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Artificial intelligence (AI), defined as the development of methods enabling machines 
to perform tasks that historically required human intelligence, is considered a revo-
lutionary development in healthcare, particularly in diagnostic imaging, and has the 

potential to transform the medical imaging profession.1-3 Early perspectives on AI adoption in 
radiology were often characterized by automation anxiety, driven by impressive demonstra-
tions of algorithmic performance that led some to speculate about the potential substitution 
of human practitioners.4,5 However, this narrative has matured, and a strong argument has 
emerged that AI’s role is not to supplant human expertise but rather to function in a human–
AI symbiosis as a cognitive partner.6,7

The prevailing professional viewpoint is that AI should serve as a complementary assistive 
tool, augmenting human intelligence in the diagnostic process.5,7-9 The imaging workforce, in-
cluding both radiologists and radiation technologists, demonstrates generally positive recep-
tion and optimism regarding the potential of AI.10-13 This favorable outlook is motivated by the 
expected advantages of AI, including improved efficiency, reduced workload, and optimized 
management of clinical practice.14-16 The primary goal is to establish a predominantly assistive 
and collaborative symbiotic relationship between humans and AI systems, yielding collective 
performance that exceeds what either could achieve alone.6 Realizing these clinical benefits 
requires the imaging workforce to adapt to and actively collaborate with such systems.
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Human–AI interaction and collaboration in radiology: from conceptual 
frameworks to responsible implementation

Artificial intelligence (AI) is entering routine radiology practice, but most studies evaluate algo-
rithms in isolation rather than their interaction with radiologists in clinical workflows. This narra-
tive review summarizes current knowledge on human–AI interaction in radiology and highlights 
practical risks and opportunities for clinical teams. First, simple conceptual models of human–AI 
collaboration are described, such as diagnostic complementarity, which explain when radiologists 
and AI can achieve synergistic performance exceeding that of either alone. Then, AI tool integration 
strategies along the imaging pathway are reviewed, from acquisition and triage to interpretation, 
reporting, and teaching, outlining common interaction models and physician-in-the-loop work-
flows. Cognitive and professional effects of AI integration are also discussed, including automation 
bias, algorithmic aversion, deskilling, workload management, and burnout, with specific vulner-
abilities for trainees. Furthermore, key elements of responsible implementation are summarized, 
such as liability and oversight implications, continuous monitoring for performance drift, usable 
explanations, basic AI literacy, and co-design with radiology teams. Finally, emerging systems are 
introduced, including vision–language models and adaptive learning loops. This review aims to 
provide a clear and accessible overview to help the radiology community recognize where human–
AI collaboration can add value, where it can cause harm, and which questions future studies must 
address.
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This narrative review first investigates the 
conceptual frameworks guiding effective 
human–AI collaboration, followed by an ex-
amination of the practical dynamics of inte-
grating AI into clinical radiology workflows. 
Subsequently, it considers the resulting cog-
nitive and professional impacts, details the 
required governance and ethical safeguards, 
and concludes by exploring emerging tech-
nological trajectories and proposing direc-
tions for future research.

This narrative review is based on targeted, 
topic-driven searches of the literature, com-
plemented by expert knowledge and refer-
ence chaining (backward and forward), and 
is not designed to follow a formal systematic 
search strategy.

Conceptual frameworks for human–AI 
collaboration

The strategic adoption of AI systems in 
medical imaging relies on established con-
ceptual models that clarify the optimal na-
ture of human–AI cooperation. The key con-
cepts used to describe human–AI interaction 
and collaboration in this review are summa-
rized in Table 1.

The foundational principle guiding this 
interaction is diagnostic complementarity.17 
This concept posits that combining two dis-
tinct interpretive agents, the human radiol-
ogist and the AI system, results in an overall 
diagnostic performance superior to that of 
either component acting alone. Importantly, 

complementarity does not imply continu-
ous or unstructured decision fusion; rather, 
it reflects the effective alignment of distinct 
strengths through clearly defined roles with-
in the diagnostic workflow. This synergy, of-
ten described as human–AI symbiosis, stems 
from inherent differences in strengths and 
vulnerabilities.6 AI systems, particularly those 
using advanced algorithms such as neural 
networks, can identify subtle patterns and 
anomalies in medical images, efficiently per-
form repetitive, high-volume tasks at scale, 
and dramatically speed up the process of 
image interpretation.18,19 Conversely, human 
radiologists provide critical clinical context, 
common sense, intuition, and medical judg-
ment, which are essential for synthesizing 
findings into meaningful patient care nar-
ratives.20-25 Because the errors made by hu-
man readers (often perceptual or related to 
fatigue or distraction) and those made by AI 
systems (often related to generalization or 
contextual limitations) only partially over-
lap,6,17 well-structured role separation may 
allow each to compensate for the other’s lim-
itations, whereas poorly specified interaction 
can undermine this advantage.26,27

AI is implemented across a spectrum of 
involvement, ranging from low-autonomy 
augmentative systems,28 which often use 
a physician-in-the-loop model,29 to highly 
autonomous systems that operate with lim-
ited direct human oversight.28 In this paper, 
the term “physician-in-the-loop” is used to 

emphasize the radiologist’s diagnostic liabil-
ity; however, this role exists within a broad-
er human-in-the-loop ecosystem in which 
technologists provide critical upstream func-
tions, such as image acquisition and quality 
control. 

Within this spectrum, AI can function as a 
decision support tool by marking suspicious 
areas or supplying confidence scores to as-
sist the radiologist’s final determination.30-32 
Alternatively, it can assume the role of an 
independent second opinion or safety net, 
flagging potentially overlooked regions to 
minimize false negatives and ensure quality 
control.33-35 Evidence strongly supports that 
this interaction model can yield measurable 
performance improvements, demonstrat-
ing the value of collaboration over fully au-
tonomous operation. For instance, Lee et 
al.36 explored this concept in a retrospective 
reader study involving 30 radiologists and 
residents who evaluated 120 chest radio-
graphs (60 containing malignant nodules) 
in a controlled simulation. They found that 
a human–AI interaction model can improve 
performance, although the extent of im-
provement depends on the quality of the AI 
system. A conceptual overview of diagnostic 
complementarity and human–AI team per-
formance is shown in Figure 1.

In mammography screening, different AI 
workflows are being evaluated to reduce radiol-
ogist workload and improve cancer detection. 

Main points

•	 Human–artificial intelligence (AI) collabora-
tion in radiology is best understood through 
diagnostic complementarity, where com-
bined performance can exceed that of ei-
ther the human or the algorithm alone.

•	 Workflow-embedded, physician-in-the-loop 
designs can help determine AI’s real clinical 
value more than marginal gains in stand-
alone accuracy.

•	 Automation bias, algorithmic aversion, skill 
erosion, and context-dependent workload 
effects are central risks that require explicit 
mitigation, especially for trainees.

•	 Responsible implementation depends on 
formal governance structures, continuous 
post-market surveillance, explainability 
standards, and systematic AI literacy for ra-
diology teams.

•	 Future research should prioritize prospec-
tive, multi-institutional evaluation of team 
performance, equity, and long-term train-
ing outcomes over isolated model-centric 
metrics.

Table 1. Core concepts in human–AI interaction and collaboration in radiology

Term Definition

Human–AI interaction Observable exchange of information between humans and AI 
systems during clinical or research tasks.

Human–AI collaboration Planned sharing of tasks and responsibilities between humans 
and AI systems within a defined workflow.

Human–AI team performance Diagnostic performance of the combined human–AI system 
rather than either component alone.

Diagnostic complementarity
Situation in which human and AI errors only partially overlap, 
such that their combined decisions are more accurate than either 
alone.

Human–AI symbiosis Stable pattern of collaboration in which humans and AI systems 
adapt to each other’s strengths and limitations over time.

Automation bias Systematic tendency to accept AI suggestions even when they 
are incorrect.

Algorithmic aversion Systematic tendency to ignore AI output because of mistrust, 
inconsistency, or prior negative experience.

Cognitive offloading
Transfer of tasks such as detection, measurement, or retrieval 
from humans to AI, which reduces effort but may lead to 
deskilling.

Trust calibration Alignment between user trust in an AI system and its actual 
reliability for a given task and population.

Physician-in-the-loop design Design principle in which imaging professionals retain oversight 
and final responsibility for decisions to which AI has contributed.

AI: Artificial intelligence.
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One model is the “AI as supporting reader” 
workflow, proposed by Ng et al.37 in a large-
scale simulation study. The evaluation was 
based on a retrospective, multisite screening 
cohort of more than 280,000 mammogra-
phy examinations from two countries, using 
multiple vendors, and compared simulated 
AI-supported workflows with standard hu-
man double reading. In this model, the AI 
acts as the second reader only when it agrees 
with the first human reader; discordant cases 
are referred to a second human reader. This 
simulation indicated that the “AI as support-
ing reader” workflow could maintain screen-
ing performance while substantially reduc-
ing the number of cases requiring a second 
human reading by up to 87%.

A different prospective study evaluat-
ed an “AI as additional reader” workflow in 
mammography screening.38 This prospective 
implementation was conducted in routine 
clinical practice across multiple screening 
sites and evaluated tens of thousands of 
screening examinations using a commercial-
ly deployed AI system. In this implementa-
tion, AI was used as a safety net after stan-
dard human double reading was complete. 
If the two human readers agreed not to recall 
the patient but the AI flagged the case as sus-
picious, it was referred to an arbitrator for fi-
nal review. This prospective study found that 
the additional reader workflow improved 
the cancer detection rate by 0.7–1.6 addi-
tional cancers per 1,000 women screened, 
with only a minimal increase in additional 
recalls. The additional cancers detected were 
primarily invasive (83.3%) and small in size 
(47.0% were 10 mm or less).

Radiologists, in a study by Zając et al.,39 
envisioned triage workflows in which AI 
could pre-screen cases, for example, by fil-
tering normal radiographs. This would allow 
senior radiologists to concentrate their ef-
forts more efficiently on challenging cases 
with positive findings. In this cross-regional 
qualitative field study, which involved in situ 
observations and interviews with 18 radiol-
ogists across nine clinical sites in Denmark 
and Kenya, participants conceptualized AI-
based case distribution as a potential tool to 
help clear reading backlogs during periods 
of high workload. The visions articulated by 
the participating radiologists focused on AI 
providing actionable support to help them 
work better or faster, rather than automating 
their tasks.

In a recent diagnostic study by the Pros-
tate Imaging–Cancer AI Consortium,40 AI 
assistance was associated with improved 

diagnostic accuracy for clinically significant 
prostate cancer on magnetic resonance im-
aging (MRI) compared with unassisted read-
ings. The study, which included 61 readers 
from 53 centers across 17 countries who 
assessed 360 MRI examinations, found that 
AI assistance was associated with a statisti-
cally significant increase in the area under 
the receiver operating characteristic curve, 
from 0.882 to 0.916. At a Prostate Imaging 
Reporting and Data System threshold of 3 
or more, sensitivity improved from 94.3% 
to 96.8%, and specificity increased from 
46.7% to 50.1%. This resulted in three addi-
tional true-positive diagnoses and 10 fewer 
false-positive diagnoses with AI assistance.

Taken together, these studies illustrate 
both convergent and contrasting approach-
es to human–AI collaboration that can be 
organized into a limited number of recurring 
workflow patterns. Representative workflow 
architectures for these interaction models 
are shown in Figure 2, which arranges com-
mon diagnostic and screening workflows 
along a spectrum from low to high AI auton-
omy. To complement this visual overview, 
Table 2 presents a workflow-level taxonomy 
of human–AI collaboration across this auton-
omy spectrum.

For this partnership to succeed, mutu-
al adaptation is required.29,41 The AI system 
must be iteratively optimized to incorporate 
human feedback, creating closed-loop learn-
ing that aligns algorithmic updates with ex-
pert judgment. Active learning frameworks 
operationalize this process by automatically 
identifying uncertain or informative cases 
for labeling by radiologists, enabling con-
tinuous model refinement while minimizing 
annotation burden.29,42,43 Conversely, radiol-
ogists must adapt their own practice by de-
veloping AI literacy to interpret model out-

puts, recognize failure modes, and calibrate 
trust according to task and context.6,44 This 
bidirectional adaptation fosters appropriate 
reliance, preventing both overtrust and al-
gorithmic aversion and ensuring that human 
oversight remains central as systems evolve.

The considerations above can be oper-
ationalized as a set of design principles for 
human–AI collaboration in radiology, as out-
lined in Table 3.

Practical integration and workflow dynam-
ics

Translating complementarity into clin-
ical action requires strategic placement of 
AI within existing, often fast-paced opera-
tional workflows. AI systems interface with 
radiology at various stages, including image 
acquisition, triage, worklist prioritization, in-
terpretation, and final reporting.45-48 The cor-
responding stages, along with human and AI 
tasks, are depicted in Figure 3.

AI can fundamentally affect the selec-
tion and prioritization of cases, for example, 
by providing prioritization cues or alerts 
through screening incoming studies for 
time-sensitive or high-suspicion findings, 
such as intracranial hemorrhage, pulmonary 
emboli, or pneumothorax.49-52 This AI-based 
triage has demonstrated substantial reduc-
tions in report turnaround times for critical 
cases. For example, one simulation showed 
that AI prioritization reduced the average 
reporting delay for critical chest radiograph 
findings from 11.2 to 2.7 days.53 Similarly, 
another simulation study found that AI sig-
nificantly reduced the average report turn-
around time for critical chest X-ray findings 
(e.g., pneumothorax, from 80.1 to 35.6 min), 
although it also noted that the maximum 
report turnaround time could increase 
without specific safeguards.51 In contrast to 

Figure 1. Conceptual model of diagnostic complementarity between radiologists and artificial intelligence 
(AI). Panel A illustrates that diagnostic performance [e.g., area under the receiver operating characteristic 
curve (AUC) or sensitivity] can be higher for the human–AI team than for either the radiologist or the AI 
system alone. Panel B represents the overlap between human and AI error sets; when errors only partially 
overlap, each can compensate for the other, leading to improved overall performance.

a b
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simulations, a real-world clinical deployment 
found that, for computed tomography pul-
monary angiography examinations positive 
for pulmonary embolism, AI reprioritization 
significantly shortened the mean report 
turnaround time, from 59.9 to 47.6 min.54 Fur-
thermore, based on qualitative field studies, 
radiologists envision that future AI systems 
could be configured to route cases by user 
expertise, for example, by directing studies 
with positive findings to senior radiologists 
while filtering normal studies for junior ra-
diologists to verify.39

During image interpretation, AI can func-
tion as an interactive reporting assistant by 
automating highly manual tasks.48 For in-
stance, AI can perform time-consuming mea-
surements or calculations.55,56 Additionally, AI 
can expedite the retrieval of historical exam-
inations and automatically compare changes 
over time, highlighting relevant progression 
or new developments for the radiologist’s at-
tention.57 Emerging vision–language models 
promise further assistance, enabling capa-
bilities such as draft report generation and 
automated summarization of patient im-
aging history, highlighting key events from 
prior imaging records.58,59 Early expert-rated 
vision–language model systems (e.g., Fla-
mingo-CXR) produced clinically acceptable 
draft reports under constrained conditions, 
although rigorous evaluation and guardrails 
remain essential.59

Successful integration requires config-
urable AI tools to accommodate the varied 
needs of different clinical sites, local resourc-
es, and user expertise.39,60-62 Interface design 
must prioritize utility and efficiency, ensur-
ing seamless workflow integration to mini-
mize cognitive disruption.58,63 Clinicians gen-
erally prefer AI to be deployed as tool-based 
interactions for specific, functional tasks 
(e.g., quantification or data retrieval) rather 
than as open-ended, generalized conversa-
tional agents.58

Maintaining clinical authority requires 
that final radiological supervision remain an 
indispensable component of all AI-support-
ed activities.11,41,64 This human oversight is 
imperative for managing medicolegal liabil-
ities and ensuring patient safety. Therefore, 
AI systems must be designed with explicit 
mechanisms for manual oversight and deci-
sion arbitration.41 For instance, in sophisticat-
ed prostate MRI protocols, AI may highlight 
suspicious lesions or provide risk scores for 
cancer detection; however, the human ra-
diologist must retain the ultimate authority 
to validate or override these AI predictions 

Figure 2. Oversimplified representative workflow architectures for human–artificial intelligence (AI) 
collaboration across diagnostic and screening tasks. Eight interaction models are shown, ranging from 
standard human reading to fully autonomous AI. The diagrams illustrate how AI output is incorporated as 
concurrent support, a second or additional reader, triage, or uncertainty-based delegation and how the 
need for human oversight changes as AI autonomy increases. These models primarily depict workflows for 
task-specific, narrow AI, such as detection and triage systems.
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based on contextual clinical information.65 
Similarly, in highly automated triage systems, 
although clear-cut cases may be filtered, all 
borderline or ambiguous examinations must 
be deferred to expert radiologists for final ar-
bitration.6,44,65

Furthermore, AI can be leveraged for in-
ternal quality assurance without imposing 
undue cognitive load. A practical example 
involves using natural language process-
ing to compare the radiologist’s transcribed 

report with image detection findings, trig-
gering an alert only when a discrepancy or 
missed finding is identified.39 This approach 
provides seamless quality control by engag-
ing the radiologist only when a potential er-
ror is detected, thereby avoiding workflow 
disruption in routine cases. However, the 
usefulness of such systems depends heavily 
on their performance, as excessive false pos-
itives or false negatives can undermine trust 
and disrupt workflow.

Table 4 summarizes the characteristic in-
teraction patterns, including their main ad-
vantages and risks, across commonly used 
human–AI collaboration configurations.

Table 2. Workflow-level taxonomy of human–AI collaboration in radiology, organized along the autonomy spectrum from human-only 
interpretation to conceptual autonomous systems

Workflow model Human role AI role Output Autonomy level

Standard of care Radiologist performs the full 
primary and final interpretation No AI involvement Radiologist-authored report 

without AI involvement Human only

Concurrent decision 
support

Radiologist performs the 
primary interpretation and 
integrates or ignores AI 
suggestions

Provides marks, scores, 
measurements, region proposals, or 
draft text during interpretation

Radiologist-authored report 
optionally informed by AI 
assistance

Low

Second reader and quality 
assurance

Radiologist performs the 
primary interpretation and 
reviews only AI-flagged 
discrepancies

Performs after-the-fact discrepancy 
checks, including image–report 
consistency

Radiologist-revised report 
incorporating AI-flagged 
discrepancies, when present

Low to moderate

AI as a supporting reader 
(screening)

Human reader 1 performs the 
primary interpretation; human 
reader 2 arbitrates discordant 
human–AI cases

Acts as a second reader only when 
concordant with human reader 1 
and suppresses discordant outputs

Human-determined screening 
outcome after resolving 
human–AI agreement or 
disagreement

Moderate

AI as an additional reader 
(screening)

Two human readers perform 
primary and secondary 
interpretations; an arbitrator 
reviews AI-flagged cases

Acts as a safety-net reader for 
negative-consensus cases and flags 
suspicious findings

Screening outcome enhanced 
by AI safety-net detection 
and human arbitration, when 
flagged

Moderate

AI triage and worklist 
prioritization

Radiologist performs the 
primary interpretation in an 
AI-prioritized order

Screens studies and assigns priority, 
alerts, or routes by expertise or 
urgency

Radiologist report issued with 
improved timeliness for high-
priority cases

Moderate to 
high

Uncertainty-aware 
delegation and high-
confidence filtering

Radiologist interprets only 
escalated cases and audits a 
sample of auto-finalized normal 
cases

Stratifies cases by uncertainty, auto-
finalizes normal cases, and escalates 
uncertain or positive cases

Combined output comprising 
AI-reported normal cases and 
radiologist-reported escalated 
cases

High

Standalone AI reporting
No radiologist involvement 
at the case level; oversight is 
limited to governance

Fully autonomous interpretation and 
reporting without case-level human 
input

AI-generated report without 
human interpretation 
(conceptual; not currently 
clinically viable)

Autonomous

AI: Artificial intelligence.

Table 3. Design principles for human–AI collaboration in radiology

Domain Design principle Practical implication for interaction

Task allocation Define explicit roles for humans and AI for 
each task

Specify whether AI acts as a triage aid, second reader, quantification tool, or 
reporting assistant and which responsibilities are left exclusively to human

Workflow placement Integrate AI at clearly defined points in the 
workflow

Decide when users first see AI output (e.g., after the initial read vs. upfront), and 
standardize this across readers

Mode of interaction Choose simple, task-focused interaction 
modes

Prefer focused outputs (marks, scores, and structured suggestions) over open-ended 
conversational use for routine diagnosis

Trust calibration Support appropriate, rather than maximal, 
reliance on AI

Use confidence estimates, performance summaries, and feedback mechanisms to 
align user trust with actual model reliability

Learning and 
feedback

Allow bidirectional learning between 
humans and AI

Enable users to flag problematic cases and use these for periodic model review and, 
where applicable, model updating

Training and 
supervision

Protect independent human reasoning, 
especially in trainees

Include AI-free reading periods and formal instruction on how to interpret, question, 
and, when necessary, override AI output

AI: Artificial intelligence.
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Cognitive and professional impacts

Integrating AI into clinical radiology fun-
damentally alters the cognitive processes, 
trust, and diagnostic reasoning of human 
practitioners. These complex dynamics in-
troduce specific risks related to human be-
havior, such as overreliance and interaction 
mismatches, for example, when workflow 
design or model context diverges from clin-
ical reality.

A major behavioral concern is the man-
agement of automation bias, which refers to 
the uncritical acceptance of automated out-
puts, even when those outputs are incorrect 
(Figure 4).66-68 This bias represents a consid-
erable risk, particularly for users with lower 
subject matter expertise, such as radiology 
trainees, who are more prone to accepting 
AI recommendations.66,67 For example, in 
a controlled mammography reader study, 
trainees’ diagnostic accuracy dropped from 
approximately 80% when the AI was correct 
to 20% when misled by incorrect AI output. 
The same study also found that when AI in-
correctly suggested downgrading a correct 
finding (an error of omission), all experience 
levels, including experts, were equally sus-
ceptible to this bias.67

Studies show that the accuracy of the 
AI tool is a key factor. High diagnostic ac-
curacy in an AI model is associated with 
improved radiologist performance and in-
creased susceptibility to accepting AI sug-
gestions.36 Conversely, flawed AI output 
can be detrimental. Randomized evidence 
shows that systematically biased AI predic-
tions significantly reduced clinician diag-

nostic accuracy by approximately 9.1–11.3 
percentage points compared with baseline 
performance.69 This negative impact persist-
ed even when explanations were provided; 
the study found that AI-generated explana-
tions did not mitigate the adverse effects of 
biased predictions. This aligns with separate 
findings that interpretability methods can 
be flawed, as saliency maps in medical imag-
ing may localize pathology poorly, with one 
study reporting localization utility, measured 

as the area under the precision–recall curve, 
as low as 0.024–0.16 for some methods on 
chest radiographs.70

The opposite challenge, algorithmic aver-
sion (mistrust) (Figure 4), can also impede 
successful integration.71 A lack of trust may 
arise from perceived inconsistencies in AI 
tools’ technical performance or concerns 
about frequent false positives or false neg-
atives, which impose an additional burden 
on radiologists who must double-check AI 

Figure 3. Human–artificial intelligence (AI) interaction across the radiology workflow. The figure illustrates 
how AI and radiologists can contribute complementary tasks from acquisition to teaching. At each workflow 
stage, AI provides technical or analytic functions (top row), radiologists perform contextual and clinical 
judgment tasks (middle row), and their combination yields specific collaboration modes.

Table 4. Key interaction characteristics of common human–AI collaboration configurations in radiology, summarizing core features, 
operational advantages, and associated risks

Interaction model Key interaction features Main advantages Main risks

AI-assisted triage and worklist 
prioritization

One-way interaction; AI output is 
typically seen before image review

Potentially shorter time to report for 
urgent findings; improved focus on 
high-risk cases

Risk of over-reliance on triage flags, 
particularly when AI confidence is not 
transparently communicated, and 
possible under-attention to low-priority 
studies

Concurrent decision support 
(marks and scores shown during 
reading)

Continuous visual interaction during 
reading; strong influence on search 
patterns

Potential increase in sensitivity; 
support for less experienced readers

Automation bias, anchoring on AI marks, 
and altered search behavior

Second reader and quality 
assurance mode

Sequential interaction; AI output is 
revealed after the initial judgment

Likely reduction in false negatives; 
explicit safety net with lower 
automation bias

Additional time for review and risk of 
alert fatigue if the false-positive rate is 
high

Quantification and structured 
reporting assistant

Task-focused interaction; users edit 
or overwrite AI outputs

Time savings for repetitive tasks; 
more consistent quantification and 
terminology

Cognitive offloading of basic skills, 
especially with prolonged, uncritical use, 
and potential propagation of systematic 
AI errors

Interactive teaching and 
feedback tools

Used in dedicated training sessions; 
not directly linked to the clinical 
workflow

Supports skill development and 
reflection on errors; may improve AI 
literacy

If uncalibrated, risk of conveying 
misleading confidence or incorrect 
“ground truth”

AI, artificial intelligence.
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interpretations.10 In a 2024 EuroAIM/EuSoMII 
survey, 47.2% of respondents anticipated 
an increased total reporting workload; oth-
er major barriers cited were costs (49.5%), 
legal issues (43.7%), and lack of validation 
(35.5%).12 This aversion may also be linked to 
ethical concerns regarding AI’s vulnerability 
to bias and discrimination.10,71-73 Research has 
demonstrated that algorithmic bias can lead 
to unequal diagnostic performance across 
patient subgroups, thereby undermining cli-
nician confidence. For example, a large study 
showed that deep learning chest radiograph 
models trained on heterogeneous hospital 
data systematically underdiagnosed disease 
in female and Black patients compared with 
other groups.74 In a large international sur-
vey of 1,041 radiologists and residents, 37% 
of respondents cited a “lack of trust in AI by 
stakeholders” as a hurdle to implementation; 
this view was independently and significant-
ly more often observed among those work-
ing outside Europe (adjusted odds ratio: 
1.77; 95% confidence interval: 1.24–2.53; P = 
0.002).75

These behaviors can be conceptualized as 
a spectrum of reliance on AI, ranging from al-
gorithmic aversion to automation bias, with 
optimal performance occurring at interme-
diate, calibrated reliance (Figure 5). It should 
also be noted that users may experience dif-
ferent biases over time when using AI tools 
in clinical practice. For example, an expert 
radiologist’s algorithmic aversion may give 
way to automation bias as familiarity and 
confidence in the AI medical device increase 
or as the user learns to rely excessively on 
model output while losing confidence in his 
or her own reading skills.

The widespread deployment of AI de-
tection tools may accelerate deskilling and 
hinder skill acquisition, particularly in train-
ing contexts.49,76 The introduction of tools 
designed to detect focal abnormalities, such 
as pulmonary nodules, intracranial hemor-
rhage, and pneumothorax, may unintention-
ally disrupt the training process required to 
acquire fundamental perceptual skills and 
efficient search patterns.49 Furthermore, 
reader studies have shown that incorrect AI 
prompts can modify diagnostic judgment.67 
For instance, when AI automatically triages 
studies containing emergent findings to the 
top of a worklist, the immediate alert de-
prives the trainee of the opportunity to con-
duct an initial blinded evaluation of the im-
aging.49 Beyond perceptual skills, AI systems 
that offer contextual diagnostic suggestions 
or provide automated scores for standard-
ized reporting systems could compromise 

mastery of foundational knowledge, such 
as learning complex differential diagnoses. 
If trainees become overly dependent on AI 
to identify findings, they may become more 
susceptible to automation bias, as studies 
show that inexperienced users are more vul-
nerable to following incorrect automated 
suggestions.67,77

AI integration introduces an additional 
layer of cognitive workload and digital fa-
tigue, contrary to expectations that it would 
uniformly reduce labor.63 A nationwide sur-
vey of 6,726 radiologists from 1,143 hospitals 
in China demonstrated a dose–response re-
lationship between the frequency of AI use 
for image interpretation and work-related 
emotional exhaustion and burnout.78,79 This 

unexpected burden is partly attributable to 
the effort required to review and dismiss fre-
quent false-positive detections, a problem 
already well recognized with mammography 
computer-aided detection systems and now 
echoed in newer AI tools.63,80 In a prospective 
study of 18,680 chest radiographs, AI use re-
duced overall reading time (13.3 s vs. 14.8 s) 
and clearly shortened reading times for stud-
ies without AI-detected abnormalities (10.8 s 
vs. 13.1 s). However, for cases with AI-detect-
ed abnormalities, reading times did not differ 
significantly (18.6 s vs. 18.4 s) and increased 
more steeply as abnormality scores rose.81 
Taken together, these findings show that the 
workload impact of AI in radiology is high-
ly context-dependent, being beneficial for 
some tasks, such as chest X-ray screening, but 

Figure 4. Illustration of automation bias and algorithmic aversion in radiology. The left panel shows 
automation bias, in which an artificial intelligence (AI)-generated pneumothorax flag anchors the 
radiologist’s interpretation, leading to confirmation of the AI output and omission of a contralateral 
abnormality. The right panel shows algorithmic aversion, in which an AI suggestion of a small pulmonary 
embolism is prematurely dismissed because of prior negative experiences or skepticism, resulting in failure 
to identify a true-positive finding. Both extremes of trust distort independent image assessment and 
propagate avoidable diagnostic error. PE, pulmonary embolism.

Figure 5. Spectrum of reliance on artificial intelligence (AI). The horizontal axis illustrates levels of reliance 
on AI, ranging from algorithmic aversion (systematic underuse) through appropriate reliance to automation 
bias (systematic overuse). The dashed curve indicates that error rates are expected to be higher at both 
extremes and lowest with appropriate reliance.
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potentially burden-increasing in high-com-
plexity settings or under conditions of high 
workload and low AI acceptance.

Survey data indicate that attitudes to-
ward AI often differ by age and experience, 
although the patterns vary. One Italian sur-
vey found a U-shaped relationship, in which 
the youngest (< 30 years) and oldest (> 60 
years) radiologists were the most optimistic, 
whereas a large international survey found 
that younger age was a positive predictor of 
a proactive attitude toward AI.11,13 Younger 
radiologists and residents frequently report 
feeling inadequately informed about AI. The 
survey of Italian radiologists found that 46% 
of younger members shared this sentiment.11 
A Singaporean survey found that a majority 
(64.8%) of residents and faculty described 
themselves as novices in their understanding 
of AI/ML and 59.2% of respondents felt that 
their residency programs had not adequate-
ly implemented AI or machine learning (ML) 
teaching, despite strong interest in the top-
ic.82,83 This perceived gap in AI literacy is con-
sidered a factor inhibiting adoption; surveys 
suggest that limited AI knowledge is associ-
ated with fear of replacement, whereas inter-
mediate to advanced knowledge correlates 
with a more positive attitude toward AI.11,13

Professionals generally recognize that AI 
will necessitate an expansion of their roles, 
as evidenced by a 2024 EuroAIM/EuSoMII 
survey of 572 European Society of Radiology 
(ESR) members, in which 98% agreed that 
radiology teams should participate in the 
development and validation of AI tools, and 
45% stated that radiologists should retain 
full responsibility for AI outputs influencing 
clinical decisions.12 However, skepticism re-
mains regarding the delegation of high-risk 
functions, such as prognostication or com-
plex treatment decisions, to AI. Surveys re-
peatedly show that radiologists favor AI as a 
second reader or workflow aid and insist that 
final image interpretation and clinical super-
vision remain their nondelegable responsi-
bility.11,13,75,83 Accordingly, several education 
and human–computer interaction studies 
have warned that if core interpretive and 
reporting tasks become heavily automated, 
AI may contribute to progressive deskilling 
of radiologists unless training and system 
design explicitly safeguard independent per-
ceptual and decision-making skills.84-86

Governance, ethics, and responsible imple-
mentation

The complex behavioral and cognitive 
challenges posed by AI necessitate strict 

systemic responses, robust governance, and 
continuous oversight to ensure safe and re-
sponsible adoption.73,87,88

A critical concern in scenarios involving AI 
assistance is medicolegal liability for errors 
arising from joint human–AI decisions.41,89-91 
There is currently no transfer of liability to AI 
systems as long as the radiologist or clinician 
makes the final decision.92-95 Globally, experts 
affirm that final assessment and supervision 
of AI results by the radiologist are essential 
for managing legal risks and ensuring patient 
safety.11,88,96-98 Regulators, including the US 
Food and Drug Administration (FDA), treat 
AI-based diagnostic tools as medical devic-
es whose potential harms include increased 
false-positive and false-negative rates and 
other incorrect outputs that can delay or 
misdirect care, leading to patient harm.41,99 
Therefore, institutional governance bodies 
must establish safeguards to prevent pa-
tient harm, especially when deploying high-
risk applications, such as screening tools for 
healthy populations or, in the future, models 
that might evolve toward treatment support 
roles.87,93 Institutional policies must also ad-
dress ethical considerations, such as patient 
consent and the potential misuse of data for 
other purposes.73,87,91,97

Effective AI implementation requires 
formal governance structures to guide the 
entire life cycle of clinical AI, encompassing 
evaluation, procurement, and ongoing sup-
port.28 Daye et al.41 describe radiology-led, 
enterprise-level, and hybrid AI governance 
committees that oversee the selection, im-
plementation, and continuous monitoring of 
imaging AI tools within large health systems. 
These governing bodies should be interdis-
ciplinary, integrating clinical, technical, and 
governance expertise, including ethics and 
regulatory perspectives, as recommended 
by radiology AI governance frameworks 
that emphasize multidisciplinary teams and 
shared decision-making.41,100 Importantly, for 
such shared decision-making to be meaning-
ful, governance models must also clearly de-
lineate professional accountability for AI-in-
formed clinical actions, as influence without 
responsibility risks undermining trust and 
patient safety.

Before any AI tool is deployed, it must 
undergo a rigorous assessment covering its 
clinical value, efficacy (benchmarked against 
average radiologist performance), technical 
readiness, and ethical implications.41,93,101-103 
Multiple radiology-specific evaluation frame-
works now formalize these dimensions, in-
cluding the methodological guide by Park et 

al.,103 the ECLAIR guidelines for commercial 
tools,104 and the RADAR deployment and as-
sessment rubric.105 Implementation should 
ideally follow a phased approach, beginning 
with shadow deployment, in which the AI 
runs in the background without influencing 
reports, followed by tightly scoped pilot de-
ployment before full rollout.105,106

Continuous post-market surveillance and 
monitoring are crucial for detecting perfor-
mance degradation or drift after implemen-
tation, which can occur due to changes in 
patient populations, disease prevalence, ac-
quisition protocols, or data pipelines.71,107-111 
A robust monitoring plan must track estab-
lished metrics and include mechanisms for 
early intervention if performance declines, 
as emphasized in radiology-specific monitor-
ing frameworks and quality assurance pro-
posals.105,112,113 Recently, the ESR published 
consensus recommendations clarifying that 
although legal responsibility for post-mar-
ket surveillance lies with software providers, 
radiologists (acting as clinical deployers) 
are expected to actively contribute to the 
ongoing monitoring of AI safety and perfor-
mance in routine practice, including output 
oversight, incident reporting, and structured 
clinical feedback.114 For algorithms designed 
for continuous learning, adherence to reg-
ulatory guidelines—including a Predeter-
mined Change Control Plan for anticipated 
updates—is critical, as reflected in recent 
FDA guidance for AI/ML-enabled medical 
devices and in radiology AI governance 
statements.28,29,115,116 Collaboration among 
radiologists, AI scientists, and information 
technology staff is necessary for continuous 
quality control, as real-world implementa-
tion studies consistently show that sustained 
AI performance depends on this joint clini-
cal–technical oversight.41,106,112

To cultivate appropriate trust and counter 
bias, AI tools must provide transparency.117-119 
Explainable AI systems aim to offer interpre-
tive assistance; however, current user-level 
explanation tools, such as saliency maps 
(heat maps), have repeatedly been shown 
to be unstable and only weakly aligned with 
radiologists’ localization needs, making them 
insufficient as the primary interface for hu-
man–AI interaction.70,120-122 Poorly articulated 
or non-sensical explanations can erode trust, 
whereas clear explanations aligned with es-
tablished clinical reasoning may increase 
trust.123-127 Similarly, unreliable explanations 
may promote algorithmic aversion, whereas 
overly persuasive ones may increase auto-
mation bias, illustrating how explainability, 
trust, and user behavior are closely intercon-
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nected. Beyond post hoc explanations, clin-
ically useful AI systems should expose cali-
brated confidence or uncertainty estimates 
so that radiologists can preferentially scruti-
nize low-confidence cases and more readily 
detect potential AI errors.128-131

AI literacy, defined as the competency 
to critically evaluate and collaborate with AI 
systems, remains a major barrier to safe in-
tegration and is also mandatory for deploy-
ers within the European Union under the AI 
Act.10,132,133 To address this, education must 
begin at the undergraduate level, as radiolo-
gists and radiation technologists—including 
residents and bachelor-level graduates—
express a strong desire to enhance their AI 
and ML knowledge for practice improve-
ment.10,83,134 Educational frameworks should 
be stratified by role (e.g., foundational, clin-
ical user, and expert) to enable professionals 
to understand algorithmic principles and 
safety concerns appropriate to their scope 
of practice.135 Several recent initiatives exem-
plify this structured approach. For instance, 
a multi-society collaboration (AAPM, ACR, 
RSNA, and SIIM) has released a comprehen-
sive syllabus detailing competencies across 
different personas, from general users to pur-
chasers and developers.135 Similarly, practical 
implementation frameworks have been pro-
posed, including a five-step model for inte-
grating AI curricula into residency programs 
and condensed workshops focused on foun-
dational literacy rather than technical profi-
ciency, which have been shown to consider-
ably improve resident confidence.136,137

Finally, involving radiologists and radia-
tion technologists in co-design efforts is vital 
to ensure that AI solutions address genuine 
clinical needs and integrate seamlessly with 
existing workflows.10,138 This collaboration 
aims to foster a symbiotic relationship with 
the technology, ensuring that standardized 
processes align machine-recommended pro-
cedures with professional judgment. 

Emerging technologies and future direc-
tions

Recent advances in foundation models, 
particularly vision–language models, have 
extended the boundaries of human–AI inter-
action in radiology.139-141 These systems com-
bine image understanding and language 
generation to enable functions such as re-
port drafting, segmentation, classification, 
image retrieval, and longitudinal case sum-
marization.59,141-146 However, current vision–
language models trained on general data 
remain limited in domain-specific reason-

ing and often underperform in specialized 
perception tasks.144,145,147,148 Therefore, their 
immediate utility is expected in constrained, 
task-specific roles—such as structured sum-
marization, quantitative measurement, and 
retrieval—rather than open-ended conver-
sational support.39,58 Qualitative studies sug-
gest that radiologists and clinicians tend to 
prefer workflow tools (such as tool buttons 
or alerts) embedded within their reporting 
environment over general free-text conver-
sational assistants, citing time constraints 
and a lack of trust in open-ended chat sys-
tems.58

Physician-in-the-loop active learning, 
which facilitates interactive and continu-
ous model improvement (Figure 6), aims to 
enhance physician–AI interaction and col-
laboration.29 These frameworks allow radiol-
ogists to iteratively refine models through 
feedback collected during routine practice, 
with updates performed under predefined 
change control protocols and independent 
validation. Such designs support regulatory 
compliance and improve model adaptabili-
ty and generalizability, although challenges 
such as annotation variability must be care-
fully managed to preserve data integrity.

To further strengthen human–AI collab-
oration and trust, models should incorpo-
rate both uncertainty quantification and 
transparent reasoning mechanisms.119,149-151 

Uncertainty-aware systems can guide role 
arbitration by allowing AI to handle clear, 
low-ambiguity cases while deferring com-
plex or equivocal findings to expert re-
view.149-151 For explainability to be effective, it 
must provide human-centered, decision-rel-
evant feedback; this includes not only visu-
alizations linking predictions to evidential 
image regions but also calibrated measures 
of model confidence and uncertainty.119,149

The near-term priority is not the devel-
opment of larger models but the implemen-
tation of effective human–AI collaboration 
through trustworthy, auditable, and work-
flow-embedded systems that demonstrably 
enhance collective diagnostic accuracy, ef-
ficiency, and safety. Future research should 
focus on evaluating team performance met-
rics, workload implications, and long-term 
cognitive effects in prospective, multi-insti-
tutional settings. 

Final remarks

Radiology is no longer debating whether 
AI will replace radiologists but rather how to 
structure accountable and effective human–
AI partnerships. The evidence reviewed here 
demonstrates that performance gains are 
fragile when workflow integration, cogni-
tive effects, and governance are neglected. 
Robust collaboration requires physician-in-
the-loop design, calibrated trust, continuous 

Figure 6. Physician-in-the-loop active learning design. The figure illustrates a cyclical process in which 
artificial intelligence (AI) is used during routine clinical reporting (step 1). Radiologists review and correct 
AI outputs as part of normal reporting, but only a subset of cases (e.g., uncertain or discordant results) is 
explicitly flagged for feedback (step 2). These flagged cases are stored in a feedback set (step 3), which 
informs periodic model review, recalibration, or retraining, where permitted (step 4), followed by re-
deployment and monitoring for drift and safety (step 5). Unlike simple human-in-the-loop oversight at 
the case level, this loop emphasizes how targeted radiologist input continuously shapes the behavior of 
deployed AI systems over time while limiting additional workload.
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monitoring, and explicit protection of train-
ing pathways and professional autonomy. 
Future work should prioritize prospective, 
multi-institutional studies of team perfor-
mance, workload, equity, and long-term 
learning outcomes rather than isolated accu-
racy metrics. Under these conditions, AI can 
evolve from an opportunistic add-on into 
core clinical infrastructure that strengthens 
the safety and reliability of imaging care. 
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