rtificial intelligence (Al), defined as the development of methods enabling machines

to perform tasks that historically required human intelligence, is considered a revo-

lutionary development in healthcare, particularly in diagnostic imaging, and has the
potential to transform the medical imaging profession.' Early perspectives on Al adoption in
radiology were often characterized by automation anxiety, driven by impressive demonstra-
tions of algorithmic performance that led some to speculate about the potential substitution
of human practitioners.** However, this narrative has matured, and a strong argument has
emerged that Al's role is not to supplant human expertise but rather to function in a human-
Al symbiosis as a cognitive partner.>”

The prevailing professional viewpoint is that Al should serve as a complementary assistive
tool, augmenting human intelligence in the diagnostic process.>”® The imaging workforce, in-
cluding both radiologists and radiation technologists, demonstrates generally positive recep-
tion and optimism regarding the potential of AL.'®*This favorable outlook is motivated by the
expected advantages of Al, including improved efficiency, reduced workload, and optimized
management of clinical practice.*'® The primary goal is to establish a predominantly assistive
and collaborative symbiotic relationship between humans and Al systems, yielding collective
performance that exceeds what either could achieve alone.® Realizing these clinical benefits
requires the imaging workforce to adapt to and actively collaborate with such systems.
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This narrative review first investigates the
conceptual frameworks guiding effective
human-Al collaboration, followed by an ex-
amination of the practical dynamics of inte-
grating Al into clinical radiology workflows.
Subsequently, it considers the resulting cog-
nitive and professional impacts, details the
required governance and ethical safeguards,
and concludes by exploring emerging tech-
nological trajectories and proposing direc-
tions for future research.

This narrative review is based on targeted,
topic-driven searches of the literature, com-
plemented by expert knowledge and refer-
ence chaining (backward and forward), and
is not designed to follow a formal systematic
search strategy.

Conceptual frameworks for human-Al

collaboration

The strategic adoption of Al systems in
medical imaging relies on established con-
ceptual models that clarify the optimal na-
ture of human-Al cooperation. The key con-
cepts used to describe human-Al interaction
and collaboration in this review are summa-
rized in Table 1.

The foundational principle guiding this
interaction is diagnostic complementarity."”
This concept posits that combining two dis-
tinct interpretive agents, the human radiol-
ogist and the Al system, results in an overall
diagnostic performance superior to that of
either component acting alone. Importantly,

* Human-artificial intelligence (Al) collabora-
tion in radiology is best understood through
diagnostic complementarity, where com-
bined performance can exceed that of ei-
ther the human or the algorithm alone.

+ Workflow-embedded, physician-in-the-loop
designs can help determine Al’s real clinical
value more than marginal gains in stand-
alone accuracy.

* Automation bias, algorithmic aversion, skill
erosion, and context-dependent workload
effects are central risks that require explicit
mitigation, especially for trainees.

* Responsible implementation depends on
formal governance structures, continuous
post-market  surveillance, explainability
standards, and systematic Al literacy for ra-
diology teams.

* Future research should prioritize prospec-
tive, multi-institutional evaluation of team
performance, equity, and long-term train-
ing outcomes over isolated model-centric
metrics.

complementarity does not imply continu-
ous or unstructured decision fusion; rather,
it reflects the effective alignment of distinct
strengths through clearly defined roles with-
in the diagnostic workflow. This synergy, of-
ten described as human-Al symbiosis, stems
from inherent differences in strengths and
vulnerabilities.® Al systems, particularly those
using advanced algorithms such as neural
networks, can identify subtle patterns and
anomalies in medical images, efficiently per-
form repetitive, high-volume tasks at scale,
and dramatically speed up the process of
image interpretation.'®'’” Conversely, human
radiologists provide critical clinical context,
common sense, intuition, and medical judg-
ment, which are essential for synthesizing
findings into meaningful patient care nar-
ratives.’*? Because the errors made by hu-
man readers (often perceptual or related to
fatigue or distraction) and those made by Al
systems (often related to generalization or
contextual limitations) only partially over-
lap,®'” well-structured role separation may
allow each to compensate for the other’s lim-
itations, whereas poorly specified interaction
can undermine this advantage.*%

Al is implemented across a spectrum of
involvement, ranging from low-autonomy
augmentative systems,”® which often use
a physician-in-the-loop model,® to highly
autonomous systems that operate with lim-
ited direct human oversight.?® In this paper,
the term “physician-in-the-loop” is used to

emphasize the radiologist’s diagnostic liabil-
ity; however, this role exists within a broad-
er human-in-the-loop ecosystem in which
technologists provide critical upstream func-
tions, such as image acquisition and quality
control.

Within this spectrum, Al can function as a
decision support tool by marking suspicious
areas or supplying confidence scores to as-
sist the radiologist’s final determination.3*32
Alternatively, it can assume the role of an
independent second opinion or safety net,
flagging potentially overlooked regions to
minimize false negatives and ensure quality
control.** Evidence strongly supports that
this interaction model can yield measurable
performance improvements, demonstrat-
ing the value of collaboration over fully au-
tonomous operation. For instance, Lee et
al*® explored this concept in a retrospective
reader study involving 30 radiologists and
residents who evaluated 120 chest radio-
graphs (60 containing malignant nodules)
in a controlled simulation. They found that
a human-Al interaction model can improve
performance, although the extent of im-
provement depends on the quality of the Al
system. A conceptual overview of diagnostic
complementarity and human-Al team per-
formance is shown in Figure 1.

In mammography screening, different Al
workflows are being evaluated to reduce radiol-
ogist workload and improve cancer detection.

Table 1. Core concepts in human-Al interaction and collaboration in radiology

Term Definition

Human-Al interaction

Observable exchange of information between humans and Al

systems during clinical or research tasks.

Human-Al collaboration

Planned sharing of tasks and responsibilities between humans

and Al systems within a defined workflow.

Human-Al team performance

Diagnostic performance of the combined human-Al system
rather than either component alone.

Situation in which human and Al errors only partially overlap,

Diagnostic complementarity
alone.

Human-Al symbiosis

Automation bias

Algorithmic aversion

such that their combined decisions are more accurate than either

Stable pattern of collaboration in which humans and Al systems
adapt to each other’s strengths and limitations over time.

Systematic tendency to accept Al suggestions even when they
are incorrect.

Systematic tendency to ignore Al output because of mistrust,
inconsistency, or prior negative experience.

Transfer of tasks such as detection, measurement, or retrieval

Cognitive offloading
deskilling.

Trust calibration

from humans to Al, which reduces effort but may lead to

Alignment between user trust in an Al system and its actual

reliability for a given task and population.

Physician-in-the-loop design

Design principle in which imaging professionals retain oversight
and final responsibility for decisions to which Al has contributed.

Al: Artificial intelligence.
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One model is the “Al as supporting reader”
workflow, proposed by Ng et al.*” in a large-
scale simulation study. The evaluation was
based on a retrospective, multisite screening
cohort of more than 280,000 mammogra-
phy examinations from two countries, using
multiple vendors, and compared simulated
Al-supported workflows with standard hu-
man double reading. In this model, the Al
acts as the second reader only when it agrees
with the first human reader; discordant cases
are referred to a second human reader. This
simulation indicated that the “Al as support-
ing reader” workflow could maintain screen-
ing performance while substantially reduc-
ing the number of cases requiring a second
human reading by up to 87%.

A different prospective study evaluat-
ed an “Al as additional reader” workflow in
mammography screening.® This prospective
implementation was conducted in routine
clinical practice across multiple screening
sites and evaluated tens of thousands of
screening examinations using a commercial-
ly deployed Al system. In this implementa-
tion, Al was used as a safety net after stan-
dard human double reading was complete.
If the two human readers agreed not to recall
the patient but the Al flagged the case as sus-
picious, it was referred to an arbitrator for fi-
nal review. This prospective study found that
the additional reader workflow improved
the cancer detection rate by 0.7-1.6 addi-
tional cancers per 1,000 women screened,
with only a minimal increase in additional
recalls. The additional cancers detected were
primarily invasive (83.3%) and small in size
(47.0% were 10 mm or less).

Radiologists, in a study by Zajac et al.*
envisioned triage workflows in which Al
could pre-screen cases, for example, by fil-
tering normal radiographs. This would allow
senior radiologists to concentrate their ef-
forts more efficiently on challenging cases
with positive findings. In this cross-regional
qualitative field study, which involved in situ
observations and interviews with 18 radiol-
ogists across nine clinical sites in Denmark
and Kenya, participants conceptualized Al-
based case distribution as a potential tool to
help clear reading backlogs during periods
of high workload. The visions articulated by
the participating radiologists focused on Al
providing actionable support to help them
work better or faster, rather than automating
their tasks.

In a recent diagnostic study by the Pros-
tate Imaging-Cancer Al Consortium,* Al
assistance was associated with improved

Diagnostic Performance
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Figure 1. Conceptual model of diagnostic complementarity between radiologists and artificial intelligence
(Al). Panel A illustrates that diagnostic performance [e.g., area under the receiver operating characteristic
curve (AUQ) or sensitivity] can be higher for the human-Al team than for either the radiologist or the Al
system alone. Panel B represents the overlap between human and Al error sets; when errors only partially
overlap, each can compensate for the other, leading to improved overall performance.

diagnostic accuracy for clinically significant
prostate cancer on magnetic resonance im-
aging (MRI) compared with unassisted read-
ings. The study, which included 61 readers
from 53 centers across 17 countries who
assessed 360 MRI examinations, found that
Al assistance was associated with a statisti-
cally significant increase in the area under
the receiver operating characteristic curve,
from 0.882 to 0.916. At a Prostate Imaging
Reporting and Data System threshold of 3
or more, sensitivity improved from 94.3%
to 96.8%, and specificity increased from
46.7% to 50.1%. This resulted in three addi-
tional true-positive diagnoses and 10 fewer
false-positive diagnoses with Al assistance.

Taken together, these studies illustrate
both convergent and contrasting approach-
es to human-Al collaboration that can be
organized into a limited number of recurring
workflow patterns. Representative workflow
architectures for these interaction models
are shown in Figure 2, which arranges com-
mon diagnostic and screening workflows
along a spectrum from low to high Al auton-
omy. To complement this visual overview,
Table 2 presents a workflow-level taxonomy
of human-Al collaboration across this auton-
omy spectrum.

For this partnership to succeed, mutu-
al adaptation is required.**' The Al system
must be iteratively optimized to incorporate
human feedback, creating closed-loop learn-
ing that aligns algorithmic updates with ex-
pert judgment. Active learning frameworks
operationalize this process by automatically
identifying uncertain or informative cases
for labeling by radiologists, enabling con-
tinuous model refinement while minimizing
annotation burden.?4**3 Conversely, radiol-
ogists must adapt their own practice by de-
veloping Al literacy to interpret model out-

puts, recognize failure modes, and calibrate
trust according to task and context.®* This
bidirectional adaptation fosters appropriate
reliance, preventing both overtrust and al-
gorithmic aversion and ensuring that human
oversight remains central as systems evolve.

The considerations above can be oper-
ationalized as a set of design principles for
human-Al collaboration in radiology, as out-
lined in Table 3.

Practical integration and workflow dynam-
ics

Translating complementarity into clin-
ical action requires strategic placement of
Al within existing, often fast-paced opera-
tional workflows. Al systems interface with
radiology at various stages, including image
acquisition, triage, worklist prioritization, in-
terpretation, and final reporting.**® The cor-
responding stages, along with human and Al
tasks, are depicted in Figure 3.

Al can fundamentally affect the selec-
tion and prioritization of cases, for example,
by providing prioritization cues or alerts
through screening incoming studies for
time-sensitive or high-suspicion findings,
such as intracranial hemorrhage, pulmonary
emboli, or pneumothorax.**>? This Al-based
triage has demonstrated substantial reduc-
tions in report turnaround times for critical
cases. For example, one simulation showed
that Al prioritization reduced the average
reporting delay for critical chest radiograph
findings from 11.2 to 2.7 days.>® Similarly,
another simulation study found that Al sig-
nificantly reduced the average report turn-
around time for critical chest X-ray findings
(e.g., pneumothorax, from 80.1 to 35.6 min),
although it also noted that the maximum
report turnaround time could increase
without specific safeguards.®™ In contrast to
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simulations, a real-world clinical deployment
found that, for computed tomography pul-
monary angiography examinations positive
for pulmonary embolism, Al reprioritization
significantly shortened the mean report
turnaround time, from 59.9 to 47.6 min.>* Fur-
thermore, based on qualitative field studies,
radiologists envision that future Al systems
could be configured to route cases by user
expertise, for example, by directing studies
with positive findings to senior radiologists
while filtering normal studies for junior ra-
diologists to verify.*

During image interpretation, Al can func-
tion as an interactive reporting assistant by
automating highly manual tasks.*® For in-
stance, Al can perform time-consuming mea-
surements or calculations.>>*¢ Additionally, Al
can expedite the retrieval of historical exam-
inations and automatically compare changes
over time, highlighting relevant progression
or new developments for the radiologist’s at-
tention.”” Emerging vision-language models
promise further assistance, enabling capa-
bilities such as draft report generation and
automated summarization of patient im-
aging history, highlighting key events from
prior imaging records.*®* Early expert-rated
vision-language model systems (e.g., Fla-
mingo-CXR) produced clinically acceptable
draft reports under constrained conditions,
although rigorous evaluation and guardrails
remain essential.>®

Successful integration requires config-
urable Al tools to accommodate the varied
needs of different clinical sites, local resourc-
es, and user expertise.?*¢*¢2 Interface design
must prioritize utility and efficiency, ensur-
ing seamless workflow integration to mini-
mize cognitive disruption.®®¢* Clinicians gen-
erally prefer Al to be deployed as tool-based
interactions for specific, functional tasks
(e.g., quantification or data retrieval) rather
than as open-ended, generalized conversa-
tional agents.?®

Maintaining clinical authority requires
that final radiological supervision remain an
indispensable component of all Al-support-
ed activities."#'%* This human oversight is
imperative for managing medicolegal liabil-
ities and ensuring patient safety. Therefore,
Al systems must be designed with explicit
mechanisms for manual oversight and deci-
sion arbitration.*' For instance, in sophisticat-
ed prostate MRI protocols, Al may highlight
suspicious lesions or provide risk scores for
cancer detection; however, the human ra-
diologist must retain the ultimate authority
to validate or override these Al predictions

Low

Autonomy
N

Level of Autonomy

High
Autonomy

1. Standard of Care

Study Human reader Report
----- 0000000000000 000 000000
2. Concurrent Decision Support
Study Human reader 4l _° PtpUt Report
visible
----- 0000000000000 00 000000
3. Second Reader / Quality Assurance
Flagged
Study Human reader Al review - No flag Report
Human review
------ 0000000000000 00 00000 s v
4. Al as Supporting Reader (Screening)
Study Human reader 1 Al read Agreed Report
Disagreed Human
reader 2
00 0000000000000000000 0000
5. Al as Additional Reader (Screening)
Human N
StUdy reader 1 + 2 negative c‘:)nsensus Report
Negatit
" ;g: r::z " Al read No flag
Flagged
Human
arbitrator
00 0000000000000000000 0000
6. Al Triage / Prioritization
High priority
Stud Al triage it Report
Y 9 reader P
Low priority
00 000000000000000000 0000
7. Uncertainty-Based Delegation
Study Al stratification High confidence Report
Low confidence
Human
reader
----- ©000000000000000 0000000
8. Standalone Al
Study Al reader Report

Figure 2. Oversimplified representative workflow architectures for human-artificial intelligence (Al)
collaboration across diagnostic and screening tasks. Eight interaction models are shown, ranging from
standard human reading to fully autonomous Al. The diagrams illustrate how Al output is incorporated as
concurrent support, a second or additional reader, triage, or uncertainty-based delegation and how the
need for human oversight changes as Al autonomy increases. These models primarily depict workflows for
task-specific, narrow Al, such as detection and triage systems.
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Table 2. Workflow-level taxonomy of human-Al collaboration in radiology, organized along the autonomy spectrum from human-only
interpretation to conceptual autonomous systems

Workflow model

Human role

Al role

Standard of care

Concurrent decision
support

Second reader and quality
assurance

Al as a supporting reader
(screening)

Al as an additional reader
(screening)

Al triage and worklist
prioritization

Uncertainty-aware
delegation and high-

Radiologist performs the full
primary and final interpretation

Radiologist performs the
primary interpretation and
integrates or ignores Al
suggestions

Radiologist performs the
primary interpretation and
reviews only Al-flagged
discrepancies

Human reader 1 performs the

primary interpretation; human
reader 2 arbitrates discordant

human-Al cases

Two human readers perform
primary and secondary
interpretations; an arbitrator
reviews Al-flagged cases

Radiologist performs the
primary interpretation in an
Al-prioritized order

Radiologist interprets only
escalated cases and audits a
sample of auto-finalized normal

No Al involvement

Provides marks, scores,
measurements, region proposals, or
draft text during interpretation

Performs after-the-fact discrepancy
checks, including image-report
consistency

Acts as a second reader only when
concordant with human reader 1
and suppresses discordant outputs

Acts as a safety-net reader for
negative-consensus cases and flags
suspicious findings

Screens studies and assigns priority,
alerts, or routes by expertise or
urgency

Stratifies cases by uncertainty, auto-
finalizes normal cases, and escalates

confidence filtering
cases

No radiologist involvement
at the case level; oversight is
limited to governance

Standalone Al reporting

uncertain or positive cases

Fully autonomous interpretation and
reporting without case-level human
input

Output Autonomy level
Radiologist-authored report Human onl
without Al involvement y
Radiologist-authored report

optionally informed by Al Low

assistance

Radiologist-revised report
incorporating Al-flagged
discrepancies, when present

Low to moderate

Human-determined screening
outcome after resolving

human-Al agreement or Moderate
disagreement
Screening outcome enhanced
Al safety- q
by Al safety-net detection Voderate

and human arbitration, when
flagged

Radiologist report issued with
improved timeliness for high-
priority cases

Moderate to
high

Combined output comprising
Al-reported normal cases and
radiologist-reported escalated
cases

High

Al-generated report without
human interpretation
(conceptual; not currently
clinically viable)

Autonomous

Al: Artificial intelligence.

Table 3. Design principles for human-Al collaboration in radiology

Domain Design principle

Practical implication for interaction

Task allocation cach task

Workflow placement ' 0

Mode of interaction
modes

Trust calibration .
reliance on Al

Learning and

feedback humans and Al
Training and Protect independent human reasoning,
supervision especially in trainees

Define explicit roles for humans and Al for

Integrate Al at clearly defined points in the

Choose simple, task-focused interaction

Support appropriate, rather than maximal,

Allow bidirectional learning between

Specify whether Al acts as a triage aid, second reader, quantification tool, or

reporting assistant and which responsibilities are left exclusively to human

standardize this across readers

Decide when users first see Al output (e.g., after the initial read vs. upfront), and

Prefer focused outputs (marks, scores, and structured suggestions) over open-ended

conversational use for routine diagnosis

Use confidence estimates, performance summaries, and feedback mechanisms to

align user trust with actual model reliability

Enable users to flag problematic cases and use these for periodic model review and,

where applicable, model updating

Include Al-free reading periods and formal instruction on how to interpret, question,

and, when necessary, override Al output

Al: Artificial intelligence.

based on contextual clinical information.®
Similarly, in highly automated triage systems,
although clear-cut cases may be filtered, all
borderline or ambiguous examinations must
be deferred to expert radiologists for final ar-
bitration 54465

Furthermore, Al can be leveraged for in-
ternal quality assurance without imposing
undue cognitive load. A practical example
involves using natural language process-
ing to compare the radiologist’s transcribed

report with image detection findings, trig-
gering an alert only when a discrepancy or
missed finding is identified.* This approach
provides seamless quality control by engag-
ing the radiologist only when a potential er-
ror is detected, thereby avoiding workflow
disruption in routine cases. However, the
usefulness of such systems depends heavily
on their performance, as excessive false pos-
itives or false negatives can undermine trust
and disrupt workflow.

Table 4 summarizes the characteristic in-
teraction patterns, including their main ad-
vantages and risks, across commonly used
human-Al collaboration configurations.

Human-Al interaction and collaboration in radiology «



Cognitive and professional impacts

Integrating Al into clinical radiology fun-
damentally alters the cognitive processes,
trust, and diagnostic reasoning of human
practitioners. These complex dynamics in-
troduce specific risks related to human be-
havior, such as overreliance and interaction
mismatches, for example, when workflow
design or model context diverges from clin-
ical reality.

A major behavioral concern is the man-
agement of automation bias, which refers to
the uncritical acceptance of automated out-
puts, even when those outputs are incorrect
(Figure 4).6% This bias represents a consid-
erable risk, particularly for users with lower
subject matter expertise, such as radiology
trainees, who are more prone to accepting
Al recommendations.’*” For example, in
a controlled mammography reader study,
trainees’ diagnostic accuracy dropped from
approximately 80% when the Al was correct
to 20% when misled by incorrect Al output.
The same study also found that when Al in-
correctly suggested downgrading a correct
finding (an error of omission), all experience
levels, including experts, were equally sus-
ceptible to this bias.®”

Studies show that the accuracy of the
Al tool is a key factor. High diagnostic ac-
curacy in an Al model is associated with
improved radiologist performance and in-
creased susceptibility to accepting Al sug-
gestions.** Conversely, flawed Al output
can be detrimental. Randomized evidence
shows that systematically biased Al predic-
tions significantly reduced clinician diag-

nostic accuracy by approximately 9.1-11.3
percentage points compared with baseline
performance.®® This negative impact persist-
ed even when explanations were provided;
the study found that Al-generated explana-
tions did not mitigate the adverse effects of
biased predictions. This aligns with separate
findings that interpretability methods can
be flawed, as saliency maps in medical imag-
ing may localize pathology poorly, with one
study reporting localization utility, measured

as the area under the precision-recall curve,
as low as 0.024-0.16 for some methods on
chest radiographs.”

The opposite challenge, algorithmic aver-
sion (mistrust) (Figure 4), can also impede
successful integration.”” A lack of trust may
arise from perceived inconsistencies in Al
tools’ technical performance or concerns
about frequent false positives or false neg-
atives, which impose an additional burden
on radiologists who must double-check Al

Human-Al Interaction Across the Radiology Workflow
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7z s
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Figure 3. Human-artificial intelligence (Al) interaction across the radiology workflow. The figure illustrates
how Al and radiologists can contribute complementary tasks from acquisition to teaching. At each workflow
stage, Al provides technical or analytic functions (top row), radiologists perform contextual and clinical
judgment tasks (middle row), and their combination yields specific collaboration modes.

Table 4. Key interaction characteristics of common human-Al collaboration configurations in radiology, summarizing core features,

operational advantages, and associated risks

Interaction model

Key interaction features

Main advantages

Main risks

Risk of over-reliance on triage flags,

Al-assisted triage and worklist
prioritization

Concurrent decision support
(marks and scores shown during
reading)

Second reader and quality

assurance mode

Quantification and structured
reporting assistant

Interactive teaching and
feedback tools

One-way interaction; Al output is
typically seen before image review

Continuous visual interaction during
reading; strong influence on search
patterns

Sequential interaction; Al output is
revealed after the initial judgment

Task-focused interaction; users edit
or overwrite Al outputs

Used in dedicated training sessions;
not directly linked to the clinical
workflow

Potentially shorter time to report for
urgent findings; improved focus on
high-risk cases

Potential increase in sensitivity;
support for less experienced readers

Likely reduction in false negatives;
explicit safety net with lower
automation bias

Time savings for repetitive tasks;
more consistent quantification and
terminology

Supports skill development and
reflection on errors; may improve Al
literacy

particularly when Al confidence is not
transparently communicated, and
possible under-attention to low-priority
studies

Automation bias, anchoring on Al marks,
and altered search behavior

Additional time for review and risk of
alert fatigue if the false-positive rate is
high

Cognitive offloading of basic skills,
especially with prolonged, uncritical use,
and potential propagation of systematic
Al errors

If uncalibrated, risk of conveying
misleading confidence or incorrect
“ground truth”

Al artificial intelligence.
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interpretations.’ In a 2024 EuroAIM/EuSoMII
survey, 47.2% of respondents anticipated
an increased total reporting workload; oth-
er major barriers cited were costs (49.5%),
legal issues (43.7%), and lack of validation
(35.5%)." This aversion may also be linked to
ethical concerns regarding Al's vulnerability
to bias and discrimination.’®”73 Research has
demonstrated that algorithmic bias can lead
to unequal diagnostic performance across
patient subgroups, thereby undermining cli-
nician confidence. For example, a large study
showed that deep learning chest radiograph
models trained on heterogeneous hospital
data systematically underdiagnosed disease
in female and Black patients compared with
other groups.”* In a large international sur-
vey of 1,041 radiologists and residents, 37%
of respondents cited a “lack of trust in Al by
stakeholders” as a hurdle to implementation;
this view was independently and significant-
ly more often observed among those work-
ing outside Europe (adjusted odds ratio:
1.77; 95% confidence interval: 1.24-2.53; P =
0.002).”®

These behaviors can be conceptualized as
a spectrum of reliance on Al, ranging from al-
gorithmic aversion to automation bias, with
optimal performance occurring at interme-
diate, calibrated reliance (Figure 5). It should
also be noted that users may experience dif-
ferent biases over time when using Al tools
in clinical practice. For example, an expert
radiologist’s algorithmic aversion may give
way to automation bias as familiarity and
confidence in the Al medical device increase
or as the user learns to rely excessively on
model output while losing confidence in his
or her own reading skills.

The widespread deployment of Al de-
tection tools may accelerate deskilling and
hinder skill acquisition, particularly in train-
ing contexts.**’® The introduction of tools
designed to detect focal abnormalities, such
as pulmonary nodules, intracranial hemor-
rhage, and pneumothorax, may unintention-
ally disrupt the training process required to
acquire fundamental perceptual skills and
efficient search patterns.* Furthermore,
reader studies have shown that incorrect Al
prompts can modify diagnostic judgment.®’
For instance, when Al automatically triages
studies containing emergent findings to the
top of a worklist, the immediate alert de-
prives the trainee of the opportunity to con-
duct an initial blinded evaluation of the im-
aging.” Beyond perceptual skills, Al systems
that offer contextual diagnostic suggestions
or provide automated scores for standard-
ized reporting systems could compromise

mastery of foundational knowledge, such
as learning complex differential diagnoses.
If trainees become overly dependent on Al
to identify findings, they may become more
susceptible to automation bias, as studies
show that inexperienced users are more vul-
nerable to following incorrect automated
suggestions.s””

Al integration introduces an additional
layer of cognitive workload and digital fa-
tigue, contrary to expectations that it would
uniformly reduce labor.®* A nationwide sur-
vey of 6,726 radiologists from 1,143 hospitals
in China demonstrated a dose-response re-
lationship between the frequency of Al use
for image interpretation and work-related
emotional exhaustion and burnout.”8” This

Automation Bias
(Over-trust)

Anchoring/

Al flags Confirmation tendency

Pneumothorax positive

Final report
Pneumothorax positive

Outcome
Contralateral
finding missed

unexpected burden is partly attributable to
the effort required to review and dismiss fre-
quent false-positive detections, a problem
already well recognized with mammography
computer-aided detection systems and now
echoed in newer Al tools.%*8 In a prospective
study of 18,680 chest radiographs, Al use re-
duced overall reading time (13.3 s vs. 14.8 s)
and clearly shortened reading times for stud-
ies without Al-detected abnormalities (10.8 s
vs. 13.1 s). However, for cases with Al-detect-
ed abnormalities, reading times did not differ
significantly (18.6 s vs. 18.4 s) and increased
more steeply as abnormality scores rose.®
Taken together, these findings show that the
workload impact of Al in radiology is high-
ly context-dependent, being beneficial for
some tasks, such as chest X-ray screening, but

Algorithmic Aversion
(Under-trust)

Premature rejection/
Skepticism Al suggests

Possible small PE

Final report
No PE identified

Outcome
True positive ignored
(small PE missed)

Figure 4. lllustration of automation bias and algorithmic aversion in radiology. The left panel shows
automation bias, in which an artificial intelligence (Al)-generated pneumothorax flag anchors the
radiologist’s interpretation, leading to confirmation of the Al output and omission of a contralateral
abnormality. The right panel shows algorithmic aversion, in which an Al suggestion of a small pulmonary
embolism is prematurely dismissed because of prior negative experiences or skepticism, resulting in failure
to identify a true-positive finding. Both extremes of trust distort independent image assessment and
propagate avoidable diagnostic error. PE, pulmonary embolism.
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Figure 5. Spectrum of reliance on artificial intelligence (Al). The horizontal axis illustrates levels of reliance
on Al, ranging from algorithmic aversion (systematic underuse) through appropriate reliance to automation
bias (systematic overuse). The dashed curve indicates that error rates are expected to be higher at both
extremes and lowest with appropriate reliance.
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potentially burden-increasing in high-com-
plexity settings or under conditions of high
workload and low Al acceptance.

Survey data indicate that attitudes to-
ward Al often differ by age and experience,
although the patterns vary. One ltalian sur-
vey found a U-shaped relationship, in which
the youngest (< 30 years) and oldest (> 60
years) radiologists were the most optimistic,
whereas a large international survey found
that younger age was a positive predictor of
a proactive attitude toward AL''® Younger
radiologists and residents frequently report
feeling inadequately informed about Al. The
survey of Italian radiologists found that 46%
of younger members shared this sentiment."
A Singaporean survey found that a majority
(64.8%) of residents and faculty described
themselves as novices in their understanding
of AI/ML and 59.2% of respondents felt that
their residency programs had not adequate-
ly implemented Al or machine learning (ML)
teaching, despite strong interest in the top-
ic.828 This perceived gap in Al literacy is con-
sidered a factor inhibiting adoption; surveys
suggest that limited Al knowledge is associ-
ated with fear of replacement, whereas inter-
mediate to advanced knowledge correlates
with a more positive attitude toward AL."""3

Professionals generally recognize that Al
will necessitate an expansion of their roles,
as evidenced by a 2024 EuroAlM/EuSoMI|
survey of 572 European Society of Radiology
(ESR) members, in which 98% agreed that
radiology teams should participate in the
development and validation of Al tools, and
45% stated that radiologists should retain
full responsibility for Al outputs influencing
clinical decisions.? However, skepticism re-
mains regarding the delegation of high-risk
functions, such as prognostication or com-
plex treatment decisions, to Al. Surveys re-
peatedly show that radiologists favor Al as a
second reader or workflow aid and insist that
final image interpretation and clinical super-
vision remain their nondelegable responsi-
bility."37585 Accordingly, several education
and human-computer interaction studies
have warned that if core interpretive and
reporting tasks become heavily automated,
Al may contribute to progressive deskilling
of radiologists unless training and system
design explicitly safeguard independent per-
ceptual and decision-making skills.3+8¢

Governance, ethics, and responsible imple-
mentation

The complex behavioral and cognitive
challenges posed by Al necessitate strict

systemic responses, robust governance, and
continuous oversight to ensure safe and re-
sponsible adoption.”#788

A critical concern in scenarios involving Al
assistance is medicolegal liability for errors
arising from joint human-Al decisions.*'#%!
There is currently no transfer of liability to Al
systems as long as the radiologist or clinician
makes the final decision.”?® Globally, experts
affirm that final assessment and supervision
of Al results by the radiologist are essential
for managing legal risks and ensuring patient
safety.''#896% Regulators, including the US
Food and Drug Administration (FDA), treat
Al-based diagnostic tools as medical devic-
es whose potential harms include increased
false-positive and false-negative rates and
other incorrect outputs that can delay or
misdirect care, leading to patient harm.*
Therefore, institutional governance bodies
must establish safeguards to prevent pa-
tient harm, especially when deploying high-
risk applications, such as screening tools for
healthy populations or, in the future, models
that might evolve toward treatment support
roles.t”** Institutional policies must also ad-
dress ethical considerations, such as patient
consent and the potential misuse of data for
other purposes.’>87:91.97

Effective Al implementation requires
formal governance structures to guide the
entire life cycle of clinical Al, encompassing
evaluation, procurement, and ongoing sup-
port.?® Daye et al.*' describe radiology-led,
enterprise-level, and hybrid Al governance
committees that oversee the selection, im-
plementation, and continuous monitoring of
imaging Al tools within large health systems.
These governing bodies should be interdis-
ciplinary, integrating clinical, technical, and
governance expertise, including ethics and
regulatory perspectives, as recommended
by radiology Al governance frameworks
that emphasize multidisciplinary teams and
shared decision-making.*'® Importantly, for
such shared decision-making to be meaning-
ful, governance models must also clearly de-
lineate professional accountability for Al-in-
formed clinical actions, as influence without
responsibility risks undermining trust and
patient safety.

Before any Al tool is deployed, it must
undergo a rigorous assessment covering its
clinical value, efficacy (benchmarked against
average radiologist performance), technical
readiness, and ethical implications.493101-103
Multiple radiology-specific evaluation frame-
works now formalize these dimensions, in-
cluding the methodological guide by Park et
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al.,'® the ECLAIR guidelines for commercial
tools,'® and the RADAR deployment and as-
sessment rubric.’® Implementation should
ideally follow a phased approach, beginning
with shadow deployment, in which the Al
runs in the background without influencing
reports, followed by tightly scoped pilot de-
ployment before full rollout.'%>1%

Continuous post-market surveillance and
monitoring are crucial for detecting perfor-
mance degradation or drift after implemen-
tation, which can occur due to changes in
patient populations, disease prevalence, ac-
quisition protocols, or data pipelines.” 10711
A robust monitoring plan must track estab-
lished metrics and include mechanisms for
early intervention if performance declines,
as emphasized in radiology-specific monitor-
ing frameworks and quality assurance pro-
posals.’%112113 Recently, the ESR published
consensus recommendations clarifying that
although legal responsibility for post-mar-
ket surveillance lies with software providers,
radiologists (acting as clinical deployers)
are expected to actively contribute to the
ongoing monitoring of Al safety and perfor-
mance in routine practice, including output
oversight, incident reporting, and structured
clinical feedback."* For algorithms designed
for continuous learning, adherence to reg-
ulatory guidelines—including a Predeter-
mined Change Control Plan for anticipated
updates—is critical, as reflected in recent
FDA guidance for Al/ML-enabled medical
devices and in radiology Al governance
statements.22115116 - Collaboration among
radiologists, Al scientists, and information
technology staff is necessary for continuous
quality control, as real-world implementa-
tion studies consistently show that sustained
Al performance depends on this joint clini-
cal-technical oversight.#1%6112

To cultivate appropriate trust and counter
bias, Al tools must provide transparency.'”'"?
Explainable Al systems aim to offer interpre-
tive assistance; however, current user-level
explanation tools, such as saliency maps
(heat maps), have repeatedly been shown
to be unstable and only weakly aligned with
radiologists’localization needs, making them
insufficient as the primary interface for hu-
man-Al interaction.”®'?22 Poorly articulated
or non-sensical explanations can erode trust,
whereas clear explanations aligned with es-
tablished clinical reasoning may increase
trust.'>7” Similarly, unreliable explanations
may promote algorithmic aversion, whereas
overly persuasive ones may increase auto-
mation bias, illustrating how explainability,
trust, and user behavior are closely intercon-
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nected. Beyond post hoc explanations, clin-
ically useful Al systems should expose cali-
brated confidence or uncertainty estimates
so that radiologists can preferentially scruti-
nize low-confidence cases and more readily
detect potential Al errors.'28131

Al literacy, defined as the competency
to critically evaluate and collaborate with Al
systems, remains a major barrier to safe in-
tegration and is also mandatory for deploy-
ers within the European Union under the Al
Act.'%13213 To address this, education must
begin at the undergraduate level, as radiolo-
gists and radiation technologists—including
residents and bachelor-level graduates—
express a strong desire to enhance their Al
and ML knowledge for practice improve-
ment.'?8313* Educational frameworks should
be stratified by role (e.g., foundational, clin-
ical user, and expert) to enable professionals
to understand algorithmic principles and
safety concerns appropriate to their scope
of practice.'® Several recent initiatives exem-
plify this structured approach. For instance,
a multi-society collaboration (AAPM, ACR,
RSNA, and SIIM) has released a comprehen-
sive syllabus detailing competencies across
different personas, from general users to pur-
chasers and developers.'** Similarly, practical
implementation frameworks have been pro-
posed, including a five-step model for inte-
grating Al curricula into residency programs
and condensed workshops focused on foun-
dational literacy rather than technical profi-
ciency, which have been shown to consider-
ably improve resident confidence.'3%'3”

Finally, involving radiologists and radia-
tion technologists in co-design efforts is vital
to ensure that Al solutions address genuine
clinical needs and integrate seamlessly with
existing workflows.'3® This collaboration
aims to foster a symbiotic relationship with
the technology, ensuring that standardized
processes align machine-recommended pro-
cedures with professional judgment.

Emerging technologies and future direc-
tions

Recent advances in foundation models,
particularly vision-language models, have
extended the boundaries of human-Al inter-
action in radiology.’®'* These systems com-
bine image understanding and language
generation to enable functions such as re-
port drafting, segmentation, classification,
image retrieval, and longitudinal case sum-
marization.>®'41%6 However, current vision—
language models trained on general data
remain limited in domain-specific reason-

ing and often underperform in specialized
perception tasks.'#14147.148 Therefore, their
immediate utility is expected in constrained,
task-specific roles—such as structured sum-
marization, quantitative measurement, and
retrieval—rather than open-ended conver-
sational support.’**® Qualitative studies sug-
gest that radiologists and clinicians tend to
prefer workflow tools (such as tool buttons
or alerts) embedded within their reporting
environment over general free-text conver-
sational assistants, citing time constraints
and a lack of trust in open-ended chat sys-
tems.’®

Physician-in-the-loop active learning,
which facilitates interactive and continu-
ous model improvement (Figure 6), aims to
enhance physician-Al interaction and col-
laboration.?® These frameworks allow radiol-
ogists to iteratively refine models through
feedback collected during routine practice,
with updates performed under predefined
change control protocols and independent
validation. Such designs support regulatory
compliance and improve model adaptabili-
ty and generalizability, although challenges
such as annotation variability must be care-
fully managed to preserve data integrity.

To further strengthen human-Al collab-
oration and trust, models should incorpo-
rate both uncertainty quantification and
transparent reasoning mechanisms.!'?14%151

Lo O

Uncertainty-aware systems can guide role
arbitration by allowing Al to handle clear,
low-ambiguity cases while deferring com-
plex or equivocal findings to expert re-
view."**>! For explainability to be effective, it
must provide human-centered, decision-rel-
evant feedback; this includes not only visu-
alizations linking predictions to evidential
image regions but also calibrated measures
of model confidence and uncertainty."®'*

The near-term priority is not the devel-
opment of larger models but the implemen-
tation of effective human-Al collaboration
through trustworthy, auditable, and work-
flow-embedded systems that demonstrably
enhance collective diagnostic accuracy, ef-
ficiency, and safety. Future research should
focus on evaluating team performance met-
rics, workload implications, and long-term
cognitive effects in prospective, multi-insti-
tutional settings.

Final remarks

Radiology is no longer debating whether
Al will replace radiologists but rather how to
structure accountable and effective human-
Al partnerships. The evidence reviewed here
demonstrates that performance gains are
fragile when workflow integration, cogni-
tive effects, and governance are neglected.
Robust collaboration requires physician-in-
the-loop design, calibrated trust, continuous

Clinical use of Al

Al generates outputs
during routine reporting \

Re-deployment and

N monitoring
== Updated model is re-deployed
1"t and monitored for drift and
safety

Human review and

correction
Radiologist verifies findings,
overrides errors, adds
annotations; a subset of
cases is flagged

Physician-in-the-loop
active learning loop

Model review and
updating
Periodic review, recalibration,
or retraining (where allowed)

Feedback
capture
Flagged and corrected
cases are stored in a
feedback set

()
~——— :>

Figure 6. Physician-in-the-loop active learning design. The figure illustrates a cyclical process in which
artificial intelligence (Al) is used during routine clinical reporting (step 1). Radiologists review and correct
Al outputs as part of normal reporting, but only a subset of cases (e.g., uncertain or discordant results) is
explicitly flagged for feedback (step 2). These flagged cases are stored in a feedback set (step 3), which
informs periodic model review, recalibration, or retraining, where permitted (step 4), followed by re-
deployment and monitoring for drift and safety (step 5). Unlike simple human-in-the-loop oversight at
the case level, this loop emphasizes how targeted radiologist input continuously shapes the behavior of
deployed Al systems over time while limiting additional workload.
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monitoring, and explicit protection of train-
ing pathways and professional autonomy.
Future work should prioritize prospective,
multi-institutional studies of team perfor-
mance, workload, equity, and long-term
learning outcomes rather than isolated accu-
racy metrics. Under these conditions, Al can
evolve from an opportunistic add-on into
core clinical infrastructure that strengthens
the safety and reliability of imaging care.
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