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I N V I T E D  R E V I E W

ABSTRACT
The liver is a common location for both primary and secondary cancers of the abdomen. Radiol-
ogists become familiar with the typical imaging features of common benign and malignant liver 
tumors; however, many types of liver tumors are encountered infrequently. Due to the rarity of 
these lesions, their typical imaging patterns may not be easily recognized, meaning their underly-
ing pathologic features may not be discovered or suggested until an invasive biopsy is performed. 
In this review article, we discuss multiple hepatic neoplasms that are both unusual and rare. Some 
have typical imaging patterns, whereas others are non-specific and can only be included in the dif-
ferential diagnosis. The clinical history and serologic findings are often critical in suggesting these 
entities; therefore, these are also discussed to familiarize the radiologist with the appropriate clini-
cal setting of each. The article includes an image-rich description of each entity with accompanying 
figures describing the ultrasonography, computed tomography, and magnetic resonance imaging 
features of each disease process. Novel therapies and prognosis of several of the diseases are also 
included in the discussion.

KEYWORDS
Clinical context, differential diagnosis, hepatic neoplasms, imaging features, pathologic correlation

Radiologists who are unfamiliar with the many etiologies of unusual hepatic tumors may 
misinterpret these lesions. Some present with unique imaging features, whereas oth-
ers present in a similar fashion to common neoplasms. This article will serve as a useful 

reference for both general and subspecialized radiologists when encountering such lesions.

Primary hepatic neuroendocrine tumors 

Intrabdominal neuroendocrine tumors (NET) typically originate from the gastrointestinal 
tract, specifically the appendix, ileum, and rectum. The liver is a common site for NET metas-
tases; however, primary hepatic neuroendocrine tumors (PHNETs) are extremely rare and are 
believed to arise either from ectopic pancreatic cells or stem cells in the liver. As PHNETs are 
usually slow growing, they are typically discovered incidentally.1 The most common ages of 
presentation are 40–50 years, and the tumor tends to be hormonally inactive, with non-spe-
cific clinical symptoms, ranging from asymptomatic to abdominal pain.2 If hormonal symp-
toms occur, the patient typically demonstrates carcinoid syndrome or Cushing syndrome.

On imaging, PHNET presents as a large mixed cystic and solid lesion with surrounding sat-
ellite nodules. The solid component often demonstrates a hypervascular enhancement on 
the arterial phase, more so in the periphery, with delayed enhancement centrally (Figure 1). 
On magnetic resonance imaging (MRI), there is hyperintense T2 weighted signal and marked 
restriction on diffusion-weighted imaging (DWI).3 The tumor can produce tumor thrombus,1 
and can be confused with other arterially enhancing lesions, such as hepatocellular carcino-
mas (HCCs). However, PHNETs do not tend to occur in patients with cirrhosis or chronic liver 
disease.

You may cite this article as: Stanietzky N, Salem AE, Elsayes KM, et al. Unusual liver tumors: spectrum of imaging findings with pathologic correlation. Diagn 
Interv Radiol. 2025;31(2):58-67.
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Depending on the tumor grade differen-
tiation and Ki-67 proliferation index, these 
lesions may demonstrate uptake on fluoro-
deoxyglucose (18F-FDG)-positron emission 
tomography (PET)/computed tomography 
(CT). Low-grade tumors are typically hy-
pometabolic, whereas grade 2 tumors can 
be hypo- or hypermetabolic. In contrast, 
grade 3, poorly differentiated neuroendo-
crine neoplasms are typically 18F-FDG-PET/
CT avid. Gallium-68-DOTA-somatostatin an-
alogue-PET/CT and Indium-111 octreotide 
scanning, which are specific receptor imag-
ing techniques, demonstrate a higher pos-
itive imaging rate for grade 1 and grade 2 
tumors.4

No global consensus on the treatment of 
these lesions exists. Surgical resection is the 
treatment of choice, with a reported 10-year 
survival rate of 68%.1,4 For patients demon-
strating recurrence or who are not eligible 
for surgery, transcatheter chemoemboliza-
tion can be used, with a 5-year survival rate 
of 74%–78%.1 Other treatment options in-
clude yttrium-90- and lutetium-177-labelled 
peptides. There is limited data on the effect 
of chemotherapy on the treatment and prog-
nosis of PHNETs.1

Extrapulmonary small cell carcinoma 

The lung is the most common site of small 
cell carcinoma (SCC). Extrapulmonary SCC 
(EPSCC) usually occurs in the gastrointesti-
nal tract and accounts for only 2.5%–5.0% of 
SCC,2 with around 1,000 cases diagnosed in 
the United States per year. Both EPSCC and 
small cell lung cancer (SCLC) share some 
histopathologic features with NETs; EPSCC 
demonstrates a slight male predominance 
and presents at a mean age of 64, approxi-
mately 5–10 years earlier than SCC of the 
lung. The proportion of patients with EPSCC 
who smoke is lower than in SCC of the lung.5 

These extrapulmonary tumors typically ap-
pear as a large, heterogeneous mass with 
non-specific imaging findings, and are in-
distinguishable from other common hepatic 

neoplasms (Figure 2).6 Once hepatic EPSCC 
is diagnosed through biopsy, an extensive 
diagnostic workup including chest CT, PET/
CT, and bronchoscopy is critical to exclude an 
extrahepatic primary site. As the liver is also 
the most common site of metastatic disease 
in other forms of EPSCC, determining the site 
of primary disease can be challenging when 
more than one organ is involved.5

The management of EPSCC is extrapo-
lated from the treatment of SCLC due to the 
similar histologic features. However, this ap-
proach has limited evidence-based data.5 As 
with other NETs, the Ki-67 proliferation index 
is used to determine the grade. Unlike many 
other neuroendocrine neoplasms, EPSCC 
does not show a direct correlation between 
grade and aggressiveness; in fact, one study 
showed a higher number of metastases in tu-
mors with a lower Ki-67 index.5 The response 
rate to chemotherapy is higher than that of 
SCLC. Of all the types of EPSCC, those origi-
nating in the gastrointestinal tract have the 
poorest 3-year survival rate (7% vs. an overall 
rate of 28%).6

Undifferentiated embryonal sarcoma

Undifferentiated embryonal sarcoma 
(UES) is a rare, highly aggressive malignant 
tumor of mesenchymal origin most com-
monly affecting children aged 6–10, with a 
slight male predominance.7,8 Although this 
tumor is rare, it is the third most common 
primary hepatic tumor in children after 
hepatoblastoma and HCC. This tumor is typi-
cally asymptomatic in children and can pres-
ent with abdominal pain and fever in adults. 
Rarely, patients may present with an acute 
abdomen due to tumor rupture. In contrast 
to other pediatric liver tumors, such as hepa-
toblastoma and HCC, UES usually presents 
with normal alpha-fetoprotein levels, where-
as hepatoblastoma presents with elevated 
alpha-fetoprotein levels in 95% of cases. The 
most common sites of UES metastasis are the 
lung, pleura, and peritoneum.8

On imaging, the UES tumor has a predi-
lection for the right hepatic lobe, is large (ap-
prox. 10–29 cm), and is predominantly cystic 
in appearance due to the high water content 
of its myxoid stroma. Post-contrast imaging 
shows progressive delayed enhancement of 

Main points

• Unusual hepatic tumors are infrequently 
seen and it is therefore important for ra-
diologists to be familiar with their imaging 
findings.

• While the imaging findings of many of these 
unusual tumors are non-specific, familiarity 
with these disease entities allows for their 
inclusion in the differential diagnosis.

• The clinical features of these entities are also 
described to aid in the differential diagnosis.

Figure 1. Primary hepatic neuroendocrine tumor. Axial contrast-enhanced computed tomography images 
of the liver during late arterial (a), portal venous (b), and delayed (c) phases of contrast enhancement show a 
round, heterogeneously enhancing primary hepatic neuroendocrine tumor replacing the lateral segments 
of the left lobe of the liver (arrows). The mass demonstrates increased enhancement during the arterial 
phase (particularly peripherally), washout of contrast material during the portal phase, and increased 
enhancement on the delayed phase as compared with the surrounding liver parenchyma. 

a b

c
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a thick peripheral rim, which corresponds to 
a fibrous pseudo capsule.8 CT demonstrates 
a fluid attenuating mass with thick peripher-
al rim of soft tissue. Calcifications are not typ-
ically present. Obtaining a delayed phase can 
aid in making an accurate diagnosis since de-
layed enhancement would not be seen in a 
simple hepatic cyst.7

Moreover, MRI shows a predominantly 
cystic-appearing mass with similar signal in-
tensity to cerebrospinal fluid and a thick rim 
with low signal and delayed enhancement 
on both T1- and T2-weighted imaging, corre-
sponding to the fibrous pseudocapsule (Fig-
ure 3). The tumor may contain focal areas of 
hyperintense signal on T1-weighted images, 
correlating to areas of intratumoral hemor-
rhage.8 

Ultrasonography typically shows a solid 
isoechoic to hyperechoic mass relative to 
the background liver with varying degrees 
of anechoic regions, which correspond to 
internal necrosis and cystic degeneration.8 
A cystic-appearing mass on CT and MRI that 
appears solid on ultrasonography favors the 
diagnosis of UES.

The differential diagnosis includes mes-
enchymal hamartoma of the liver, which 
can be difficult to distinguish from UES on 
pathology and imaging. The age of presen-
tation can help guide the diagnosis, as UES 
is rare in children under 5 years, whereas 
mesenchymal hamartoma of the liver typi-
cally presents by 2 years. Due to its predom-
inantly cystic appearance on cross-sectional 
imaging, UES can easily be misdiagnosed as 
a hydatid cyst or abscess. Thorough clinical 

workup to look for peripheral eosinophilia 
seen with hydatid cysts and signs of infec-
tion seen with abscesses can aid in proper 
diagnosis.8 Treatment consists of multiagent 
chemotherapy followed by surgery in cases 
amenable to resection.7

Angiomyolipoma 

Hepatic angiomyolipomas (AMLs) are 
rare, benign, mesenchymal tumors that con-
sist of blood vessels, smooth muscle, and fat 
elements, and are more frequent in women 
and non-cirrhotic livers; AMLs more com-
monly occur in the kidneys and rarely involve 
the liver. An AML is associated with tuberous 
sclerosis in 20% of renal cases but only 6% 
of hepatic cases.9 In most cases, patients 
are asymptomatic, and their hepatic AML 
is discovered incidentally. The imaging ap-
pearance varies depending on the degree of 
fat composition. The fat content is variable, 
ranging from 90% to barely detectable.10 

Other hepatic lesions can also contain fat, 
such as hepatic adenoma, HCC and, rarely, 
focal nodular hyperplasia.10 Definitive diag-
nosis is based on pathologic evaluation of 
the smooth muscle component and positive 
staining for homatropine methyl bromide-45 
and smooth muscle markers.11

On ultrasonography, hepatic AML ap-
pears highly echogenic and is indistinguish-
able from hemangioma (Figure 4). For lip-
id-rich AML, MRI evaluation demonstrates 
hyperintense signal on T1-weighted images 
with signal loss on fat suppression sequenc-
es, consistent with macroscopic fat. Distin-
guishing hepatic AML from HCC through im-
aging can be challenging. Some helpful AML 
features include isointensity on the portal 
venous phase, early draining veins, and intra-
tumoral vessels. In addition, HCC frequently 
demonstrates restricted diffusion and a tu-
mor capsule.10 A small percentage (4%) of 
the epithelioid subtype of hepatic AML can 
demonstrate malignant behavior with local 
invasion, recurrence after resection, and me-
tastasis.11 

Angiosarcoma

Hepatic angiosarcoma is a malignant tu-
mor that is extremely rare overall but is the 
most common hepatic mesenchymal tumor 
and has an extremely poor prognosis. It is 
more commonly seen in elderly men, and 
approximately one-fourth of cases are as-
sociated with exposure to thorium dioxide 
(Thorotrast) and vinyl chloride. 

Clinically, patients typically present with 
hepatomegaly and other non-specific symp-

Figure 2. Extrapulmonary small cell carcinoma. Axial T2-weighted magnetic resonance imaging (MRI) 
with fat suppression (a) and pre-contrast (b) and dynamic post-gadolinium T1-weighted MRI with fat 
suppression in the arterial (c) and portal venous (d) phases show an extrapulmonary small cell carcinoma 
of the left hepatic lobe (white arrows) demonstrating high T2 signal intensity, low T1 signal intensity, and 
intense peripheral enhancement and poor central enhancement, with invasion of the left portal vein (short 
white arrow).

Figure 3. Undifferentiated embryonal sarcoma. Axial contrast-enhanced computed tomography (a) 
demonstrates a large predominantly cystic mass involving most of the right and part of the left hepatic lobe. 
Axial T2-weighted imaging (b) shows high signal intensity of the tumor, giving a cystic appearance. Axial 
dynamic gadolinium-enhanced T1-weighted imaging (c-e) show gradual contrast accumulation, revealing 
the solid nature of the tumor. This was pathologically proven to be embryonal sarcoma with possible 
cartilaginous differentiation. 

a

a
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toms, such as abdominal pain, weight loss, 
and fatigue. The median survival is poor at 
just 6 months.12 Large angiosarcomas can 
cause hematologic abnormalities, such as 
disseminated intravascular coagulation, 
thrombocytopenia, and microangiopathic 
hemolytic anemia. Metastasis is common at 
initial diagnosis, most commonly involving 
the spleen and lungs. Approximately 15%–
27% of patients may present with acute ab-
dominal pain and anemia due to tumor rup-
ture and hemoperitoneum.8 It is critical to be 
aware of potential massive hemorrhage as a 
complication of biopsy.

The tumor morphology of hepatic angio-
sarcoma can vary in appearance on imaging, 
showing multiple nodules/masses, a large 
dominant mass, or a diffuse infiltrative pat-
tern (Figure 5). Intratumoral hemorrhage and 
necrosis are often present. On non-contrast 
CT, the tumor is hypoattenuating compared 
with normal background liver, with internal 
foci of hyperattenuation corresponding to 
hemorrhage. Contrast-enhanced CT shows 
intense peripheral nodular enhancement 
and can resemble a cavernous hemangi-
oma but will not follow the blood pool on 
all phases and will generally not feature the 
true peripheral nodular discontinuous en-
hancement that is common in a cavernous 
hemangioma. More frequently, the tumor 
will appear hypodense on both arterial and 
portal venous phases with foci of early heter-
ogenous enhancement, occasionally with a 
central or ring pattern, but to a lesser degree 
than the aorta. On delayed phases, the tu-
mor shows persistent enhancement, but the 
complete centripetal fill-in seen in hemangi-
omas is absent. 

On MRI, the tumor is predominantly hy-
pointense on T1-weighted images with in-
ternal foci of hyperintensity corresponding 
to intratumoral hemorrhage. On T2-weight-
ed images, the tumor is generally hetero-
geneously hyperintense compared with 
background liver and may contain septa or 
fluid–fluid levels related to hemorrhage.8,13 
Metastasis is common, affecting up to 60% 
of patients, and most commonly involves the 
lungs and spleen.8 It is critical to assess the 
dependent areas of the abdomen and pelvis 
to check for hemoperitoneum in cases of tu-
mor rupture. The treatment of these lesions 
includes surveillance or surgical resection 
and liver transplant in unresectable cases.13

Epithelioid hemangioendothelioma 

Hepatic epithelioid hemangioendothe-
lioma (HEHE) is an extremely rare malig-

nant vascular tumor that typically presents 
in individuals in their 40s, more commonly 
in women, and the typical presentation in-
cludes abdominal pain, jaundice, and hepa-
tosplenomegaly.14 Involvement of other or-
gans has been observed in 36.6% of patients, 
most often affecting lungs, regional lymph 
nodes, and peritoneum, with bones frequent-
ly affected.15 A HEHE can mimic other tumors, 

most commonly cholangiocarcinoma, HCC, 
metastatic carcinoma, and angiosarcoma. 
Definitive diagnosis requires pathologic as-
sessment, which shows endothelial cells, 
identifiable by positive staining with antibod-
ies against factor VIII, CD31, and CD34.16

Imaging features of HEHE demonstrate 
multiple hypoattenuating nodules on 

Figure 5. Angiosarcoma. Axial contrast-enhanced computed tomography (CT) (a), axial T2-weighted 
magnetic resonance imaging (MRI) (b), axial T1-weighted MRI (c), and dynamic post-gadolinium T1-weighted 
MRI with fat suppression (d-f) show multifocal liver angiosarcomas (long arrows). The masses demonstrate 
low attenuation relative to the liver on contrast-enhanced CT, high T2 signal intensity, low T1 signal intensity, 
and progressive enhancement following contrast administration. Early arterial enhancement is irregular 
and more central than in hemangiomas. High signal intensity within the lesion on T1-weighted imaging is 
due to hemorrhage. The T2 signal intensity is more heterogeneous than seen in hemangiomas.

Figure 4. Angiomyolipoma. Transabdominal ultrasonography (a) shows a round echogenic mass (white 
arrow). Axial contrast-enhanced CT (b) shows a round, peripherally enhancing mass with poor central 
enhancement. Axial T1-weighted in-phase (c) and opposed-phase (d), axial T2-weighted (e), and post-
gadolinium T1-weighted magnetic resonance images with fat suppression (f) show a round liver mass 
demonstrating loss of signal on opposed-phase images, high signal intensity on T2-weighted images, and 
rim enhancement following contrast administration. 
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non-contrast CT, which may or may not 
have calcifications. This tumor is most com-
monly subcapsular and can cause capsular 
retraction. Depending on the size of the le-
sion, these neoplasms can exhibit different 
patterns of contrast enhancement. Small 
lesions tend to demonstrate mild homoge-
neous enhancement; medium-size lesions 
can demonstrate ring enhancement, usual-
ly due to central necrosis; and large lesions 
demonstrate heterogeneous delayed en-
hancement.17 Also helpful in the diagnosis 
are a “halo” sign and a “lollipop” sign, which 
show a branch of a hepatic vein draining the 
tumor.18 Tumor thrombi may be present in 
the inferior vena cava.19 Multiple lesions are 
more likely to occur in HEHE than other, more 
common hepatic tumors such as HCC, intra-
hepatic cholangiocarcinoma, and hepatic 
metastases (Figure 6).15 However, as HEHE is 
a rare entity, multifocal liver masses are still 
more likely to represent these more common 
etiologies.

On MRI, HEHE tumors are typically T1 
hypointense, heterogeneously T2 hyper-
intense, and diffusion restricting.20 Ring 
enhancement is observed following intra-
venous contrast administration.21 Relatively 
specific MRI features of HEHE are capsular 
retraction, lollipop sign, and “target” sign on 
both T2-weighted and portal phase imaging 
(Figure 7).20

On analysis with contrast-enhanced ul-
trasonography, HEHE demonstrates slow-
er enhancement and more rapid washout 
time than more common hepatic tumors.22 
Moreover, HEHE can easily be misdiagnosed 
as hepatic metastases on ultrasonography 
given the common presentation of multiplic-
ity and hypoechoic appearance.23 Therefore, 
cross-sectional imaging is key for further 
evaluation.

Surgery is the treatment of choice for a 
confirmed case of unifocal HEHE and should 
be performed in centers with sarcoma sur-
gery experience. There are no definitive 
guidelines for treating multifocal HEHE or 
metastatic EHE, and these cases are treated 
with a combination of chemotherapy, radia-
tion therapy, surgery, and liver transplant.24

Hepatic schwannoma 

Schwannomas (also called neurilemmo-
mas) are benign, slow-growing nerve sheath 
tumors that typically occur in the head, 
neck, and upper extremities. These lesions 
can occur in all ages but are most common 
in women aged 20–50. Liver involvement of 
schwannomas is exceedingly uncommon, 

and when it occurs, it most often presents in 
patients with neurofibromatosis type 1 [50% 
of cases (25)] or following radiation. Hepatic 
schwannomas are believed to originate from 
nerve fibers that themselves originate from 

the plexus at the hepatic hilum. These fibers 
then branch out into the connective tissue 
along portal arteries and veins.25

On imaging, hepatic schwannomas 
demonstrate T1 hypointensity and T2 hy-

Figure 6. Epithelioid hemangioendothelioma, multiple. Axial T1-weighted (a) and axial T2-weighted (b) 
images and axial post-gadolinium T1-weighted images with fat suppression (c, d) show multiple liver 
lesions (arrows). The lesions demonstrate slightly high T2 signal intensity, low T1 signal intensity, and ring-
like enhancement following contrast administration. 

Figure 7. Epithelioid hemangioendothelioma, single. Axial T1-weighted imaging (a), axial T2-weighted 
imaging with fat suppression (b), axial diffusion-weighted imaging (c), and dynamic post-gadolinium T1-
weighted imaging with fat suppression (d-f) show a subcapsular right lobe lesion (arrows) with capsular 
retraction. The mass demonstrates high T2 signal intensity, low T1 signal intensity, diffusion restriction, and 
progressive ring-like enhancement following contrast administration.
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perintensity and have peripheral enhance-
ment with central areas of patchy irregular 
enhancement on post-contrast imaging 
(Figure 8).26 Rarely, these tumors can present 
with a multicystic appearance, with or with-
out hemorrhage; this is more likely if the tu-
mor is large.25

Schwannoma of the biliary tract can re-
semble cholangiocarcinoma, and patients 
may present with jaundice and abdominal 
pain, a situation that can lead to radiologic 
misdiagnosis and overtreatment of patients 
with these tumors.27 Given the concern of 
biliary obstruction in certain cases, surgical 
resection is the preferred and curative treat-
ment.28

Multiple myeloma and solitary plasmacy-
toma

Multiple myeloma is a malignancy of clon-
al plasma cell proliferation and is the second 
most common hematologic malignancy. Al-
though plasma cell proliferation generally 
occurs inside the bone marrow, extramed-
ullary involvement can also be observed. 
Extramedullary multiple myeloma (EMM) has 
a reported incidence of 7%–18% at presen-
tation and 6%–20% during disease progres-
sion.29 Liver involvement can be seen in up 
to 34% of patients with EMM. These patients 
can present with hepatomegaly, jaundice, as-
cites, and acute liver failure, and tend to have 
a poor prognosis.29 Imaging features are vari-
able, as EMM can present with a focal mass, 
multifocal lesions, or diffuse hepatomegaly. 
On ultrasonography, EMM lesions are usual-
ly hypoechoic (Figure 9). On CT, they appear 
hypoattenuating with mild enhancement, 
while they may present with low or high sig-
nal intensity in T1-weighted images and with 
a high T2 signal with mild enhancement. 
On FDG-PET/CT, EMM demonstrates moder-
ate to intense FDG uptake.30 

Solitary extramedullary plasmacytoma  is 
a solitary mass of abnormal plasma cells in 
the absence of systemic myeloma. Hepatic 
solitary plasmacytoma is rare, and the im-
aging findings are variable. On FDG-PET/CT, 
the lesions are hypermetabolic. Patients with 
solitary plasmacytoma of the liver have a 
better prognosis than patients with systemic 
myeloma such as EMM.31 Treatment includes 
autologous stem cell transplant and chemo-
therapy.

Hepatic lymphoma

Primary hepatic lymphoma (PHL) is a an 
extremely uncommon variant of non-Hod-
gkin lymphoma (NHL), accounting for 

Figure 8. Schwannoma. Axial T2-weighted imaging with fat suppression (a) and dynamic post-gadolinium 
T1-weighted imaging with fat suppression (b-e) show a right hepatic lobe mass (arrows). The mass 
demonstrates high T2 signal intensity, low T1 signal intensity, and progressive enhancement following 
contrast administration.

Figure 9. Multiple myeloma. Transabdominal ultrasonography (a) shows multiple hyperechoic liver lesions 
surrounded by a zone of low echogenicity resulting in target appearance. Axial T2-weighted imaging 
(b), axial diffusion-weighted imaging (DWI) (c), axial T1-weighted imaging (d), and post-gadolinium T1-
weighted imaging with fat suppression during the arterial (e) and delayed (f) phases show numerous liver 
lesions demonstrating high T2 and low T1 signal intensity, with diffusion restriction on DWI. The lesions 
show intense enhancement in the arterial phase and are not visible in the delayed phase of contrast 
enhancement. A fluorodeoxyglucose-positron emission tomography/computed tomography scan (g, h) of 
a case of extramedullary multiple myeloma shows uptake (white and black arrows).
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0.016% of all NHL. PHL is confined to the liver 
and draining nodes, including the perihepat-
ic and peripancreatic region. Unlike dissemi-
nated NHL with liver involvement, PHL shows 
no evidence of involvement of other visceral 
organs, distant lymph nodes, or bone mar-
row for at least 6 months after the onset of 
hepatic disease; PHL occurs more common-
ly in men and usually presents in patients 
in their mid-50s (range: 5–87). Patients may 
present with abdominal pain, constitutional 
symptoms, and B symptoms, such as fever 
and weight loss.32 

The most common presentation of PHL is 
a solitary mass, while it can also present as 
multiple masses, and less commonly with 
diffuse hepatic involvement and a periportal 
pattern of distribution. On ultrasonography, 
these lesions are hypoechoic compared with 
normal liver parenchyma. On CT, the nodules 
are hypoattenuating with lower enhance-
ment than the surrounding liver. On MRI, 
the nodules tend to be hypo- or isointense 
on T1-weighted images and hyperintense 
on T2-weighted images. Diffusion-weighted 
MRI is an important component of the imag-
ing protocol due to the highly cellular nature 
of lymphoma, typically resulting in restricted 
diffusion in the diffusion-weighted sequenc-
es (Figure 10). The PET/CT technique is also 
helpful in diagnosis, and as with other types 
of lymphoma, hepatic lymphoma is typically 
extremely FDG avid. 

A distinctive feature is that PHL tumoral 
masses have an insinuative growth behavior, 
encasing (not occluding) the vascular struc-
tures and bile ducts (Figure 11). Nonetheless, 
PHL patients are frequently misdiagnosed 
as having a primary liver tumor or metastat-
ic cancer, and a definitive diagnosis can be 
achieved through histopathologic examina-
tion. Although PHL is an aggressive disease, it 
is resectable and responsive to chemotherapy 
and radiotherapy. Therefore, it should be con-
sidered in the differential diagnosis for patients 
presenting with mass lesions in the liver.33,34

Post-transplant lymphoproliferative disor-
der 

Post-transplant lymphoproliferative disor-
der (PTLD) ranks as the second most common 
malignancy arising as a complication of solid 
organ transplant, following non-melanoma-
tous skin cancer.35 It is a disorder related to 
abnormal lymph node proliferation and en-
compasses a spectrum of disease processes 
ranging from benign lymphoid hyperplasia 
to high-grade malignant lymphomas.36 

Figure 10. Hepatic lymphoma. Axial T2-weighted imaging (a, b), diffusion-weighted b800 imaging (c), and 
post-gadolinium T1-weighted imaging with fat suppression during the arterial (d) and delayed (e) phases. 
There is a well-circumscribed left lobe mass (black arrows) showing heterogeneous increased signal intensity 
on T2-weighted imaging, diffusion restriction, and poor enhancement following gadolinium administration. 
The adjacent left lobe demonstrates increased T2 signal intensity due to portal vein compression. A separate 
mass in the hepatic hilum (long white arrows) shows similar signal and enhancement characteristics. The 
hilar mass encases the hepatic artery (short white arrow). Transabdominal ultrasonography (f) shows a 
heterogeneous hypoechoic mass (white arrow).

Figure 11. Hepatic lymphoma encasing vessels. Axial (a) and coronal (b) contrast-enhanced computed 
tomography (CT) shows multiple liver masses (long white arrows) and diffuse gastric wall thickening (short 
white arrows). As with lymphoma in other parts of the body, hepatic lymphoma tends to encase, rather than 
occlude, vascular structures. In this case, liver masses appear to encase branches of the portal vein (short 
black arrows). A companion case demonstrates a contrast enhanced CT scan (c) with a hypoattenuating 
lymphoma that is markedly fluorodeoxyglucose (FDG) avid on 18F-FDG-positron emission tomography/CT 
scan (d) (white arrows).
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Epstein–Barr virus (EBV) infection is a 
significant risk factor for the development 
of PTLD, particularly in transplant recipients 
who are EBV-seronegative prior to trans-
plant. Other risk factors include young age, 
higher levels of immunosuppression follow-
ing transplant, and having received a liver 
transplant within the past year.37

The reported incidence of PTLD in liver 
transplant recipients is variable. Taylor et al.37 
reported PTLD in up to 2.8% of adults and 
up to 15% of children following liver trans-
plant. More recent studies showed a lower 
incidence of PTLD at 1.5% in adults and 4.3% 
in the pediatric population.37 Generally, PTLD 
can be associated with significant morbidity 
and mortality, particularly in cases of high-
grade lymphomas or when the disorder is 
diagnosed late.35

Unlike lymphoma, PTLD tends to involve 
extranodal sites such as the liver, and imag-
ing is crucial to its evaluation. Hepatic in-
volvement in PTLD can manifest in different 
forms and presentations. On CT imaging, 
PTLD may appear as multiple hypodense 
masses, a single infiltrating mass, or a hetero-
geneous mass at the liver hilum causing bili-
ary obstruction (Figure 12). On MRI, the lesion 
or lesions often have isointense to low signal 
intensity on T1-weighted images and inter-
mediate to high intensity on T2-weighted 
images. Dynamic T1-weighted post-contrast 
images may be characterized by peripheral 
enhancement, and DWI can show restricted 
diffusion. However, these imaging features 
can overlap with those of liver abscesses. 
This overlap can pose a diagnostic challenge, 
especially in patients who are at risk for both 
PTLD and disseminated infections.36,38

Early detection and management of PTLD 
are critical in improving outcomes for affect-
ed individuals. Treatment options such as 
reducing immunosuppression, antiviral ther-
apy, rituximab (an anti-CD20 monoclonal an-
tibody), chemotherapy, or radiation therapy 
may be considered depending on the sever-
ity and type of PTLD. Regular monitoring for 
EBV infection can help identify high-risk pa-
tients and allow for proactive interventions 
when necessary.

Hepatic benign cystic teratomas

Teratomas are germ cell tumors that orig-
inate from pluripotent cells that have been 
arrested along their migration pathway. They 
often contain components derived from all 
three germ cell layers and present as a cyst 
with fat, hair, and calcifications. Hepatic be-
nign cystic teratomas are extremely rare, ac-

counting for <1% of all body teratomas. They 
commonly occur in patients under 3 years 
old.38,39

Hepatic teratomas are often asymptomat-
ic and may be discovered incidentally during 
imaging studies for unrelated reasons. How-
ever, large tumors can cause symptoms such 
as abdominal pain, discomfort, or fullness 
due to compression of neighboring organs. 
In exceptionally rare cases, hepatic cystic ter-
atomas may rupture.38,39

On CT and MRI, hepatic teratomas typical-
ly appear as well-defined cystic lesions with 
heterogeneous internal components related 
to variable amounts of fat and calcifications 
(Figure 13).38,39

Surgical resection is the preferred treat-
ment option for hepatic benign cystic terato-
mas, especially with large and symptomatic 
tumors. Complete surgical excision is usually 
curative, and recurrence is rare following suc-
cessful resection.39

Figure 12. Axial contrast-enhanced computed tomography (CT) images in a 55-year-old man who had 
undergone renal transplant (short white arrow) 2 years earlier due to autosomal dominant polycystic renal 
disease and presented with abdominal pain and diarrhea. A contrast-enhanced CT scan (a-c) shows multiple 
hypoattenuating liver masses (long white arrows) and splenomegaly with one hypoattenuating splenic 
mass (black arrow). An fluorodeoxyglucose-positron emission tomography/CT scan (d, e) demonstrates 
uptake (black arrows) in another case of post-transplant lymphoproliferative disorder.

Figure 13. Axial contrast-enhanced computed tomography in the portal venous phase shows a left hepatic 
lobe mass (long white arrow). The mass was found to represent a teratoma. It is predominantly fatty with 
peripheral nodular calcifications (short white arrow).
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In conclusion, familiarity with the typical 
appearance of unusual hepatic tumors is im-
portant for radiologists. While these tumors 
are infrequently seen, their inclusion in the 
differential diagnosis greatly aids the clini-
cian in appropriately triaging patients. This 
awareness can also avoid unnecessary biop-
sies, thus improving patient care. This review 
of several such entities can serve as a useful 
guide for radiologists in their daily practice. 
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Grading portal vein stenosis following partial hepatectomy by high-
frequency ultrasonography: an in vivo study of rats 

PURPOSE
To evaluate the diagnostic value of ultrasound in grading portal vein stenosis (PVS) in a rat model 
of 70% partial hepatectomy (PH).

METHODS
A total of 96 Sprague-Dawley rats were randomly divided into a PH group and PVS groups with 
mild, moderate, and severe PVS following PH. Hemodynamic parameters were measured using 
high-frequency ultrasound (5–12 MHz high-frequency linear transducer), including pre-stenotic, 
stenotic, and post-stenotic portal vein diameters (PVDpre, PVDs, PVDpost); pre-stenotic and stenotic 
portal vein velocity (PVVpre, PVVs); hepatic artery peak systolic velocity (PSV); end-diastolic velocity; 
and resistive index. The portal vein diameter ratio (PVDR) and portal vein velocity ratio (PVVR) were 
calculated using the following formulas: PVDR=PVDpre/PVDs and PVVR=PVVs/PVVpre. The value of 
these parameters in grading PVS was assessed.

RESULTS
Portal vein hemodynamics showed gradient changes as PVS aggravated. For identifying >50% PVS, 
PVDs and PVDR were the best parameters, with areas under the curve (AUC) of 0.85 and 0.86, re-
spectively. For identifying >65% PVS, PVDs, PVDR, and PVVR were relatively better, with AUCs of 
0.94, 0.85, and 0.88, respectively. The AUC of hepatic artery PSV for identifying >65% PVS was 0.733.

CONCLUSION
High-frequency ultrasonography can be used to grade PVS in rats, with PVDs, PVDR, and PVVR being 
particularly useful. Hepatic artery PSV may help in predicting >65% PVS. These findings provide 
valuable information for PVS rat model research and offer an experimental basis for further studies 
on PVS evaluation in living-donor liver transplantation (LDLT).

CLINICAL SIGNIFICANCE
Ultrasonography serves as a first-line technology for diagnosing PVS following LDLT. However, the 
grading criteria for PVS severity remain unclear. Investigating the use of ultrasonic hemodynamics 
in the early diagnosis of PVS and grading stenosis severity is important for early postoperative in-
tervention and improving recipient survival rates.

KEYWORDS
Portal vein stenosis, high-frequency ultrasonography, hemodynamics, portal vein, hepatic artery, rat

You may cite this article as: Ma L, Peng C, Yang L, et al. Grading portal vein stenosis following partial hepatectomy by high-frequency ultrasonography: an 
in vivo study of rats. Diagn Interv Radiol. 2025;31(2):68-74.

As organ transplantation techniques mature and new immunosuppressants are devel-
oped, living-donor liver transplantation (LDLT) is becoming an effective treatment for 
end-stage liver disease. Compared with whole-liver transplantation, a unique charac-

teristic of LDLT is that postoperative regeneration allows the liver volume to increase, result-
ing in successful reconstruction even though the graft volume is relatively small.1,2 Sufficient 
portal blood flow is a prerequisite for the transplanted liver to regenerate and survive. In LDLT, 
the recipient’s portal vein trunk is usually anastomosed to the portal vein branch of the graft 
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(left or right branch). Consequently, the do-
nor’s and recipient’s portal vein diameters 
(PVD) often do not match, resulting in portal 
vein stenosis (PVS). Furthermore, portal vein 
angulation or torsion may lead to PVS after 
LDLT more frequently than after whole-liver 
transplantation, with an incidence rate of 
0.5%–8.1%.3-5 Mild PVS usually does not af-
fect liver regeneration or function, but severe 
PVS can lead to portal hypertension, small-
for-size syndrome, and acute liver failure. If 
PVS can be discovered early and clinical in-
tervention is performed before liver regener-
ation and function are irreversibly affected, 
this defect may be reversed.4-9

The diagnosis of PVS mainly relies on im-
aging techniques such as ultrasonography, 
computed tomography, magnetic resonance 
imaging, and digital subtraction angiogra-
phy. Among these techniques, ultrasonog-
raphy can accurately assess PVD and he-
modynamics and has advantages such as 
convenience, lack of radiation, repeatability, 
and bedside operation. Therefore, ultra-
sonography serves as a first-line imaging 
modality for diagnosing PVS in the early 
postoperative period and during long-term 
follow-up. Generally, a diagnosis of signifi-
cant stenosis is made when the portal vein 
trunk diameter is <2.5–3.5 mm, the blood 
flow velocity at the stenotic site is >150 
cm/s, or the velocity ratio between stenotic 
and pre-stenotic flow is ≥4.10-13 However, to 
date, the grading criteria in ultrasonography 
for PVS severity remain unclear. In addition, 
when portal blood flow volume decreases, 
hepatic artery flow volume will show varying 

degrees of increase due to the hepatic arte-
rial buffer response (HABR).14,15 There are no 
reports on how hepatic artery flow changes 
under different severities of PVS or whether 
its hemodynamic parameters can aid in PVS 
evaluation. Therefore, studying the appli-
cation of ultrasonic hemodynamics for the 
early diagnosis of PVS and the grading of 
stenosis severity is important for early post-
operative intervention and for increasing the 
survival rate of liver transplant recipients.

Due to ethical constraints and the diver-
sity of liver diseases, we conducted animal 
experiments in this study. The rat model of 
70% partial hepatectomy (PH) is a classical 
model for studying liver regeneration,16,17 
and partial portal vein ligation is the most 
commonly used method for producing the 
PVS model.18,19 In this study, varying degrees 
of partial portal vein ligation were performed 
based on the 70% PH rat model to simulate 
different degrees of PVS following LDLT. Ul-
trasonography was used to measure the 
hemodynamic parameters of the portal vein 
and hepatic artery to assess the effectiveness 
of ultrasonography in diagnosing and grad-
ing PVS, thereby providing an experimental 
basis for further studies on early PVS evalua-
tion and intervention.

Methods

Study subjects

All rats and procedures used in this re-
search were approved by the Animal Ethics 
Committee of West China Hospital, Sichuan 
University (no: 2020101A). Ninety-six healthy 
male Sprague-Dawley rats (7–14 weeks old, 
weighing 200–400 g, specific-pathogen-free 
grade) were purchased from Chengdu 
Dashuo Biotechnology Co., Ltd, and given 
ad libitum access to food and water at the 
animal experiment center of West China 
Hospital. All rats were housed at a constant 
temperature under a 12-h light–dark cycle to 
acclimate for at least 1 week before the ex-
periment.

The rats were randomly divided into a PH 
group and PVS groups with mild, moderate, 
and severe PVS following PH (n = 24 for each 
group). The PH group was established as a 
model of 70% hepatectomy without portal 
vein ligation, whereas the PVS groups were 
created through varying degrees of partial 
portal vein ligation after PH. Mild, moderate, 
and severe PVS were respectively defined as 
≤50% stenosis, 50%–65% stenosis, and >65% 
stenosis, approaching near occlusion.19

Construction of rat models

Construction of the 70% partial hepatecto-
my rat model

The standard method for 70% PH in rats 
developed by Higgins and Anderson16 was 
used as a reference.17 The specific procedure 
was as follows: (1) Continuous inhalation-
al anesthesia with ether was administered 
before the rat was placed in the supine po-
sition. The rats were immobilized, and the 
abdomen was shaved using an electric hair 
remover. (2) Iodine was used to disinfect the 
surgical site, and an abdominal midline inci-
sion was made below the xiphoid process. 
The skin and muscles were dissected layer by 
layer to access the abdominal cavity, and the 
liver was exposed. (3) A suture was used to 
ligate and then resect the left lateral lobe and 
middle lobe. The resected liver accounted for 
approximately 70% of the entire liver. (4) The 
liver pedicle ligation site was inspected for 
bleeding, and the residual liver lobes were 
examined for congestion. 

Construction of portal vein stenosis models 
with varying severity after partial hepatec-
tomy

After PH, varying degrees of partial liga-
tion of the portal vein trunk were performed 
to construct PVS models of different severi-
ty.18,19 The specific steps were as follows: (1) 
The portal vein trunk was dissociated, and a 
microvascular caliper was used to measure 
the PVD. (2) Needles of different sizes were 
selected and placed parallel to the portal 
vein. A silk suture was used to ligate the por-
tal vein and the needle together. At this point, 
significant congestion could be observed in 
the gastrointestinal tract. After ligation, the 
needle was slowly withdrawn, alleviating the 
congestion in the gastrointestinal tract. The 
PVD of the stenotic segment was equal to 
the external diameter of the needle. Needles 
of varying sizes were used for partial ligation 
of the portal vein to create PVS models of dif-
ferent severity. The sizes of needles used in 
this study were 18G, 19G, 20G, 21G, and 22G, 
with outer diameters of 1.2 mm, 1.0 mm, 0.9 
mm, 0.8 mm, and 0.7 mm, respectively. The 
PV stenosis rate (SR) was calculated using 
the formula SR=(1-Dneedle/PVD) × 100%.3 Af-
ter evaluating the intestinal congestion sta-
tus and vital signs, 32,000 units of penicillin 
and 5 mL of NaCl (0.9%) were administered 
via peritoneal injection, and then the abdo-
men was sealed layer by layer.4 The rats were 
labeled and housed in individual cages after 
surgery, kept warm, and given ad libitum ac-
cess to food and water.

Main points

• Portal vein hemodynamic parameters-por-
tal vein diameter at stenosis (PVDs), portal 
vein diameter ratio (PVDR), portal vein ve-
locity at stenosis (PVVs), and portal vein ve-
locity ratio (PVVR)-show significant gradient 
changes among different degrees of portal 
vein stenosis (PVS), with stenosis rate (SR) 
≤50%, 50%< SR ≤65%, and SR >65% (all P < 
0.0001). 

• PVD at stenosis and PVDR are the best pa-
rameters for PVS grading [all areas under the 
curve (AUCs) >0.80]. 

• PVVs can effectively diagnose the presence/
absence of PVS (AUC: 0.958), but the diag-
nostic performance in PVS grading is rela-
tively low (AUC <0.80). The PVVR showed 
good performance in the identification of 
>65% PVS (AUC: 0.880). 

• A significant increase in hepatic artery peak 
systolic velocity may be helpful for PVS eval-
uation, especially in predicting >65% PVS 
(AUC: 0.733).
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Ultrasonography examination

Duplex Doppler ultrasound examinations 
were performed using an IU22 US system 
(Philips Healthcare, Bothell, WA), equipped 
with a 5-12 MHz transducer. At 24 h post-sur-
gery, scans were conducted with the rats 
ether-anesthetized and stably positioned 
in the supine position, using both grayscale 
and color Doppler imaging to identify vas-
cular landmarks. Doppler tracings were ac-
quired, and the best tracing was selected 
for analysis. In the PH group, the PVD and 
maximum portal vein velocity (PVV) were 
measured at a site approximately 5 mm be-
low the bifurcation of the hilum. In the PVS 
groups, pre-stenotic, stenotic, and post-ste-
notic PVD (PVDpre, PVDs, PVDpost) and pre-ste-
notic and stenotic PVV (PVVpre, PVVs) were 
measured (Figure 1). The PVD ratio (PVDR) 
and the PVV ratio (PVVR) were calculated 
using the following formula: PVDR=PVDpre/
PVDs and PVVR=PVVs/PVVpre. Hepatic artery 
peak systolic velocity (PSV) and end-diastolic 
velocity (EDV) were measured in all rats, and 
the resistive index (RI) was calculated using 
the following formula: RI=(PSV−EDV)/PSV. 
The sampling volume was adjusted based 
on the course of the blood vessel and its 
inner diameter. The gain was adjusted to 
maximum sensitivity without noise, and the 
angle between the sound beam and blood 
flow was ≤60°. The aforementioned scanning 
and image storage were performed by an ex-
perienced physician who was blinded to the 
grouping. The mean of three measurements 
was calculated for all results.

Research ethics standards compliance

This study was carried out in accordance 
with the principles of the Basel Declaration 
and was approved by the Animal Ethics Com-
mittee of West China Hospital (decision no: 
2020101A, date: March 24th, 2020).

Statistical analysis

SPSS 25.0 and GraphPad Prism 8 were 
used for statistical analysis. A value of P < 
0.05 indicated a statistically significant differ-
ence. One-Way analysis of variance was used 
to compare the hemodynamic parameters 
among different groups for source data with 
a normal distribution. When inter-group dif-
ferences were present, the least significant 
difference test was used for pairwise compar-
isons when variances were homogeneous, 
and Dunnett’s T3 test was used for pairwise 
comparisons when variances were heteroge-
neous. Values are expressed as mean ± stan-
dard deviation (x̄ ± s). Non-parametric rank 

tests were used to compare non-normally 
distributed source data, and pairwise com-
parisons were performed when inter-group 
differences were present. These values are 
expressed as medians.

The receiver operating characteristic 
(ROC) curve was plotted, and the area under 
the curve (AUC), standard error, asymptotic 
significance (b), asymptotic 95% confidence 
interval, best cut-off, sensitivity, and speci-
ficity were calculated to evaluate the value 
of the various ultrasound parameters in the 
diagnosis of PVS and in predicting stenosis 
severity.

Results

Model construction 

In this study, the 70% PH models with no 
PVS were successfully constructed in 24 rats, 
whereas PVS models of different severities 
following PH were constructed in 72 rats. The 
SRs of the mild, moderate, and severe PVS 
groups were (45.16 ± 3.40)%, (59.21 ± 3.84)%, 
and (69.46 ± 2.17)%, respectively.

Dstenosis (i.e., outer needle diameter) in PVS 
models with different severities showed 
significant gradient changes. When SR was 
>65%, the portal vein trunk diameter was 
extremely narrow, and the needle used for 
model construction was significantly thinner: 
mainly 21G (outer diameter: 0.8 mm). An 18G 
(outer diameter: 1.2 mm) needle was mostly 

used for model construction in rats with SR 
≤50%, and an 18G (outer diameter: 1.2 mm) 
or 20G (outer diameter: 0.9 mm) needle was 
mostly used for model construction in rats 
with 50%< SR ≤65%. Dstenosis in rats with SR 
>65% was significantly lower than that in the 
SR ≤50% and 50%< SR ≤65% groups, and the 
Dstenosis of the 50%< SR ≤65% group was also 
significantly lower than that of the SR ≤50% 
group (Figure 2).

Hemodynamic changes 

Portal vein hemodynamic changes 

Residual liver and portal vein after 70% PH 
in rats can be observed using conventional 
ultrasound. In PVS rats, grayscale ultrasound 
clearly showed PVS, whereas Doppler ultra-
sound revealed turbulence of blood flow at 
the stenosis site, with the stenotic flow sig-
nificantly faster and the pre-stenotic flow 
slower (Figure 1b, c). When PVS occurred, the 
lumen diameter of the stenotic site was sig-
nificantly smaller, whereas the lumen diame-
ters at two ends of the stenotic site showed 
varying degrees of expansion. As shown in 
Table 1 and Figure 3a-d, the PVDpre of the 
moderate and severe PVS groups was signifi-
cantly higher than that of the PH and mild 
PVS groups, and the PVDpost of the moder-
ate PVS group was significantly higher than 
that of the PH group (all P < 0.05). The PVDs 
among the mild, moderate, and severe PVS 
groups were significantly lower than that of 

Figure 1. Measurement of portal vein blood flow parameters in the PVS group (a). Pre-stenotic, stenotic, 
and post-stenotic PVD (PVDpre, PVDs, PVDpost) were measured using ultrasound (arrows). (b, c). Stenotic and 
pre-stenotic PVV (PVVs, PVVpre) were measured using ultrasound. PVS, portal vein stenosis; PVD, portal vein 
diameter; PVV, portal vein velocity.

a b c

Figure 2. Dneedle used in the PVS groups with different severities. Dneedle, the diameter of the needle; PVS, 
portal vein stenosis.
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the PH group (all P < 0.05). As PVS severity in-
creased, PVDs gradually decreased, and PVDR 
conversely increased. The differences in PVDs 

and PVDR among the mild, moderate, and 
severe PVS groups were statistically signifi-
cant (all P < 0.05). 

When PVS occurred, the flow velocity at 
the stenotic site significantly increased, and 
pre-stenotic flow velocity showed varying 
magnitudes of decrease. As shown in Table 
1 and Figure 3e-g, the PVVpre of the moder-
ate PVS group was significantly lower than 
the PVV of the PH group, and the PVVpre of 
the severe PVS group was significantly lower 
than that of the PH and mild PVS groups (all 
P < 0.05). The PVVs among the mild, moder-
ate, and severe PVS groups were significantly 
higher than the PVV of the PH group (all P 
< 0.05). As PVS severity increased, PVVs and 
PVVR increased. The differences in PVVs and 
PVVR among the mild, moderate, and severe 
PVS groups were statistically significant (all P 
< 0.05).

Hepatic artery hemodynamic changes

When PVS occurred, hepatic artery PSV 
showed varying degrees of increase, and the 
PSV of the severe PVS group was significantly 
higher than that of the 70% PH group (P < 
0.05, Table 1 and Figure 3h). There were no 
significant differences in EDV or RI among 
the various groups (all P > 0.05).

Evaluation of ultrasonography in portal 
vein stenosis diagnosis and grading of ste-
nosis severity

Surgical PVS severity is the gold standard 
for PVS diagnosis. When diagnosing PVS, an 
ROC curve was plotted with the PH group as 
negative and the mild, moderate, and severe 
PVS groups as positive results. For identify-
ing >50% PVS, the mild PVS group was used 
as the negative samples, and the moderate 
and severe PVS groups were used as positive 
samples for plotting the ROC curve. For iden-
tifying >65% PVS, the mild and moderate 
PVS groups were used as the negative sam-
ples, and the severe PVS group was used as 
the positive samples to plot the ROC curve. 

The AUCs of PVDpre, PVDs, PVDpost, PVVpre, 
and PVVs in PVS diagnosis were significantly 
larger than the diagnostic reference AUC (P < 
0.05 vs. AUC: 0.05, Table 2 and Figure 4a, b). 
The AUCs of PVDs and PVVs were 0.998 and 
0.958, respectively. When PVDs was <1.37 
mm or PVVs was >25.85 cm/s, their sensitiv-
ity and specificity were 98.61% and 100% or 
83.33% and 100%, respectively. 

Table 1. US parameters in different groups

US parameter PH Mild PVS Moderate PVS Severe PVS

PVDs 1.94 ± 0.38 1.10 ± 0.17a 0.97 ± 0.16a, b 0.76 ± 0.06a, b, c

PVDpre 1.94 ± 0.38 2.10 ± 0.40 2.58 ± 0.63a, b 2.60 ± 0.35a, b

PVDpost 1.94 ± 0.38 2.13 ± 0.37 2.30 ± 0.41a 2.13 ± 0.41

PVDR - 1.97 ± 0.60 2.73 ± 0.85b 3.43 ± 0.51b, c

PVVs 14.80 ± 4.70 43.15 ± 18.64a 51.86 ± 30.73a 80.50 ± 38.49a, b, c

PVVpre 14.80 ± 4.70 11.56 ± 4.18 9.72 ± 3.48a 8.43 ± 3.67a, b

PVVR - 4.03 ± 1.91 5.33 ± 3.09 10.33 ± 4.90b, c

HA PSV 42.65 ± 16.37 53.61 ± 16.55 56.86 ± 25.44 59.69 ± 17.37a

aP < 0.05 vs. PH group; bP < 0.05 vs. mild PVS group; cP < 0.05 vs. moderate group. US, ultrasound; PVS, portal vein 
stenosis; PH, partial hepatectomy; HA PSV, hepatic artery peak systolic velocity.

Figure 3. Ultrasound parameters in different groups. (a) Portal vein diameter at the stenotic site (PVDs). 
(b) Portal vein diameter at the pre-stenotic site (PVDpre). (c) Portal vein diameter at the post-stenotic site 
(PVDpost). (d) Portal vein diameter ratio (PVDR, PVDpre/PVDs). (e) Portal vein velocity at the stenotic site (PVVs). 
(f) Portal vein velocity at the pre-stenotic site (PVVpre). (g) Portal vein velocity ratio (PVVR, PVVs/PVVpre). (h) 
Hepatic artery peak systolic velocity (PSV).

a

e

c

g

b

f

d

h
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With regards to PVS stenosis severity 
grading, the AUCs of PVDs, PVDpre, PVDR, 
PVVs, PVVpre, and PVVR were significantly 
higher than the diagnostic reference AUC 
when used to identify >50% PVS and >65% 
PVS. For identifying >50% PVS, PVDs and 
PVDR were better than other parameters, 
with AUCs of 0.85 and 0.86, respectively. 
When PVDs was <0.95 mm or PVDR >2.51, 
their sensitivity and specificity were 75.00% 
and 83.33% or 77.08% and 87.50%, respec-
tively (Table 2 and Figure 4c, d). For identi-
fying >65% PVS, PVDs, PVDR, and PVVR were 
relatively better than other parameters, with 
AUCs of 0.94, 0.85, and 0.88, respectively. 
When PVDs was <0.87 mm, PVDR was >2.82, 
or PVVR was >5.43, their sensitivity and 
specificity were 100% and 81.25%, 91.67% 
and 77.08%, or 87.50% and 72.92%, respec-
tively (Table 2 and Figure 4e, f ).

As shown in Table 2 and Figure 5, the AUC 
of hepatic artery PSV in predicting PVS was 
0.711, and when used to identify >50% PVS 
and >65% PVS, the AUC of hepatic artery 
PSV was 0.666 and 0.733, respectively (all P 
< 0.05 vs. AUC: 0.05). When PSV was >51.15 

cm/s, the sensitivity of identifying >65% PVS 
reached 87.50%, whereas the specificity was 
only 55.56%.

Discussion
Liver regeneration after LDLT is key to 

postoperative patient survival. Portal vein 
blood flow accounts for 75%–80% of the 
total blood flow volume in the liver. On one 
hand, this provides nutrient-rich blood from 
the intestines to liver tissues. On the other 
hand, this blood acts as a carrier of hepato-
cyte growth factors, hormones, and related 
receptors that play a vital role in liver re-
generation. Therefore, sufficient portal vein 
blood supply is one of the prerequisites for 
the survival of the graft. PVS is one of the ma-
jor vascular complications after LDLT. It may 
occur within 1 month after liver transplanta-
tion or may be late-onset (≥3 months after 
surgery).20,21 Although PVS is not as acute as 
hepatic artery complications, its early clinical 
manifestations are not specific, and severe 
PVS significantly reduces liver blood sup-
ply and severely impairs the function of the 
transplanted liver, leading to graft failure.3-6 

In addition, the incidence of PVS is relative-
ly high in pediatric LDLT due to factors such 
as small recipient portal vein size, dysplasia, 
and mismatched donor-recipient PVD.4,5 In 
clinical practice, symptomatic treatment 
(such as balloon dilatation or stent implan-
tation) is usually performed when there is 
significant hepatic dysfunction or portal hy-
pertension.7-9 However, hepatocyte structure 
and function may have undergone irrevers-
ible damage at this point, resulting in grafts 
being in a state of poor regeneration for a 
long time, even after treatments are applied. 
Therefore, early diagnosis of PVS and accu-
rate grading of stenosis severity promote 
early intervention and thus increase the sur-
vival rate of patients. 

Ultrasonography is the preferred imaging 
method for the early diagnosis of vascular 
complications after liver transplantation. 
Conventional grayscale ultrasound can clear-
ly show the liver parenchyma and portal vein 
and accurately measure the PVD. Doppler ul-
trasound can monitor portal vein blood flow 
for disturbances, observe the blood flow di-
rection, and obtain blood flow velocity infor-

Table 2. Results of ROC analysis in grading PVS by ultrasound

US index AUC Standard 
error

 P value 95% confidence interval Best cut-off Sensitivity (%) Specificity (%)

Lower bound Upper 
bound

PVS

PVDs (mm) 0.998 0.002 <0.0001 0.994 1.000 <1.37 98.61 100.00

PVDpre (mm) 0.776 0.051 <0.0001 0.675 0.877 >2.13 68.06 79.17

PVDpost (mm) 0.694 0.062 0.0045 0.574 0.815 >2.11 62.50 75.00

PVVs (cm/s) 0.958 0.018 <0.0001 0.922 0.994 >25.85 83.33 100.00

PVVpre (cm/s) 0.793 0.048 <0.0001 0.699 0.886 <11.60 69.44 79.17

HA PSV (cm/s) 0.711 0.058 0.0020 0.5969 0.8250 >46.90 73.61 62.50

>50% 
PVS

PVDs (mm) 0.850 0.050 <0.0001 0.760 0.940 <0.95 75.00 83.33

PVDpre (mm) 0.790 0.060 <0.0001 0.680 0.900 >2.54 62.50 87.50

PVDpost (mm) 0.520 0.070 0.7335 0.380 0.670 - - -

PVDR 0.860 0.050 <0.0001 0.760 0.950 >2.51 77.08 87.50

PVVs (cm/s) 0.690 0.060 0.0094 0.570 0.810 >52.60 62.50 75.00

PVVpre (cm/s) 0.670 0.070 0.0169 0.540 0.810 <8.00 45.83 83.33

PVVR
HA PSV (cm/s)

0.770
0.666

0.050
0.047

0.0002
0.0010

0.660
0.574

0.880
0.759

>4.79
>48.45

72.92
72.73

75.00
56.06

>65% 
PVS

PVDs (mm) 0.940 0.030 <0.0001 0.880 1.000 <0.87 100.00 81.25

PVDpre (mm) 0.650 0.060 0.0417 0.520 0.770 >2.14 95.83 47.92

PVDpost (mm) 0.580 0.070 0.2900 0.440 0.710 - - -

PVDR 0.850 0.040 <0.0001 0.760 0.940 >2.82 91.67 77.08

PVVs (cm/s) 0.767 0.060 0.0002 0.650 0.880 >52.60 79.17 64.58

PVVpre (cm/s) 0.670 0.070 0.0169 0.540 0.800 <8.85 70.83 62.50

PVVR
HA PSV (cm/s)

0.880
0.733

0.040
0.051

<0.0001
0.0007

0.810
0.633

0.960
0.832

>5.43
>51.15

87.50
87.50

72.92
55.56

PVS, portal vein stenosis; US, ultrasound; PVDs, portal vein diameter at the stenotic site; PVDpre, portal vein diameter at the pre-stenotic site; PVDpost, portal vein diameter at the 
post-stenotic site; PVVs, portal vein velocity at the stenotic site; PVVpre, portal vein velocity at the pre-stenotic site; PVDR, portal vein diameter ratio (PVDpre/PVDs); PVVR, portal vein 
velocity ratio (PVVs / PVVpre); HA PSV, hepatic artery peak systolic velocity.
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mation. Mild stenosis (SR <50%) at the portal 
vein anastomosis usually does not lead to 
significant hemodynamic changes. When 
significant PVS occurs, grayscale ultrasound 
will show local lumen narrowing, whereas 
Doppler ultrasound will demonstrate distur-
bance of blood flow at the stenotic site with 
a faster blood flow velocity. Currently, there 
are no unified ultrasonic diagnostic criteria 
for PVS in clinical practice. In China, a PVD of 
<2.5–3.5 mm at the stenotic site, a blood flow 
velocity at the stenotic site >150 cm/s, or a 
velocity ratio between stenotic and pre-ste-
notic flow ≥4 is regarded as the diagnostic 
criterion for PVS.6,10-12 Mullan et al.13 defined a 
maximal blood velocity >80 cm/s at the ste-
notic segment of the portal vein as the diag-
nostic criterion for PVS, with a sensitivity of 
100% and a specificity of 84%. Chong et al.22 
used a maximal blood velocity >125 cm/s at 
the stenotic segment of the portal vein as the 
PVS diagnostic criterion, which had a speci-
ficity of 95% and a sensitivity of 73%. More-
over, the grading criteria in ultrasonography 
for PVS severity are not clear.

In this study, partial portal vein ligation 
was carried out based on the 70% PH rat 
model to simulate different degrees of PVS 
after LDLT. This model is easy to construct, 
stable, and facilitates hemodynamic moni-
toring. When PVS occurred, PVD decreased at 
the stenotic site, and PVD at the pre-stenotic 
and post-stenotic sites showed varying de-
grees of increase. Furthermore, stenotic PVV 
significantly increased, whereas pre-stenotic 
PVV showed varying degrees of decrease. 
The PVDs, PVDR, PVVs, and PVVR of the mild, 
moderate, and severe PVS groups showed 
significant gradient changes. More severe 
stenosis led to lower PVDs, higher PVVs, and 
larger PVDR and PVVR. Among the various 
portal vein hemodynamic parameters, PVDs 
and PVVs showed good performance in di-
agnosing PVS, followed by PVDpre and PV-
Vpre, whereas PVDpost showed relatively poor 
performance. In grading PVS severity, PVDs, 
PVDpre, PVDR, PVVs, PVVpre, and PVVR demon-
strated some diagnostic efficacy. Regarded 
as the standard with a high diagnostic value, 
an AUC >0.80 indicates that PVDs and PVDR 
can effectively differentiate mild, moder-
ate, and severe PVS, whereas PVVR showed 
good diagnostic performance in identifying 
>65% PVS. In contrast, PVDpre, PVVs, and PV-
Vpre showed relatively poor performance in 
grading PVS severity. After PH, the residual 
liver will be in a hyperdynamic circulatory 
state, and portal vein blood flow volume 
and velocity will increase. In this study, the 
construction of the surgical model and the 

grading and diagnostic criteria for PVS were 
all based on portal vein blood flow after PH. 
Additionally, there were inter-individual dif-
ferences in parameters. Hence, the sample 
size should be expanded to further validate 
the PVS grading criteria.

When significant changes in portal vein 
blood flow volume occur, the hepatic artery 
buffers these effects by adjusting the blood 

flow volume to maintain relative stability in 
the total blood flow volume of the liver. This 
phenomenon is known as the HABR. Under 
different severities of PVS, portal vein blood 
flow volume will exhibit varying degrees of 
decrease, and HABR can result in a compen-
satory increase in hepatic artery blood flow, 
leading to corresponding increases in blood 
flow volume and velocity.14,15 In this study, 

Figure 4. Receiver operating characteristic (ROC) curves of portal vein parameters in grading PVS. (a, b) ROC 
curves of PVDs, PVDpre, PVDpost, PVVs, and PVVpre in diagnosing PVS. (c, d) ROC curves of PVDs, PVDpre, PVDpost, 
PVDR, PVVs, PVVpre, and PVVR in identifying >50% PVS. (e, f) ROC curves of PVDs, PVDpre, PVDpost, PVDR, PVVs, 
PVVpre, and PVVR in identifying >65% PVS. PVS, portal vein stenosis; PVDs, portal vein diameter at the stenotic 
site; PVDpre, portal vein diameter at the pre-stenotic site; PVDpost, portal vein diameter at the post-stenotic 
site; PVVs, portal vein velocity at the stenotic site; PVVpre, portal vein velocity at the pre-stenotic site; PVDR, 
portal vein diameter ratio (PVDpre/PVDs); PVVR, portal vein velocity ratio (PVVs/PVVpre).
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hepatic artery blood flow velocity in rats with 
different severities of PVS showed varying 
degrees of increase, with the most significant 
increase observed in cases of >65% PVS. The 
ROC analysis indicated that when hepatic ar-
tery PSV exceeded 51.15 cm/s, the sensitivity 
for identifying >65% PVS reached 87.50%. 
Therefore, significant increases in hepatic ar-
tery flow velocity can help predict >65% PVS. 
However, since the rat hepatic artery has a 
small inner diameter and a tortuous course, 
it tends to be influenced by heart rate and 
respiratory rate, leading to potential errors in 
the measurement of hemodynamic parame-
ters by ultrasound. Consequently, the quan-
titative evaluation of hepatic artery compen-
sation post-PVS requires further validation.

In conclusion, high-frequency greyscale 
and Doppler ultrasound can accurately 
demonstrate PVS and the hemodynamic 
changes it causes in rats. Portal vein hemody-
namic parameters exhibit significant gradi-
ent changes among different degrees of PVS, 
classified as SR ≤50%, 50%< SR ≤65%, and SR 
>65%. PVDs and the PVDR are the best pa-
rameters for grading PVS. PVV can effectively 
diagnose the presence or absence of PVS, 
but its diagnostic performance in grading 
PVS is relatively low. The PVVR showed good 
performance in identifying >65% PVS. A sig-
nificant increase in hepatic artery PSV may 
help evaluate PVS, particularly in predicting 
>65% PVS. These findings provide valuable 
information for PVS rat model research and 
an experimental basis for further studies on 
early PVS evaluation in LDLT.
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Bias in artificial intelligence for medical imaging: fundamentals, 
detection, avoidance, mitigation, challenges, ethics, and prospects

ABSTRACT
Although artificial intelligence (AI) methods hold promise for medical imaging-based prediction 
tasks, their integration into medical practice may present a double-edged sword due to bias (i.e., 
systematic errors). AI algorithms have the potential to mitigate cognitive biases in human inter-
pretation, but extensive research has highlighted the tendency of AI systems to internalize bias-
es within their model. This fact, whether intentional or not, may ultimately lead to unintentional 
consequences in the clinical setting, potentially compromising patient outcomes. This concern 
is particularly important in medical imaging, where AI has been more progressively and widely 
embraced than any other medical field. A comprehensive understanding of bias at each stage of 
the AI pipeline is therefore essential to contribute to developing AI solutions that are not only less 
biased but also widely applicable. This international collaborative review effort aims to increase 
awareness within the medical imaging community about the importance of proactively identifying 
and addressing AI bias to prevent its negative consequences from being realized later. The authors 
began with the fundamentals of bias by explaining its different definitions and delineating various 
potential sources. Strategies for detecting and identifying bias were then outlined, followed by a 
review of techniques for its avoidance and mitigation. Moreover, ethical dimensions, challenges 
encountered, and prospects were discussed.
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Artificial intelligence, machine learning, medical imaging, bias, fairness, radiology
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Bias, with its various definitions depending on the context, often denotes systematic er-
rors due to existing inappropriate models, whether intentional or unintentional.1 Exten-
sive studies of bias in human cognition have included the field of radiology and medical 

imaging, addressing biases at both personal (e.g., bias during reporting) and societal levels.2 
It is typically linked to conscious or subconscious cognitive preconceptions that may arise 
during clinical practice, particularly in rapid decision-making scenarios.3,4

Advances in artificial intelligence (AI) related to medical imaging, particularly in radiology, 
present new avenues to enhance patient care across different stages of the patient journey, 
such as triage, selecting imaging modalities, image quality improvements, risk assessment, 
diagnosis, and prognostication.5-7 However, increasing integration of AI into clinical practice 
comes with new challenges for radiologists, who may not be accustomed to potential bias-
es or systematic errors introduced into their workflow, thereby risking the integrity of out-
comes.8-13

Medical publication trends indicate a growing interest in bias in AI (Figure 1). This interna-
tional collaborative review effort aims to provide readers with the fundamental knowledge 
and potential tools or strategies necessary to navigate bias when dealing with AI for medical 
imaging, thus mitigating negative impacts on patient management. This study comprehen-
sively reviews bias in AI for medical imaging, covering its fundamentals, detection techniques, 
prevention strategies, mitigation methods, encountered challenges, ethical concerns, and 
prospects.
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Definition of bias in artificial intelligence 

The concept of bias in machine learn-
ing (ML) research and more generally in the 
field of predictive modeling is intrinsical-
ly tied to the concept of variance.14 In this 
context, bias can be defined as the distance 
(or error) between the prediction and the 
actual target variable, whereas variance sig-
nifies the dependence of predictions on the 
randomness in the training data sampling  
(Figure 2).15 Hypothetically, a predictive model 
can present any combination of high or low 
bias and variance. From a statistical point of 
view, the sum of bias (squared) and variance 
is represented by the mean squared error 
metric.16 Interestingly, the concepts of bias 
and variance are not limited to the domain 
of statistical or ML modeling alone, but they 
also affect human learning and have been ex-
tensively studied in cognitive sciences.15

From a mathematical point of view, noise 
(the joint probability distribution between 
training and test/inference samples), bias, 
and variance are the three components that 
lead to model performance degradation 
and negatively affect generalization to new 
data.17 Given the somewhat irreducible na-
ture of noise, ML has focused mostly on ad-
dressing bias and variance when optimizing 
model performance during the hyperparam-
eter tuning process. However, it should be 
made clear that these two entities are inter-
dependent, and reducing one (e.g., variance) 
typically comes at the expense of increasing 
the other (i.e., bias), which gives birth to the 
concept of a bias-variance tradeoff. In recent 

years, the technical evolution of ML models, 
and especially the rise of large neural net-
work architectures, has begun to challenge 
the traditional approach of validation (or 
cross-validation) error minimization as the 
ideal strategy to optimize the bias-variance 
tradeoff during model training.17-20

Types and sources of bias

One way to comprehend imaging AI bias 
is by examining sources of bias related to 
fundamental components of the AI life cycle: 
study design and dataset (formulating the 
research question, collection, annotation, 

Main points

• In the medical artificial intelligence (AI) 
context, “bias” refers to systematic errors 
leading to a distance between prediction 
and truth, to the potential detriment of all 
or some patients.

• AI in medical imaging is at risk of being com-
promised by several types of biases, which 
could adversely affect patient outcomes.

• Understanding that medical imaging AI sys-
tems are prone to biases in various forms is 
key for their successful incorporation into 
real-world clinical settings, with greater sat-
isfaction of end-users.

• Proactively identifying and addressing AI 
bias may prevent its potential negative con-
sequences from being realized later.

• Increasing community awareness about all 
aspects of bias, such as fundamentals, mit-
igation strategies, and ethics, may contrib-
ute to the development of more effective 
regulatory frameworks.

Figure 1. Publication trends about bias in medical imaging artificial intelligence (AI) in comparison with AI in 
medicine, with different search syntaxes to identify the occurrences of the term “bias” in the title or abstract 
versus the title alone. Source: PubMed; date of search: May 7, 2024.

Figure 2. Over-simplified illustration of bias (i.e., systematic error) in contrast to variance, such as random 
noise.
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preprocessing, etc.), modeling (development 
and evaluation before using in real-world 
settings), and deployment (implementation 
in real-world settings). This section focuses 
on the most common sources of bias that 
medical imaging professionals, particularly 
radiologists, may encounter. Accordingly, 
types and sources of bias and concepts men-
tioned in this review are given in Figure 3. 
Table 1 provides a glossary of definition of 
other bias sources as well, including other 
related concepts. Table 2 presents fictional 
examples for selected bias sources.

Bias related to study design and dataset

Bias can emerge when taking the very first 
step into the development of AI solutions for 
medical imaging, which is the correct iden-
tification of an unmet and relevant clinical 
need.21 A valid research question must also Figure 3. Main types and sources of bias and related concepts highlighted throughout this review. For other 

common types and sources of bias, please refer to Table 1.

Table 1. Common terminology and concepts related to bias
Terminology Definition

Aggregation bias False conclusions or assumptions about individuals compared with the whole population based on inappropriate combinations of 
distinct groups.

Algorithm fairness Ensuring equitable outcomes across different demographic groups.

Algorithmic bias Systematic errors or prejudices in the algorithms.

Algorithmic aversion Reluctance or skepticism toward relying on artificial intelligence (AI) algorithms.

Annotation bias Systematic errors mostly introduced by human annotators during the labeling process of training data, mostly related to their 
experience, subjective interpretation, and cognitive biases concerning the annotation task.

Automation bias Overreliance on AI results, leading to the neglect of human decision-making.

Behavioral bias Distortions in user behavior seen across various platforms, contexts, or datasets.

Class imbalance Disproportionate representation of certain classes within or between the data partitions.

Cognitive bias Systematic subjective patterns in thinking that can affect the decision-making of individuals due to reliance on heuristics (i.e., 
shortcut strategies derived from previous experiences to solve a problem or reach a goal).

Concept drift Changes in correlation between input variables and output predictions over time due to fluctuations in data.

Confirmation bias Tendency to interpret AI model results in a way that confirms their existing beliefs or expectations.

Data leakage Exposure of target features or information to the model during training, leading to poor generalizability.

Demographic bias Systematic errors in models that disproportionately affect specific demographic groups based on factors such as age, gender, or 
ethnicity.

Deployment bias Misalignment between the envisioned purpose of a system or algorithm and its actual application.

Distributional shift Discrepancies between the distribution of data used to train AI models and the distribution encountered in real-world 
deployment.

Feedback loop bias Increase of systematic errors over time as the AI model continues to learn from its own predictions and feedback.

Institutional bias Systematic errors led by differences in practices, protocols, or equipment across institutions.

Measurement bias Systematic errors related to how particular features are chosen, used, or measured.

Omitted variable bias Systematic errors appear when one or more relevant variables are omitted, or context is neglected.

Overfitting Phenomenon where the AI model learns to memorize the training data instead of generalizing on new data.

Propagation bias Increase of potential systematic errors present in any algorithm or pipeline and being inherited by the final model or even 
amplified in it.

Representation and 
sampling bias Systematic errors in the collection of data, resulting in an unrepresentative sample.

Statistical bias Discrepancies between actual and predicted values when approximating a specific statistical measure.

Temporal bias Systematic errors arising over time, such as from the changes in medical imaging technology, protocols, or patient demographics.

Temporal drift Changes in the distribution or characteristics of data over time, leading to discrepancies between the development and 
deployment AI performance.

Uncertainty bias Influence of uncertainty on decision-making stemming from AI models.

Underfitting Phenomenon where the AI model is too simplistic, failing to adequately capture the complexity of data.
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be properly formulated so that it can be ef-
fectively translated into a fitting task for AI.22 
Any flaw in these essential starting points in-
evitably generates a bias in the subsequent 
steps, such as the selection of training data-
sets, AI model development, and/or deploy-
ment.

Bias in the dataset collection and prepa-
ration phases can significantly affect the 
outcomes of AI systems, particularly in the 
critical domain of medical imaging. This bias 
can stem from a variety of sources and can 
lead to disparities in the performance of AI 
systems across different patient groups, 
potentially exacerbating existing health in-
equalities.23

One of the primary sources of bias in med-
ical imaging datasets is demographic imbal-
ance. For example, if a dataset predominant-
ly consists of images from a particular racial 
or ethnic group, the AI model trained on this 
dataset may exhibit reduced accuracy when 
applied to individuals from other groups. 
This situation can lead to misdiagnoses or 
delayed diagnoses for underrepresented 
groups. Similar issues arise with gender, age, 
and socio-economic status, where AI systems 
may perform better for the demographic 
groups that are overrepresented in the train-
ing data (Figure 4).24 

Another critical aspect is the quality and 
source of the medical images. Bias can be 
introduced if the images come from a limit-
ed number of institutions or geographic lo-
cations, as different places may use varying 
equipment, protocols, and standards for im-
age capture. This can ultimately contribute 
to covariate shifts (distributional differences 
of features between training and test sets) 
(Figure 5). Such variations can cause AI sys-

tems to become overfitted to the character-
istics specific to the data they were trained 
on, reducing their generalizability and effec-
tiveness when deployed in different settings.

The preparation of datasets also introduc-
es potential biases (Figure 6). The process of 
labeling medical images, which is often per-
formed by human experts, can lead to incon-
sistencies due to subjective interpretation 

Figure 4. Over-simplified illustration of optimal and poor representation of subgroups, such as gender in 
this case, and their effect (*) in subsequent modeling. ROC, receiver operating characteristics.

Table 2. Examples based on fictional scenarios for selected bias sources related to medical imaging

Bias source Example

Annotation 
bias

A breast artificial intelligence (AI) tool is being developed to assist in analyzing mammograms. As radiologists annotate the images to 
be used for its development, they primarily focus on identifying malignant masses due to their significance in cancer diagnosis. Benign 
calcifications, less concerning but still important, may be underrepresented in the annotations made by the radiologists. The resultant 
tool may have this annotation bias, being more inclined to detect malignant masses and neglecting to adequately recognize benign 
calcifications, leading to an increased risk of false negatives.

Automation 
bias

A radiologist or a clinician relies on an AI tool to interpret chest computed tomography (CT) scans. If the AI model is trained on datasets that 
predominantly include lung nodules, it may develop a bias toward detection of these nodules over other clinically significant findings (e.g., 
consolidations). By developing a tendency to prioritize the AI tool’s output over the entire clinical evaluation, end-users may show an over-
reliance on the AI tool, trusting it without thoroughly considering other important information present in the CT scans. This automation 
bias can result in missing important findings beyond lung nodules.

Confirmation 
bias

An experienced radiologist uses an AI tool to analyze a prostate magnetic resonance imaging (MRI) scan of a patient with a history of 
urinary symptoms and elevated prostate-specific antigen levels. As the radiologist examines the imaging results, they may identify certain 
features that appear to support their initial suspicion of benign prostatic hyperplasia (BPH) based on the observed prostatic enlargement 
and nodularity. However, the tool also flags some potential small focal lesions or suspicious tissue characteristics, suggestive of prostate 
cancer. Despite these, the radiologist’s focus on confirming their preliminary diagnosis of BPH may lead them to ignore the important 
alerts provided by the tool. The cognitive bias of the radiologist toward confirming their previous suspicion of BPH influences their MRI 
interpretation.

Demographic 
bias

Radiologists utilize an AI tool to analyze abdominal CT scans. If the AI model is trained on datasets that primarily includes younger patients, 
the AI tool may not be effectively trained to recognize age-related conditions commonly found in older individuals, such as diverticulosis. 
Consequently, when presented with abdominal CT scans from older patients, the model may experience difficulty in accurately identifying 
and assessing these pathologies, due to age-related demographic bias.

Feedback 
loop bias

Radiologists rely on an AI algorithm to assist in analyzing brain MRI scans. If the algorithm is initially trained on datasets mostly featuring 
images with clear and prominent lesions, such as large tumors, it may develop a bias toward identifying these abnormalities with high 
accuracy. Users of this tool may subconsciously prioritize confirming the presence of these well-defined lesions, providing feedback that 
reinforces the AI’s accuracy in detecting such cases. Consequently, the model may improve its performance at identifying large lesions 
while potentially ignoring smaller, subtler, early-stage abnormalities, especially if they were underrepresented in the initial training data. 
This feedback loop between the AI model and the end-users, such as radiologists, can perpetuate bias, leading to a situation where the AI 
becomes increasingly adept at detecting certain types of abnormalities while potentially missing others. 
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of what the images represent and in turn to 
annotation bias. Moreover, if a small group of 
experts annotates the dataset, their individu-
al biases and level of expertise can influence 
the labels, affecting the AI model’s learning 
process. A broader concept than annotation 
bias is reference standard bias, affecting the 
way instances are labeled and consequently 
impacting algorithm development.25 Differ-
ent reference standards are often available 
to confirm radiological diagnosis, which may 
also lead to systematic errors.26 Some could 
be highly accurate but also costly and poorly 
available, whereas others could neglect in-
termediate findings or be operator-depen-
dent,27 potentially reducing label applicabil-
ity and reliability. Additionally, the choice of 
data preprocessing techniques, such as nor-
malization, augmentation, or cropping, can 
also influence the model’s output by empha-
sizing certain features over others.28

Moreover, bias can stem from broader 
historical and societal inequities that are 
reflected in the data. For example, certain 
diseases may be more prevalent in specific 
populations due to factors such as access 
to healthcare, environmental exposures, or 
genetic predispositions. If these factors are 
not adequately considered during dataset 
collection and AI model training, the result-
ing models may not only perpetuate but also 
amplify existing disparities.

Bias related to modeling

The development of AI models is a multi-
step process, and different AI algorithms 
are frequently employed at different stages, 
such as image segmentation, feature reduc-
tion, and selection.29 Therefore, potential 
bias present in any of the algorithms will 
propagate down the pipeline and be inher-
ited by the final model or even amplified in 
it, resulting in propagation bias. It should 
also be considered that, since humans are 
developing AI models, the latter can also in-
herit cognitive bias from the former.3 This is 
not specific to the model development stage 
alone and can potentially occur at any point 
in the AI lifecycle (Figure 7).30 

AI modeling also includes a validation 
step, necessary to confirm the performance 
of the algorithms before actual deployment. 
This should ideally be verified on publicly 
available benchmark datasets to ensure a 
common ground for model testing, as seen 
in AI challenges. Nevertheless, further test-
ing on independent data remains pivotal to 
verify that all requisites for deployment are 
met. In this context, a common and serious 

source of bias in model validation lies in data 
leakage.31 An example of data leak in med-
ical imaging is represented by the inclusion 
of different scans from the same patient both 
in the training and validation dataset, which 
increases the risk of overfitting. 

Another aspect to carefully consider is the 
choice of metrics used to estimate the mod-

el’s performance, which could introduce bias 
if those selected do not match the informa-
tion needed. A case example is the validation 
of automated segmentation tools, for which 
specific parameters should be selected 
based on the segmentation task characteris-
tics (e.g., is it more important to have an ac-
curate segmentation or a precise localization 
for the task?).32 

Figure 5. Over-simplified illustration of covariate shift. Distributional differences between training and 
test sets lead to poor test performance (i.e., poor generalizability) or significant deviation from the learned 
function.

Figure 6. Potential and practical bias sources relevant to medical imaging artificial intelligence based on 
data type (i.e., non-pixel and image data). Radiological images belong to chest computed tomography 
(upper left panel), chest X-ray (upper right panel), and pituitary magnetic resonance imaging (lower panel).

Figure 7. Human bias in the artificial intelligence life cycle.
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Finally, the model’s performance needs to 
be put into context, correctly selecting valid 
baseline alternatives for comparison, such as 
already recognized diagnostic tests, and for-
mally evaluating with statistical approaches 
the added value that the model may bring.33

Bias related to deployment 

Model deployment represents the final 
phase of AI/ML algorithms for medical im-
aging, following data collection and evalua-
tion.34 It involves assessing the model’s per-
formance in real-world scenarios, including 
potential application in clinical practice.35

A deployment bias emerges when there is 
a misalignment between the envisioned pur-
pose of a system or algorithm and its actual 
application.36 In medical imaging, this bias 
can manifest when an algorithm designed 
for segmentation tasks is utilized by human 
operators, whether intentionally or inadver-
tently, as a detection tool instead.37 Addition-
ally, improper utilization by end-users can 
also arise when utilizing systems to analyze 
images from anatomical districts or imaging 
modalities that differ from those they have 
been trained and validated with-for example, 
employing abdominal computed tomogra-
phy images instead of abdominal magnetic 
resonance images.

Concept drift represents an addition-
al source of bias for model deployment  
(Figure 8). Specifically, it arises when the 
correlation between input variables, such 
as images, and output predictions, such as 
diagnoses, evolves due to fluctuations in 
data, such as variations in image acquisi-
tion hardware or protocols, shifts in disease 
prevalence, or advancements in gold-stan-
dard technologies.38

Behavioral bias pertains to the poten-
tial distortions in user behavior seen across 
various platforms, contexts, or datasets.39 
Factors such as past experiences, social stig-
ma, exposure to misinformation, limited 
healthcare access, and historical context play 
a role in shaping this bias. In particular, this 
bias can lead to skewed data cohorts, incom-
plete information, heightened uncertainty in 
outcomes, and potential dismissal of algo-
rithm-assisted medical advice.40

Uncertainty bias encompasses the in-
fluence of uncertainty on decision-making 
stemming from AI/ML models.39 Precisely 
characterizing and estimating uncertainty is 
pivotal in ensuring the thorough evaluation 
and transparent reporting of AI/ML models. 
Nonetheless, human observer decisions re-
lying on AI/ML model outputs and their re-
ported uncertainty may be unduly swayed 
by the uncertainties inherent in the model’s 
output.41 Consider this scenario: AI/ML mod-
els can be “confidently wrong,” meaning they 
may yield incorrect outcomes with a high 
level of certainty. Consequently, humans 
may place greater importance on a predic-
tion that exhibits high certainty, even if it 
happens to be incorrect, compared with one 
with lower certainty that is actually correct.

Automation bias refers to the tendency of 
individuals to rely excessively on automated 
systems, such as AI algorithms, and to disre-
gard or underutilize their own judgment or 
critical thinking skills.42 In the context of AI in 
medical imaging, automation bias can mani-
fest when clinicians or radiologists place un-
due trust in the outputs or recommendations 
provided by AI algorithms, leading them to 
overlook potentially important information 
or make errors in diagnosis or treatment 
planning.43 Automation bias can occur in 

busy clinical settings where clinicians may 
feel pressure to make rapid decisions, lead-
ing them to rely on AI-generated results as a 
shortcut rather than engaging in thorough 
analysis.44 Additionally, clinicians may tend 
to seek out or interpret information in a way 
that confirms their preexisting beliefs or ex-
pectations. If an AI algorithm’s recommenda-
tion aligns with their initial impressions, they 
may be more likely to accept it without ques-
tion. A lack of adequate training or education 
on how to effectively integrate AI algorithms 
into workflow may favor automation bias.45

Algorithmic aversion refers to a phenom-
enon where clinicians or healthcare pro-
fessionals exhibit reluctance or skepticism 
toward relying on AI algorithms for making 
diagnostic or treatment decisions in med-
ical imaging.46 This bias can manifest due 
to several reasons, such as trust issues on 
algorithms’ reliability, transparency, or inter-
pretability or a lack of familiarity, fear of job 
displacement, or even ethical and legal con-
cerns.

Bias detection/identification

Detecting bias in AI algorithms necessi-
tates awareness of all sources of bias, includ-
ing those that have to do with the dataset 
and the development and evaluation of AI 
algorithms as well as those related to the 
deployment of these algorithms, such as 
human user biases and inference. Meth-
ods for bias detection vary according to the 
type of bias. One of the first strategies that 
can be used to identify bias related to the 
dataset is dataset evaluation against a set of 
predefined criteria (searching for exclusion 
bias, selection bias, recall bias, observer bias, 
and prejudice bias) and comprehensive data 
analysis.47 Unsupervised analysis of the train-
ing dataset, using methods such as principal 
component analysis and hierarchical cluster-
ing, can be used for the detection of patterns 
in the training dataset that may be otherwise 
occult, highlighting data skewness. Statisti-
cal comparison of model output according 
to different patient groups or confounders 
that may exist in the training dataset, such 
as the gender or age of patients. Potential 
discrepancies in group results could indicate 
a source of bias that can affect the final re-
sults.48 Visualization of algorithm output with 
methods such as class activation heatmaps 
can help detect discrepancies related to such 
potential confounders.

The next step in bias detection is the eval-
uation of the model development process. 
This starts with a code review that can be 

Figure 8. Over-simplified illustration of true concept drift while adding new data over time, resulting in 
changes in the relationship of input features and the target variable and ultimately in model behavior. In 
medical imaging, this may result from, for instance, a change of reference standard (e.g., new guidelines) 
in determining the target variable or a difference in the distribution of underlying data. It is also possible 
that such changes, particularly changes in data distribution, may result in virtual drifts with no obvious 
difference in model behavior.
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carried out by an independent experienced 
coder/auditor.49 Companies such as Google 
have developed methods for anonymous 
code review by several experts.49 Such a code 
review can be also performed retrospectively 
by the scientific community for manuscripts 
published with open-access code.50 Once the 
code has been scrutinized for potential bias, 
comprehensive testing should be initiated. 
This testing should extend from the evalu-
ation of model performance in populations 
unseen in the training dataset (e.g., assess-
ment of model performance in a pediatric 
population even though the algorithm was 
not trained with child data) to explainability 
analysis.51 Simulation methods testing algo-
rithms in various scenarios with Bayesian pa-
rameter search have been proposed to iden-
tify bias sources of algorithmic performance 
reduction.52 Several explainability methods 
have been used that include saliency maps, 
such as gradient-weighted class activation 
mapping (CAM) and integrated gradients. 
Evaluation of the results of saliency maps ne-
cessitates extra care, as concerns have been 
raised about the reliability of these meth-
ods.53,54 

To detect bias related to the use of the 
developed algorithm, human factors as well 
as economic, ethical, and legal factors need 
to be evaluated. Testing by a variety of user 
groups with variable experiences and back-
grounds can identify human user bias. Re-
ceiving feedback with user interviews and 
monitoring the results per user group can 
help locate performance outliers or imbal-
ances related to human factors. In addition, 
deep learning systems that reduce the vari-
ability in human actions leading in turn to 
bias reduction can be useful.55 Auditing by 
legal and ethics experts can also reveal issues 
related to the successful deployment of the 
model.56,57 

To identify and flag bias in AI publications, 
tools have been developed to assist the 
writing process of AI manuscripts.58,59 One 
of these tools is the Prediction Model Risk 
of Bias ASsesment Tool (PROBAST), which 
was developed in 2019 to enable the critical 
evaluation of studies presenting predictive 
models. The current version of PROBAST 
evaluates the risk of bias in four potential 
bias categories: participants, predictors, out-
comes, and analysis.60 Nonetheless, the cur-
rent version of PROBAST is not suitable for 
the evaluation of ML studies, and this is the 
reason that the PROBAST group has initiated 
the process of developing an AI-specific ver-
sion of PROBAST called PROBAST-AI, which 
is still under development.61 For systematic 

reviews of AI studies, the Quality Assessment 
of Diagnostic Accuracy Studies (QUADAS-2) 
has been widely used to detect the risk of 
bias.62 The QUADAS-2 tool includes 14 ques-
tions and provides an estimate of the risk 
of bias in the study, categorizing it as high, 
low, or unclear. Reporting guidelines, such 
as the Fairness Universality Traceability Us-
ability Robustness Explainability-AI and TRI-
POD-AI, can assist authors of AI manuscripts 
in reporting their studies according to the 
Fairness principle, promoting the identifica-
tion of bias sources.58,63,64 When dealing with 
radiomics studies, the CheckList for EvaluA-
tion of Radiomics (CLEAR) and METhodolog-
ical RadiomICs Score (METRICS) have been 
developed to evaluate the reporting and 
methodological study quality.65,66 Among 
the items evaluated, CLEAR item#7 and MET-
RICS item#1 require adherence to reporting 
guidelines similar to those mentioned above; 
CLEAR item#36 and METRICS item#19 re-
quire the consideration of confounding fac-
tors related to dataset preparation that are 
closely related to bias.

Avoidance strategies

Ideally, bias should be prevented before 
it becomes embedded within AI systems. 
The focus of strategies employed during the 
planning, data collection, and model training 
phases of creating AI systems is on preven-
tion, setting a course that avoids the pitfalls 
of bias rather than correcting for it post-hoc.

To mitigate bias and potentially avoid it, 
medical AI system development should ad-
here to ethical AI design principles. Guiding 
principles, such as transparency, fairness, 
non-maleficence, and respect for privacy 

from the outset, are widely included in rec-
ommendations and position papers and can 
help to prevent bias (Figure 9).67 Transparen-
cy increases explainability, interpretability, 
and similar acts of communication and dis-
closure, which in the context of bias mitiga-
tion applies to the explicit, proactive thought 
about which training data are used, and how 
they are collected, processed, and employed. 
Fairness refers to an impartial treatment 
without favoritism or discrimination. In the 
context of preventing bias, fairness can be 
pursued by creating and upholding design 
standards that respect diversity, equity, and 
inclusion. Non-maleficence is a core medi-
cal principle. AI systems should never cause 
foreseeable or unintentional harm, for in-
stance through discrimination or suboptimal 
patient management, which can be a direct 
result of biased models.13 Respect for privacy 
is an important ethical principle, particular-
ly in healthcare. In the context of mitigating 
bias, upholding this principle requires careful 
risk-benefit analyses to balance incorporat-
ing more data with the need to provide indi-
viduals control over their own data.

By incorporating the above-mentioned 
considerations early into the design phase, 
developers can create systems that are less 
likely to perpetuate or amplify biases. This in-
volves rigorous ethical review processes and 
early stakeholder consultations to guide the 
decision-making process. The composition 
of the involved teams can influence the AI’s 
propensity for bias. Teams that are diverse 
in terms of gender, ethnicity, culture, and 
professional background bring a wide array 
of perspectives to the table, which can help 
identify and eliminate potential biases early 
in the development process.

Figure 9. Key ethical artificial intelligence principles. WHO, World Health Organization.
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AI systems may transport various types of 
bias stemming from their underlying train-
ing data.68,69 At the data collection and pro-
cessing phase, these include measurement 
bias (how particular features are chosen, 
used, or measured), omitted variable bias 
(when one or more relevant variables are 
omitted or context is neglected), represen-
tation and sampling bias (incorrect sampling 
leads to insufficiently diverse or otherwise 
non-representative datasets), and aggrega-
tion bias (false conclusions about individu-
als from observing whole populations).69,70 
These issues warrant thoughtful data collec-
tion and processing to ensure that datasets 
are representative of the diversity of the pop-
ulation or phenomena they are intended to 
model. It requires sourcing data from a wide 
range of demographics, geographies, and 
contexts to capture a broad spectrum. None-
theless, even data collected following these 
principles may still reflect existing structural 
and historical biases. 

Apart from collecting more data, strate-
gies at the data processing stage may include 
the creation of more representative training 
datasets by data augmentation (e.g., by spe-
cifically adding underrepresented examples 
to the data through additional sampling or 
data generation) or data filtering (e.g., active-
ly undersampling or filtering out undesirable 
or non-representative samples).68 Generative 
AI models, such as large language models or 
vision-language models capable of synthe-
sizing images, additionally allow for tailored 
data augmentation by creating new exam-
ples that meet a set of targeted criteria.71-73 
An overview of bias avoidance strategies at 
the data processing phase is presented in 
Figure 10. 

The way data are presented to the mod-
el during training (affected by the problem 
formulation and the labeling methodology) 
and how model parameters are updated (de-
fined through training setup including the 
objective function) can introduce bias into 
the model.13,68 A classic example is optimiz-
ing a model for overall accuracy, which may 
severely impact the model performance on 
minority class samples in imbalanced setups. 
Other techniques, such as pruning, aiming 
to compress the model may also dispropor-
tionately impact underrepresented subsets 
in the data.74 Careful design of the training 
setup can help avoid biases at this stage.

Transparent and comprehensive docu-
mentation of the AI system’s design choices, 
data sources, and any assumptions made 
during development (e.g., through model 
cards)75 is crucial and can help spot sources 
of bias before, during, and after training. Ad-
ditionally, especially in the context of foun-
dation models, detailed documentation may 
help developers seeking to use larger mod-
els’ outputs to train smaller models to pre-
vent propagating bias existing in the teacher 
model to downstream models.

Mitigation strategies 

This section reviews different approaches 
and algorithms to mitigate biases. Bias miti-
gation algorithms can be divided into three 
types according to the phase in which they 
are applied: in a preprocessing phase, during 
model training, or after model training.76 Ad-
ditionally, algorithms can be categorized ac-
cording to whether they explicitly or implicit-
ly address bias by accessing or not accessing 
the bias variables during training.77

The bias mitigation algorithms applied in 
the preprocessing phase are motivated by 
the fact that many of the errors in ML models 
arise from biases inherent in the data used to 
train them. Additionally, these are indepen-
dent of the model and can be used in a black-
box setting by altering the data distribution 
to increase model fairness.76 To achieve this 
effect, discriminatory effects within data 
are first quantified and then removed or 
accounted for. Several specific mechanisms 
for handling discrimination have been pro-
posed to create a fair training distribution.76

Re-sampling and re-weighting algorithms 
focus on rebalancing the class distribution 
by adjusting the sample probability/loss 
weight for majority/minority samples.78-83 
Nabi and Shpitser84 rely on causal inference 
to estimate the effects of specific variables 
on the outcome, allowing them to transform 
the inference problem on a specific distri-
bution into another fair distribution to train 
the model. Despite addressing what can be 
considered the root of the fairness issue, this 
approach may need unrealistic assumptions 
about the training distribution or result in 
the loss of information that is implicit in the 
original data.

Other algorithms, such as distribution-
ally robust optimization85 and variations,86 
ensembling approaches,87-89 adversarial 
debiasing,90-95 invariant risk minimization,96 
invariant causal predictors,96,97 limited capac-
ity models,98-100 and gradient starvation mit-
igation,101 have been proposed to mitigate 
bias during model training by updating the 
objective function or imposing constraints 
on the model, with the last two methods im-
plicitly achieving this.77

Finally, another set of methods mitigates 
bias in a post-processing phase after model 
training by changing prediction based on 
fairness constraints.76 Hardt et al.102 proposed 
a methodology for achieving equalized odds 
and equality of opportunity, whereas Pleiss 
et al.103 proposed calibrated equalized odds. 
Woodworth et al.104 used equalized odds to 
propose learning non-discriminatory pre-
dictors, and Kamiran et al.105 used decision 
theory to suggest reject option-based classi-
fication and discrimination-aware ensemble 
for discrimination-aware classification. Lohia 
et al.106 proposed a post-processing method 
for individual and group debiasing. These 
post-processing methods can be used in 
black-box settings, similar to preprocessing 
methods, as they do not require access to 
model parameters.76

Figure 10. Overview of bias avoidance strategies at the data processing phase. Adapted from Gallegos 
et al.68 CXR, chest X-ray.
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In addition to active bias mitigation tech-
niques, explainable artificial intelligence 
(XAI) methods offer insights into the key 
features influencing a model’s predictions 
and identify and understand the significance 
of features driving a model’s decisions. This 
understanding is crucial for uncovering lim-
itations and biases in AI applications within 
medical imaging. These methods help us 
discern if confounders or biases are present 
in the model, allowing for their control or 
removal.107 In general, XAI methods can be 
categorized into two main groups: pertur-
bation-based and backpropagation-based 
explanations. Perturbation-based methods 
include occlusion,108 LIME,109 SHAP,110 and 
various forms of perturbations.111-113 Back-
propagation-based methods encompass 
well-known techniques, such as saliency 
map visualization,114 CAMs,115 and their ex-
tensions.116-118

Potential challenges

Handling bias in AI systems is crucial 
for ensuring fairness and equity in deci-
sion-making processes. However, there are 
several challenges in handling bias that can 
be related to ambiguities in interpreting re-
sults, limited diversity in benchmark data-
sets, and the subjectivity of detecting bias.

Ambiguities in interpreting results can 
pose significant challenges in the develop-
ment and clinical use of AI software. These 
refer to situations where the interpretation 
of the results is not unique or is open to mul-
tiple meanings by the users. Ambiguities can 
also originate during the different applica-
tions of the AI tools from the intended use 
statement provided by the AI developers, 
increasing the risk of off-label or erroneous 
applications of AI in clinical practice.119 For 
example, AI software trained for adult frac-
ture detection is at risk of erroneous results if 
applied in a pediatric population. 

Limited diversity in benchmark datasets 
can represent a significant challenge in AI 
development and generalizability. This can 
occur when some diseases or events are col-
lected with underrepresentation or overrep-
resentation compared with their prevalence 
in the general population or clinical practice 
due to the limited patient diversity included 
in the training data; this causes a class imbal-
ance due to an uneven distribution between 
the training data and the actual population 
to which the AI model is applied.120 As AI 
tools learn from archival data, a narrowed 
data source results in AI models that are not 
generalizable in heterogeneous patient pop-

ulations with different demographics, clini-
cal characteristics, and disease prevalence, 
leading to perpetuated bias in the final AI 
model.120,121 Publicly accessible benchmarks 
are essential for comparison for AI models 
and represent a crucial element of open sci-
ence.122 Multicentric databases can poten-
tially overcome this challenge by collecting 
a large number of diverse and representa-
tive data in rarer conditions. Currently, these 
publicly available datasets are limited to a 
narrow spectrum of diseases or countries 
of origin of the patient population.123 Differ-
ent demographic and clinical characteristics 
should be included to ensure a real-world 
representation in benchmark datasets.48 
However, although sharing data is essential 
for developing robust AI tools, patient priva-
cy when collecting medical information can 
pose significant challenges.124 Furthermore, 
real-world data are affected by missing or 
incomplete clinical values in retrospective 
cohorts and heterogeneity of clinical and 
laboratory parameters with their standard 
of reference. Image quality, noise, and ac-
quisition parameters represent additional 
challenges in handling bias in multicentric 
cohorts. In the current radiological litera-
ture, there are ongoing difficulties in sharing 
benchmark datasets, with fewer than ap-
proximately 6% of all published articles in ra-
diology journals partially or completely shar-
ing the experimental data used to build the 
AI models.125 Finally, data labeling for model 
training can be affected by the human image 
interpretation and diagnostic performance 
of the selected reference standard for the in-
vestigated condition.121

Identifying the source of bias in AI tools is 
also a relevant challenge. Subjectivity in the 
detection of bias can be related to personal 
interpretation and individual perspectives 
related to the identification of the bias it-
self. The complexity of AI tools makes it dif-
ficult to detect. Moreover, different sources 
of bias can contribute to the generation of 
bias, including the data source, algorithm, 
and users, which makes the identification 
more cumbersome.124 Ultimately, identifying 
and addressing bias in AI will require signif-
icant effort for algorithm transparency, data 
source and processing, and final model uti-
lization.

Ethical considerations

Ethical considerations are important in all 
steps of the AI pathway, from identifying a 
use case to post-market surveillance. It is im-
portant to ensure the technology promotes 
well-being, minimizes harm, and distributes 

benefits and harms justly among all stake-
holders.126 The World Health Organization 
(WHO) poses six key ethical principles for AI 
in healthcare in their framework (Figure 9): 
(1) protect autonomy, (2) promote human 
well-being, human safety, and the public in-
terest, (3) ensure transparency, explainabili-
ty, and intelligibility, (4) foster responsibility 
and accountability, (5) ensure inclusiveness 
and equity, and (6) promote AI that is respon-
sive and sustainable.127 

The WHO principles 2 and 5 address bias, 
mandating that AI tools prioritize human 
well-being, safety, and public interest. En-
suring AI’s safety and efficacy in medical im-
aging demands rigorous testing, validation, 
and ongoing monitoring to mitigate harms 
and biases. Cost-effectiveness analyses and 
environmental awareness are both crucial 
to prevent unnecessary burdens on society, 
patients, and our environment. 

Addressing biases in AI, particularly those 
affecting inclusivity and equity based on 
gender (identity), ethnicity, and socio-eco-
nomic status, requires thorough subgroup 
analyses. The 2020 Dutch case against the 
“system risk indication” tool, which violated 
privacy laws and wrongly identified innocent 
people as fraud suspects, underscores the 
impact of such biases.128

Additionally, the lack of diversity among 
developers and researchers can worsen 
these issues, as teams may unconsciously fa-
vor perspectives similar to their own. There-
fore, enhancing team diversity and uncon-
scious bias training is crucial for mitigating 
bias in AI development.

Central to data ethics in AI are principles 
such as informed consent, privacy, data pro-
tection, and transparency. Currently, patients 
can decline being evaluated by AI-based 
tools according to the right to informed 
consent for any procedure in the hospital.129 
Patients should be given comprehensive in-
formation about how AI is used in their care, 
including any limitations or biases of the AI 
system that may affect their treatment. This 
may, however, eventually become infeasible 
when AI is deeply integrated into healthcare, 
and refusing AI may then compromise an in-
dividual’s access to care. An alternative may 
then be a human-in-the-loop and a rigorous 
monitoring system.130

Ultimately, to protect patients, the ethical 
use of AI including mitigating biases needs 
to be captured in regulations. The recent Eu-
ropean Union’s AI Act serves as a pioneering 
legal framework aimed at regulating AI use, 
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particularly in high-risk applications such as 
healthcare (as defined in Article 6). Set to 
fully take effect in 2026, the act governs the 
development, deployment, and use of AI, en-
suring safety, transparency, and adherence 
to ethical standards across the EU. Article 10 
mandates that for high-risk AI systems, train-
ing, validation, and testing datasets must be 
relevant, representative, error-minimal, and 
complete for their intended use. Addition-
ally, it requires rigorous data governance, 
including bias examination and mitigation 
measures, to prevent impacts on health, 
safety, fundamental rights, or unlawful dis-
crimination, particularly when data outputs 
affect future inputs. Concerning monitoring, 
Article 61 of the legislation mandates that 
developers of high-risk AI systems establish 
ongoing, systematic post-market surveil-
lance mechanisms. Critiques of the act high-
light liability gaps and tension between its 
vague yet stringent stipulations, potentially 
stifling innovation and escalating healthcare 
costs through the compliance burden.131 

Prospects

Despite the above challenges, proactive 
efforts are expected to avoid and mitigate 
bias in AI for medical imaging in the future. 
Addressing bias in medical imaging AI is a 
dynamic landscape with many opportuni-
ties for innovation. Before going into detail, 
it should be acknowledged that expecting 
completely bias-free systems may be unre-
alistic.

Developing new bias detection methods 
is a promising future direction. More so-
phisticated algorithms that can identify and 
measure biases, including subtle discrimina-
tion, may be developed by researchers. Even 
though AI models are assumed to be biased, 
AI-based bias auditing tools may be lever-
aged to help mitigate bias.132,133 To reflect 
diverse healthcare landscapes and dispari-
ties across countries and regions, initiatives 
to improve diversity and representativeness 
in datasets, possibly globally, may support 
this goal.123 Such initiatives should aim to 
reduce AI system biases by compiling larger 
and more inclusive data repositories from di-
verse demographic groups and geographic 
regions.123

Additionally, bias or fairness-aware algo-
rithms for medical imaging applications may 
be promising.134 These algorithms can ensure 
equitable outcomes across patient popu-
lations. Because collaboration across disci-

plines is key to progress in this field, experts 
from computer science, medicine, ethics, 
and policymaking can collaborate to address 
bias in AI medical imaging from multiple 
perspectives.39 Resultant algorithms must 
be explainable with transparent methods so 
these can be further studied and debated in 
the future.135-137 AI companies should be en-
couraged to actively participate in indepen-
dent research on AI biases and algorithms to 
improve fairness.

After training, an AI algorithm can be 
locked or adaptive.138 Instead of becoming 
outdated after a few years, the AI model 
could be updated continuously as it learns 
from new data. Continuous learning can 
increase bias if the new data are biased.139 
Continuous monitoring of models should 
address biases that may arise over time to 
ensure the integrity of AI medical imaging 
systems in real-world clinical settings.10,48,140 
By identifying and addressing biases, these 
systems can improve healthcare outcomes 
and equity. Independent experts or organi-
zations can audit these regularly.

AI system development and deployment 
in healthcare should require adherence to 
certain ethical guidelines and standards, 
which need to be improved over time con-
sidering the dynamic nature of these tools. 
These guidelines should explicitly deal with 
AI bias and fairness as well. Stronger regu-
latory oversight and accountability mech-
anisms, such as the Food and Drug Admin-
istration’s action plans and the European 
Union’s AI act, are needed to ensure that 
AI medical imaging systems meet bias and 
trustworthiness standards without hindering 
AI innovation.141-143

Final remarks

Understanding that medical imaging AI 
systems are sensitive to biases is key for their 
effective real-world integration into clinical 
practice. As technology progresses, the AI 
community should prioritize addressing bias 
throughout the entire AI lifecycle, starting 
from the research question to data collec-
tion, data processing, model development, 
model evaluation, and eventual real-world 
deployment. For this purpose, we present 
collective recommendations in Table 3.

Despite the aspiration for unbiased AI, 
complete inclusivity of all data types and 
sources remains an unattainable goal in 
model development. Nevertheless, by le-

veraging diverse datasets, integrating fair-
ness-aware systems or bias assessment tools, 
and promoting interpretability and explain-
ability methods, the future -and also the AI it-
self- may hold great promise to mitigate bias 
and enhance patient care outcomes. Even so, 
developers and clinicians must acknowledge 
the inherent limitations of AI methodologies 
and potential biases, similar to traditional di-
agnostic tools, to ensure the ultimate clinical 
decisions are based on clinical context and 
benefit all patients equitably. Being at the 
forefront of AI implementation, medical im-
aging professionals, particularly radiologists, 
are positioned to lead efforts toward unbi-
ased AI integration in healthcare. 

By offering a comprehensive review of 
critical aspects, but without a detailed tech-
nical discussion, we hope this review effort 
raises awareness within the medical imaging 
community about the importance of identi-
fying and addressing AI bias proactively to 
prevent its impact from being realized later. 
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Artificial intelligence in musculoskeletal applications: a primer for 
radiologists

ABSTRACT
As an umbrella term, artificial intelligence (AI) covers machine learning and deep learning. This re-
view aimed to elaborate on these terms to act as a primer for radiologists to learn more about the 
algorithms commonly used in musculoskeletal radiology. It also aimed to familiarize them with the 
common practices and issues in the use of AI in this domain.
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radiologists. Diagn Interv Radiol. 2025;31(2):89-101.

Approximately 1.71 billion people have musculoskeletal (MSK) conditions worldwide.1 
The need for imaging on MSK disorders is increasing in parallel with the rising and 
progressively aging global population,2 posing a significant threat of fatigue in radi-

ologists and unmet needs for patients.3,4 The evolution of MSK radiology traces back to the 
inception of the field of radiology itself with the discovery of X-rays in 1895. On a separate 
trajectory, the 1950s witnessed the introduction of the first programming languages and soft-
ware, raised by Turing’s5 question, “can machines think?”. However, it was not until 1992, nearly 
a century later, that these two fields merged, culminating in the first research into artificial 
intelligence (AI) in radiology.6 Today, AI has become an ever-growing field and is reshaping 
the world, including medicine, with radiology at the forefront, evidenced by Food and Drug 
Administration (FDA)-approved AI-based tools. The first AI-based algorithm was approved 
by the FDA in 2017. By 2022, radiology dominated the medical field by a striking 87% of all 
FDA-authorized AI-based devices.7 In 2017, MSK applications were the second most common 
subject of AI-related publications in radiology, second only to neuroradiology.8

Thus far, AI research in radiology has primarily focused on interpretive tasks, including frac-
ture detection, osteoarthritis detection and grading (cartilage and meniscal lesions), bone 
age determination, osteoporosis and bone quality assessment, tissue/region identification 
and segmentation, radiographic angle and bone measurements, clinical decision making on 
various bone and ligament anomalies, lesions characterization and diagnosis of infectious, 
oncological or rheumatological diseases, quantitative analysis and radiomics, and estimation 
of patient demographics.9 However, AI also offers promising solutions for non-interpretive 
tasks, which aim to ensure high-quality care and time-efficient outputs for the rising demands 
on imaging.10,11 Indeed, non-interpretive tasks, such as protocoling, quality control, and over-
seeing imaging studies, comprise 44% of a radiologist’s daily workload.12 However, most of 
these tasks are neglected where productivity is mainly assessed by the number of produced 
reports. Research in the emergency radiology department shows that for every 1 minute 
spent on the phone by radiologists, the report turnaround time increases by approximately 
4 minutes.12 Therefore, it is imperative to create time-efficient solutions to meet the rising 
demand in the field, where AI offers revolutionary solutions.

Therefore, radiologists must embrace a comprehensive understanding of AI and machine 
learning (ML) to integrate these technologies into their practice effectively, as described in 
Figure 1. Proficiency in data interpretation and validation will ensure the accuracy and reli-
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ability of AI algorithms beneficial for clinical 
practice. Understanding the underlying prin-
ciples of ML models, such as neural networks 
and deep learning (DL) architectures, is es-
sential for critical appraisal and informed de-
cision-making. Radiologists must also grasp 
the limitations and potential biases inherent 
in AI systems, emphasizing the importance 
of human oversight in clinical decision-mak-
ing. Furthermore, knowledge of regulatory 
frameworks and ethical considerations sur-
rounding AI adoption in healthcare is imper-
ative to navigate legal and ethical challenges. 

Algorithms
Alongside advancements in computa-

tional power, computer algorithms, and data 
availability, AI has gained popularity as a 
rapidly developing tool that can transform 
industries. Broadly defined, AI refers to com-
puter systems that can perform assigned 
tasks, such as learning, decision-making, 
and problem-solving, with satisfactory or 
better-than-expected performance within a 
given context. Subsets of AI include the fol-
lowing: artificial narrow intelligence, which 
can perform specific tasks well but cannot 
transfer knowledge; artificial general intelli-
gence, which can transfer knowledge across 
systems or tasks; and artificial superintelli-
gence, which functions beyond the capabil-
ity of human beings and is currently mainly 

conceptualized.13 Commonly used AI con-
cepts and descriptions are listed in Table 1. 

ML essentially entails all techniques that 
can be employed to train a machine to 
mimic human performance. In the current 
context, it refers14 to the development of al-
gorithms that predict discrete labels (classi-
fication), continuous quantities (regression), 
data subgroups (clustering), or important 
features (dimensionality reduction) based 
on previous experiences using probability, 
statistics, and linear algebra. Traditional ML 
algorithms include linear classifiers, logis-
tic regression, decision trees, and near-
est-neighbor searches. Each of these algo-
rithms seeks to learn a mapping between 
input and output variables by defining de-
cision boundaries between labeled data or 
clustering of the data.

DL refers to a subset of ML that utilizes 
neural networks to learn new high-level fea-
ture representations of data for computer 
vision tasks, such as object segmentation, 
classification, and detection, with high ef-
ficiency.15 Neural networks are composed 
of multiple layers of interconnected nodes 
with internal weights modeled after bio-
logical neural systems. The network learns 
to perform tasks by iteratively performing 
complex, non-linear transforms, involving 

passing forward input data through the net-
work to predict a desired output and then us-
ing the discrepancy between the predicted 
and expected output to update the internal 
weights of the nodes in the network to im-
prove task performance. 

Convolutional neural networks (CNNs) 
perform convolution operations over local 
regions using shared convolution weights 
such that networks achieve translational 
invariance (i.e., objects can be detected re-
gardless of location). Additional pooling op-
erations down-sample data representations, 
automatically extracting relevant spatial 
hierarchical features. Variational CNNs have 
modified the underlying network structure 
to improve versatility and effectiveness. The 
two-dimensional (2D) U-Net was a significant 
breakthrough for medical imaging tasks, par-
ticularly segmentation. In 2015, Ronneberg-
er et al.16 proposed a unique U-shaped archi-
tecture (Figure 2), which down-sampled and 
up-sampled input images of varying image 
modalities to predict regions of interest with 
“very good performance,” even after training 
with a very limited amount of training data.
Despite their successes, CNNs are prone to 
overfitting, meaning CNN-based models do 
not perform as well on new unseen data. 
They also suffer from a requirement for large 
amounts of data for training and a lack of in-

Figure 1. A schematic diagram of the usage of artificial intelligence (AI) in multiple levels of musculoskeletal 
radiology before, during, and after examination. *It is important to emphasize that continuous input from 
radiologists is crucial to minimize risks from AI in real-world clinical scenarios and to provide uncompromised 
patient safety at every step in the flowchart where AI-based solutions are being tested. The figure has been 
created with the help of the Biorender tool (https://www.biorender.com).

Main points

• Proficiency in data interpretation and vali-
dation will ensure the accuracy and reliabil-
ity of artificial intelligence (AI) algorithms 
beneficial for radiologists in their clinical 
practice.

• Understanding the underlying principles 
of machine learning (ML) models, such as 
neural networks and deep learning archi-
tectures, is essential for critical appraisal and 
informed decision-making and has been 
covered in this article.

• This article also discusses the limitations 
and potential biases inherent in AI systems, 
emphasizing the importance of human 
oversight in clinical decision-making.

• Furthermore, knowledge of regulatory 
frameworks and ethical considerations sur-
rounding AI adoption in healthcare is im-
perative to navigate legal and ethical chal-
lenges.

• Continuous learning and collaboration with 
data scientists and AI experts are essential 
for radiologists to harness the full potential 
of AI and ML in improving diagnostic accu-
racy, efficiency, and patient care while up-
holding professional standards and ethical 
principles.
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terpretability due to the model’s architectur-
al complexity.

Federated learning proposes a framework 
to address challenges with model general-
izability, with special benefits when using 
medical data. An aggerate model encapsu-
lates shared model weights from multiple 
collaborators who trained the model on pri-
vate datasets.17

Generative adversarial networks (GANs) 
are popular for image-to-image translation, 
consisting of two opposing networks: a gen-
erator and a discriminator.18 The generator 
creates an image to fool the discriminator, 
while the discriminator attempts to discern 
real or synthetic images.19 Due to the oppo-
sitional nature of the network, GANs can be 
challenging to train and often require care-
ful consideration of hyperparameters. Mode 
collapse occurs when the generator pro-
duces similar images that may not capture 
the full distribution of the training data and 
the discriminator is unable to provide useful 
feedback to guide training. 

Recently, large language models and 
vision transformers (ViTs)20 have spurred a 
new wave of innovation. Both of these DL 
architectures are based on transformers, 
which consist of an encoder, which extracts 
meaningful features from input data, and a 
decoder network, which uses the features to 
generate outputs. Transformers process data 
as a sequence of tokens, enabling the mod-
el to capture global relationships between 
the data (Figure 3). For ViTs, images are vec-
torized into tokens, which can be combined 
with text.21

A typical workflow to develop an ML algo-
rithm involves several distinct stages. It be-
gins with problem definition and data collec-
tion where a specific object is identified, and 
relevant data is gathered. Subsequently, data 
preprocessing involves cleaning, transform-
ing, and processing the dataset for training. 
Common preprocessing techniques include 
image normalization and clipping to achieve 
favorable image intensity ranges and con-
trast for ML models. Before model develop-
ment, data is split into training, validation, 
and testing subsets, often with balanced dis-
tributions of relevant metadata, such as age, 
for proper evaluation of model performance. 
During training, models may be prone to 
overfitting if highly sensitive to patterns in 
the training dataset. The validation dataset 
allows for the evaluation of model perfor-
mance during training, while the test set is 
only used to assess performance on the final 
selected model for unbiased assessment. 

Figure 2: An introduction to the seminal U-Net architecture. Reproduced via Creative Commons License 
from.16

Table 1. A list of commonly used artificial intelligence concepts and descriptions

Concepts Meanings in one line

Artificial intelligence (AI) The simulation of human intelligence processes by machines, 
particularly computer systems.

Machine learning (ML) A subset of AI that allows systems to learn from data and improve 
over time without being explicitly programmed.

Deep learning A subset of ML where artificial neural networks mimic the 
structure and function of the human brain to process data.

Neural networks A system of algorithms modeled after the human brain, used to 
recognize patterns.

Natural language processing The ability of computers to understand, interpret, and generate 
human language.

Computer vision The field of AI that enables computers to interpret and understand 
visual information from the real world.

Reinforcement learning A type of ML where an agent learns to make decisions by trial and 
error, receiving feedback in the form of rewards or penalties.

Supervised learning A type of ML where the model is trained on labeled data, with 
input–output pairs provided.

Unsupervised learning A type of ML where the model is trained on unlabeled data and 
must find patterns and relationships on its own.

Semi-supervised learning A hybrid approach where the model is trained on a small amount 
of labeled data and a large amount of unlabeled data.

Transfer learning An ML technique where a model trained on one task is 
repurposed or fine-tuned for a similar task.

Generative adversarial networks A class of algorithms used in unsupervised learning to generate 
new data instances similar to a given dataset.

Overfitting When a model learns to perform well on the training data but fails 
to generalize to new, unseen data.

Bias and variance
Bias refers to the error introduced by approximating a real-world 
problem with a simplified model, while variance refers to the error 
introduced by sensitivity to fluctuations in the training set.

Feature engineering The process of selecting and transforming variables or features to 
improve the performance of ML algorithms.

Hyperparameters Parameters that are set prior to training and control the learning 
process of ML algorithms.

Ensemble learning A technique that combines multiple models to improve the 
performance of the overall system.
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Next, model selection and training occur, 
where various algorithms are evaluated, and 
a suitable model is chosen. Existing models 
may offer excellent zero-shot capabilities 
such that no modification of model weights 
is needed. On the other hand, models may 
be trained for a specific use case by fine-tun-
ing, which involves further training of a pre-
trained model on a smaller, targeted data 
set. After training, the model is evaluated 
on the test dataset using appropriate met-
rics specific to the objects of the model. Fi-
nally, the model is deployed and undergoes 
monitoring and maintenance to ensure op-
timal performance over time. This iterative 
process requires collaboration between do-
main experts, data scientists, and computer 
programmers to achieve successful out-
comes. Some of the crucial technical terms 
and metrics used in everyday ML, and what 
they mean, are listed in Table 2. Although 
AI seems to be an omnipresent tool in cur-
rent radiology practices, many users remain 
unfamiliar with the basic concepts, utilities, 
challenges, processes, and biases associated 
with it. We aim to provide comprehensive 
starting content that prepares the commu-
nity of medical experts to become tuned to 
the vocabulary and its nuances and to get a 
sense of how AI can be integrated into their 
daily MSK radiology practice.

Applications in musculoskele-
tal radiology

Image acquisition

Imaging acceleration

Extensive research dedicated to reducing 
the time required to acquire medical images 
has led to the development of unique data 

sampling and reconstruction techniques in 
MSK radiology, primarily for computed to-
mography (CT) and magnetic resonance im-
aging (MRI). In particular, MRI is an important 
modality for radiologists to diagnose many 
MSK conditions, but it suffers from increased 
cost and increased time to acquire images 
compared with other modalities. AI-based 
image acceleration techniques aim to break 
those Nyquist limits, though this must be 
done while considering any in-domain and 
domain-shift artifacts. Reconstruction, there-
fore, is equally essential to ensure the quali-
ty of images is clinically preserved in rapidly 
acquired MRI. AI researchers have developed 
algorithms that achieve both high accelera-
tions for faster imaging and excellent recon-
stitution with comparable or improved image 
resolution. Such methodologies have been 
developed using data-driven guidance, such 
as compressed sensing or dictionary learn-
ing, or physics-guided networks combined 
with artifact removal.22 These techniques are 
often modified for solution-specific prob-
lems, including accelerating higher-dimen-
sional 2D or 3D MRI scans, such as dynamic 
(temporal) MRI.23 AI techniques for the joint 
optimization of a non-Cartesian k-space 
sampling trajectory and an image-recon-
struction network have been rising in pop-
ularity. For example, one such framework, 
PROJECTOR,24 proposed dubbed projection 
for jointly learning non-Cartesian trajectories 
while optimizing reconstructor trajectories. 
It also ensured that the learned trajecto-
ries were compatible with gradient-related 
hardware constraints. Previous techniques 
enforced these constraints via penalty terms, 
but PROJECTOR enforces them via embed-
ded steps that project the learned trajectory 
on a feasible set. 

Synthesis of images and parametric maps

Another exciting application of AI is to 
characterize meaningful tissue maps or im-
ages from raw data (Figures 4 and 5). Wu et 
al.25 proposed CNNs for synthesizing water/
fat images from only two echoes instead of 
multiple. The method achieved high-fidel-
ity output images, a 10-fold acceleration in 
computation time, and also generalizability 
to unseen organ images and metal artifacts. 
Zou et al.26 have also proposed reconstruct-
ing free-breathing cardiac MRI data and syn-
thesizing cardiac cine movies from manifold 
learning networks. This enables a unique 
generation of synthetic breath-hold cine 
movies with data on demand: specifically, 
movies with different inversion contrasts. 
Additionally, it enables the estimation of T1 
maps with specific respiratory phases. So 
far, the derivation of tissue parameter maps 
has been achieved by repeating acquisition 
in steady-state conditions and longer scan 
times.22 However, rapid extraction of such 
parameters is no longer a challenge due to 
AI-based solutions, such as synthetic map-
ping of T1, T1p, R2*, and T2 relaxation, chemical 
exchange saturation transfer proton volume 
fraction and exchange rate, magnetization 
transfer, and susceptibility. Conventional 
magnetic resonance fingerprinting (MRF) 
is regularly used for quantitative parameter 
estimation. However, it suffers from the com-
putational burden of dictionary generation 
and pattern matching. The burden further 
grows exponentially with the number of 
fitting parameters considered. ML has also 
been utilized to accelerate both the acqui-
sition and reconstruction and thus optimize 
MRF sequences.22

End-to-end design

End-to-end design of reconstruction and 
segmentation techniques have recently 
been a heavy focus in the medical imaging 
community. Often addressed separately, 
these two tasks could benefit from being 
handled in tandem. Tolpadi et al.27 recently 
hosted and summarized a challenge entitled 
“K2S,” hosted at the 25th International Con-
ference on Medical Image Computing and 
Computer-Assisted Intervention (Singapore, 
2022). Eight-times under-sampled raw MRI 
measurements were provided as training 
data with their fully sampled counterparts 
and segmentation masks (i.e., a unique data-
set consisting of 300 knee MRI scans accom-
panied by radiologist-approved tissue seg-
mentation labels). In the testing phase, the 
challenge participants submitted DL models 
that generated high-efficiency segmenta-

Figure 3. An introduction to vision transformers. Reproduced via Creative Commons License from.20
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Table 2. Technical terms and metrics used in everyday machine learning: what do they mean?
Technical terms
Terms Explanations

Feature An individual measurable property or characteristic of a phenomenon being observed, often represented as a variable 
in a dataset.

Label The output or target variable in supervised learning, representing the prediction or classification to be made.
Instance A single example or data point in a dataset, typically represented as a row in a table.

Model A mathematical representation or algorithm that learns patterns and relationships from data to make predictions or 
decisions.

Training data The data used to train a machine learning (ML) model, consisting of input features and corresponding labels.
Test data Data used to evaluate the performance of a trained ML model, separate from the training data.
Validation data Data used to fine-tune hyperparameters and assess model performance during the training process.
Loss function A function that measures the difference between predicted and actual values, used to train and optimize ML models.
Optimization algorithm An algorithm used to adjust the parameters of a model during training to minimize the loss function.

Gradient descent An optimization algorithm that iteratively updates the parameters of a model by moving in the direction of steepest 
descent of the loss function.

Epoch One complete pass through the entire training dataset during the training of an ML model.
Batch A subset of the training data used in one iteration of training, typically chosen to improve efficiency.
Batch size The number of training examples utilized in one iteration of training during the gradient descent process.

Learning rate A hyperparameter that controls the step size during the optimization process, determining the rate at which the model 
parameters are updated.

Stop criteria Criteria by which model stop training, such as for “x” number of epochs or until the loss stops decreasing by “x” %. Clear 
stop criteria and assessment of training loss allow a fairer comparison of model weights.

Regularization Techniques used to prevent overfitting by adding a penalty term to the loss function, discouraging complex models.

Dropout A regularization technique used in neural networks to randomly deactivate neurons during training to prevent 
overfitting.

Activation function A mathematical function applied to the output of each neuron in a neural network, determining its output.

Backpropagation An algorithm used to train neural networks by iteratively adjusting the weights of connections based on the error 
calculated during forward pass.

Convolutional neural network A type of neural network designed for processing structured grids of data, commonly used in image recognition tasks.

Recurrent neural network (RNN) A type of neural network designed to process sequences of data, with connections between units forming directed 
cycles, commonly used in natural language processing tasks.

Long short-term memory A type of RNN unit capable of learning long-term dependencies, commonly used in sequence prediction tasks.
Common metrics
Accuracy The proportion of correctly classified instances (both true positives and true negatives) out of the total instances.
Precision The proportion of true positive predictions out of all positive predictions made by the model.
Recall (sensitivity) The proportion of true positive predictions out of all actual positive instances in the dataset.
F1 Score The harmonic mean of precision and recall, providing a balance between the two metrics.
Specificity The proportion of true negative predictions out of all actual negative instances in the dataset.

ROC area under the curve score The area under the receiver operating characteristic (ROC) curve, representing the model’s ability to discriminate 
between positive and negative classes across different thresholds.

Confusion matrix A table used to evaluate the performance of a classification model, showing the counts of true positive, true negative, 
false positive, and false negative predictions.

Mean squared error (MSE) The average of the squared differences between predicted and actual values, commonly used for regression tasks.
Root mean squared error The square root of the MSE, providing a measure of the average magnitude of error in the predicted values.

Mean absolute error The average of the absolute differences between predicted and actual values, providing a measure of average error 
magnitude.

Peak signal-to-noise ratio A measure of image quality and fidelity, calculated as the ratio between the maximum power of a signal verses noise. 
Commonly used for reconstruction tasks.

Structural similarity index metric A measure of preceptive similarity between two images whose formula is based on comparison of image structure, 
contrast, and brightness. Commonly used for reconstruction tasks.

R-squared A statistical measure of the proportion of variance in the dependent variable that is explained by the independent 
variables in a regression model.

Mean average precision A metric used to evaluate object detection models, representing the average precision over all classes at various 
intersection over union thresholds.

Cohen’s kappa A statistic that measures inter-rater agreement for categorical items, considering how much agreement would be 
expected by chance.

Mean intersection over union A metric commonly used to evaluate semantic segmentation models, measuring the ratio of intersection to union of 
predicted and ground truth masks. Values range from 0 to 1, indicating no to perfect overlap, respectively.

Dice coefficient

A metric for segmentation assessment calculated by the ratio of 2 × the intersection divided by the total area of 
predicted and ground truth masks. This metric has good utility for small regions of interest because there is no bias 
from background labels. Background is often more prevalent so inclusion of these labels leading to unfavorable class 
imbalance.

Log loss (binary cross-entropy) A loss function used in binary classification tasks, measuring the difference between predicted probabilities and actual 
binary outcomes.

Silhouette score A measure of how similar an object is to its own cluster compared with other clusters, used to assess the quality of 
clustering algorithms.

Explained variance score A metric used to evaluate the performance of regression models, measuring the proportion of variance in the target 
variable explained by the model.
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tion maps directly from the under-sampled 
raw data. No correlations were found be-
tween the reconstruction and segmentation 
metrics (Figure 6). Some researchers sug-

gest pre-training segmentation models on 
“pretext tasks”. In these tasks, the model is 
trained to restore distorted images. Context 
prediction and context restoration challeng-

es demonstrate that segmentation models 
can be made robust with pre-training, par-
ticularly if labeled data availability is limit-
ed.22

Image post-processing

Registration

Image registration is a critical process in 
imaging that focuses on the accurate align-
ment of images, which is necessary for the di-
agnosis, treatment planning, and monitoring 
of diseases. However, it is difficult to develop 
robust algorithms to register images of vary-
ing resolution and from different modalities 
efficiently and accurately. This is particularly 
challenging in the presence of significant 
anatomical variation in the case of MSK dis-
ease. Conventional registration methods 
often rely on solving pairwise optimization 
problems, which can be time-consuming 
and computationally expensive.28 Recent 
literature has demonstrated the growing 
application of AI, in particular DL models, in 
image registration. CNNs, for instance, have 
been employed to predict the transforma-
tion required to align images. For example, 
a study by Sokooti et al.29 proposed a CNN-
based method for non-rigid registration on 
3D chest CT follow-up data. Another novel 
approach involves using spatial transformer 
networks (STNs), a DL model that can learn 
spatial transformations to align images. In a 
study by Sokooti et al.29 an STN was used for 
image registration, showing that the model 
could learn complex transformations from 
training data.30 Models such as VoxelMorph, 
a CNN-based unsupervised framework for 
image registration,31 have also shown prom-
ising results. Although VoxelMorph was 
trained on 3D brain MRI, the architecture of 
the models can be used to train on specific 
MSK datasets due to the unsupervised and 
generalizable nature of the models.

Segmentation

Image segmentation is a well-defined 
problem that involves the delineation of 
specific regions of interest. As manual im-
age segmentation is both time-consuming 
and repetitive, the research community has 
explored AI to improve medical image seg-
mentation workflows with great interest.16 
Over the years, various network architectures 
have been developed to segment MSK struc-
tures. One of the most popular CNN models 
is the U-Net, discussed earlier. It is often uti-
lized to solve 2D or 3D segmentation tasks, 
such as identifying muscles, bones, cartilag-
es, menisci, femoral and acetabular regions, 

Figure 5. Four knees from patients who participated in one of two studies: (a) the UCSF (cohort A) study or 
(b-d) the multi-center (cohort B) study at one of three centers. Input ground truth T2 maps exhibit distinct 
intensity elevation and textural patterns compared with ground truth T1ρ maps. Nevertheless, predicted T1ρ 

maps generated by the convolutional neural network preserve these differences, as indicated by the regions 
marked by the arrows. Reproduced via Creative Commons License from.74

Figure 4. Occlusion maps for PatchGAN and U-Net pipelines. For U-Net and PatchGAN, hotspots primarily 
included intercarpal joint regions. Particularly for the U-Net, the maps also emphasized the forearm muscles. 
Given that the synovial joints are where an inflammatory imaging algorithm would see the most utility, the 
fact that both algorithms placed heavy emphasis on the intercarpal regions was promising, indicating that 
both focused on synovitis-relevant regions to make predictions. Reproduced via Creative Commons License 
from.72
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and shoulder structures in knee, spine, hip, 
thigh, and wrist anatomy.32,33 Usually, the 
performance of existing segmentation algo-
rithms can only be fairly compared on a spe-
cific case basis, such as anatomical region, 
medical imaging acquisition setting, or study 
population.34 

DL can establish a useful representation of 
any object without prior super-imposition of 
user-designed features. This is why the per-
formance of a vertebral body segmentation 
algorithm relies on the integrity of interver-
tebral discs and is compromised when disc 
pathologies are present if not trained with 
enough variety of data. Identification of a 
thoracic vertebral body is achieved using 
intrinsic features and its proximity to a disc. 
The disc serves as an extrinsic feature for the 
vertebral body. In other words, it becomes the 
landmark that the network learns in the con-
text of spine segmentation (Figure 7a-c). This 
is also the reason for failures in patch-based 
approaches. Only limited contextual infor-
mation is passed, which limits the outcome 
efficiency. 

On the positive side, network learning 
from diverse data may often learn how the 
images, anatomies, and pathologies are in-
tegrated beyond visual perception, suggest 
new biomarkers as predictors of MSK diseases 
through image analysis, and potentially over-

come the limitations of human perception. 

Anomaly detection

Anomaly detection involves identifying 
abnormal structures or pathologies, such 
as fractures, tumors, or degenerative dis-
eases, amidst a wide range of normal ana-
tomical variations. To accurately distinguish 
between benign variants and clinically sig-
nificant abnormalities, DL models-particu-
larly CNNs-have been implemented due 
to their ability to learn hierarchical feature 
representations.35,36 Autoencoders have 
also been used for unsupervised anoma-
ly detection, whereby during the training 
process for reconstructing input data, they 
learn to encode “normal” data patterns 
and can thus highlight deviations from the 
norm when encountering an anomalous 
data point and produce a significantly dif-
ferent output.37 These models can assist 
in identifying subtle or complex anoma-
lies that may be missed by the human eye 
while providing consistent performance, 
thus reducing variability between differ-
ent radiologists’ interpretations. Workflow 
efficiency can be improved by prioritizing 
cases with potential anomalies identified 
by AI. However, there is a risk of generating 
false positives, false negatives, or model 
hallucinations, leading to unnecessary in-
terventions or missed diagnoses. Radiol-

ogists should seek AI tools that balance 
sensitivity and specificity to minimize false 
positive and negative rates.

Shape modeling

Shape modeling focuses on the accurate 
representation and analysis of the anatom-
ical structures of the MSK system, with the 
challenge of capturing the complex geome-
try and variability of bones and soft tissues; 
this is essential for surgical pre-operative 
planning, prosthesis design, and the study 
of biomechanical properties. Active shape 
models and statistical shape modeling are 
common statistical methods to capture the 
variability of shape across a population and 
can be used for tasks such as segmentation.38 
However, they require a large amount of rep-
resentative data for accurate modeling and 
can be sensitive to outliers with large shape 
deviations (Figure 8). 

DL-based methods have been increasing-
ly utilized for shape modeling due to their 
ability to learn complex, non-linear rela-
tionships. CNNs are commonly used due to 
their ability to process hierarchical features 
from image data directly. For instance, the 
U-Net architecture16 and its variants have 
been extensively used for biomedical im-
age segmentation tasks, providing detailed 
shape models of various anatomical struc-
tures. U-Net’s strength lies in its symmetric 
expanding path, which allows precise local-
ization, a key factor in accurate shape mod-
eling. Another DL model, V-Net,39 is a 3D 
variant of U-Net and is used for volumetric 
medical image segmentation, providing 3D 
shape models. Both U-Net and V-Net have 
shown competitive performance compared 
with traditional methods, with the added ad-
vantage of handling large datasets and cap-
turing fine-grained details. DL models have 
recently been used for shape prediction and 
generation. For instance, GANs have been 
employed to generate realistic 3D shapes 
to synthesize anatomical structures for aug-
mentation and analysis.40 One hidden bene-
fit of an AI-based shape model is the ability 
to predict changes in MSK structures over 
time, aiding in prognostic assessments.35

Radiomics

Radiomics, merging the word “radiology” 
with “-omics” to describe the high-through-
put, data-driven approach to characterizing 
radiological images, involves computer-as-
sisted image analysis where many quantita-
tive “features” are extracted from images that 
are not readily appreciable to the human 

Figure 6. Miccai 2022 challenge results and submissions from the top teams. Sagittal slice segmentations 
are overlaid on intermediate pipeline reconstructions, displaying reconstruction and segmentation metrics 
for the segmented slice. Background anatomy slices were thus blurrier for some teams than for others, as 
different teams had different qualities of intermediate pipeline reconstruction outputs. In this example, 
segmentation quality was strong for all top submissions, with only some overestimation of cartilage 
thickness from the NYU knee artificial intelligence pipeline being apparent. K-nirsh maintains a slight edge 
over UglyBarnacle in reconstruction metrics for this volume. Reproduced via Creative Commons License 
from.27



 

96 • March 2025 • Diagnostic and Interventional Radiology Tong et al.

eye. Radiomic features have historically in-
volved mathematical operations on the vox-
els of an image, converting morphological 
information about anatomical structure into 
quantitative values. Over time, the number 
of features has grown exponentially as more 
features have been identified, making the 
application of ML techniques, or classifiers, 
to identify radiomic features increasingly 
popular over the past few years.41 Support 
vector machines, random forests, and neu-
ral networks have been used to identify and 

analyze features that are most predictive 
of disease presence, severity, progression, 
and response to treatment. CNNs are also 
increasingly being applied to automate fea-
ture extraction. However, the clinical utility 
of radiomics is still being established, and 
integration into clinical workflows remains a 
challenge.

Metal artifact reduction

AI, particularly DL algorithms, is increas-
ingly applied to mitigate metal artifacts in 

MSK imaging. Metal implants or instruments 
introduce significant artifacts, particularly in 
MRI, which can impair diagnostic accuracy 
and limit the utility of these scans. Current 
literature points to the use of AI in CT and 
radiography, but its application in MRI is less 
explored.42 In the context of MRI, the inte-
gration of AI for metal artifact reduction is 
still in its infancy. Existing techniques with-
out the use of AI, such as multi-acquisition 
variable-resonance image combination and 
slice encoding for metal artifact correction 
(SEMAC), have limitations in their applica-
tion and efficacy. Studies have used neural 
networks to accelerate SEMAC MRI while 
maintaining comparable metal artifact sup-
pression,43 as well as using unsupervised 
learning or attention maps from deep neu-
ral networks to guide correction.44 However, 
most of these studies rely on phantom data 
or MRIs of other organs of interest. There is a 
need for more research and development, in-
cluding robust validation studies, to explore 
the full potential of AI in MSK MRI specifically.

Report generation

Generating accurate and informative re-
ports is a crucial task for radiologists to con-
vey their findings and interpretations to the 
referring physician in a clear, concise, and 
clinically relevant manner. To reduce the re-
porting burden on radiologists, natural lan-
guage processing (NLP) techniques, such as 
recurrent neural networks, long short-term 
memory networks, and more recently, trans-
former-based models, such as bidirectional 
encoder representations from transformers 
and generative pre-trained transformer, can 
be utilized for generating radiological re-
ports. These are trained on a large body of 
annotated radiological reports to learn the 
language and structure of report writing, as 
well as the relationships between imaging 
findings and clinical diagnoses. An addi-
tional speech recognition step can also add 
to the automation of the report generation 
process,45 creating a text output that can be 
considered a “preliminary report.” As radiol-
ogy reports traditionally lack standardized 
structure and content, NLP can then be used 
for the extraction of meaningful or contex-
tual information46 from the preliminary ra-
diology report, whether traditional text or 
text from speech recognition. Applications 
range from the extraction of specific MSK 
data or follow-up recommendations47 to 
the generation of a final report of classifica-
tion, diagnostic criteria, disease probability, 
or follow-up recommendations. However, 
AI may not capture the subtleties of human 

Figure 7. (a) Visualization of segmentation results from each network. The first, second, and third columns 
show examples of the vertebral body, intervertebral disc, and paraspinal muscle segmentation results, 
respectively, along with a three-dimensional Dice coefficient of each network’s performance. The Dice 
coefficient measures the similarity between segmentation masks, where 1 indicates perfect overlap and 0 
indicates no overlap. Reproduced via Creative Commons License from.32

Figure 7. (b) Visualization of centroid construction. T1 axial and T1 sagittal MRI slices were input into their 
respective V-Net to generate inferred segmentation masks of the vertebral bodies, intervertebral discs, and 
paraspinal muscles. After postprocessing, centers of mass were computed on each segmentation mask to 
calculate the position of volume-wise centroids for each vertebral body and intervertebral disc and slice-
wise centroids for each paraspinal muscle. These centroids were then converted to patient-based space, 
yielding a three-dimensional atlas of the lumbar spine for further biomechanical modeling. Reproduced via 
Creative Commons License from.32 MRI, magnetic resonance imaging.



 

Artificial intelligence in musculoskeletal applications: a primer for radiologists • 97

language, leading to reports that lack the 
nuanced communication often necessary 
between radiologists and referring physi-
cians. Radiologists should view AI in report 
generation as a complementary tool that can 
assist with the reporting process but not as 
a replacement for the expert interpretation 
provided by a trained radiologist.

Considerations

Challenges defining ground truth data, 
benchmarks, and radiologists’ availabilities

To achieve the highest yield from AI tech-
nologies, it is imperative to have large and 
reliable ground truth datasets for training, 
validation, and testing. Ideally, these should 
be from several different sources and repre-
sentative of diverse communities accessible 
by non-radiologists, such as AI researchers, 
engineers, and data scientists.48 The recent 
increase in the availability of such publicly 
available medical image banks and large-
scale international AI challenges have cata-
lyzed progress in the field, leading to the 
development of AI algorithms capable of 
handling different tasks, such as classifica-
tion, detection, or segmentation, in different 
modalities.49-51 The ground truth required for 
the current supervised AI models requires a 
labor- and time-intensive curation process 
for ideal workflow and to ensure the gener-
alizability of a model. Moreover, this process 
is subject to regulatory constraints, commer-
cial and operational pressures, as well as epis-
temic differences and limits of labeling.52,53 
Annotated images and their respective radi-
ology reports are available in hospital data-
bases but due to ethical reasons are not read-
ily available to developers. It is important to 
follow the regulatory procedures and obtain 
approval from responsible committees to en-
sure an ethical approach when accessing and 
sharing this data between developers.52

Radiologists rely on visual detection, 
pattern recognition, memory, and cognitive 
reasoning to consolidate a final interpreta-
tion while making decisions.4 Radiologists’ 
errors have a vast impact on medical errors, 
which constitute the third most common 
cause of death in the USA, following can-
cer and heart disease.54,55 The error rate is 
approximately 4% in clinical radiology prac-
tices, which translates into 40 million er-
rors out of 1 billion worldwide radiographs 
annually.4 Of particular importance, the 
distinction between an “error” and “obser-
vation variation” is highly relevant when cre-
ating such datasets. Imaging findings alone, 
without clinical information, are frequently 

Figure 7. (c) Visualization of centroid construction. T1 axial and T1 sagittal magnetic resonance imaging 
slices were input into their respective V-Net to generate inferred segmentation masks of the vertebral 
bodies, intervertebral discs, and paraspinal muscles. After postprocessing, centers of mass were computed 
on each segmentation mask to calculate the position of volume-wise centroids for each vertebral body 
and intervertebral disc and slice-wise centroids for each paraspinous muscle. These centroids were then 
converted to patient-based space, yielding a three-dimensional atlas of the lumbar spine for further 
biomechanical modeling. Reproduced via Creative Commons License from.71

Figure 8. The authors used the Grad-CAM model interpretation technique to obtain a class discriminative 
localization map for each prediction. They first computed the gradient of the class of interest (before the 
“softmax” function) regarding feature maps of the last convolutional layer in the Resnet. These gradients 
flowing back were globally average-pooled to obtain the neuronal importance weights for the target class. 
A heat map of location importance was then up-sampled to match the image size and overlaid on the 
input image. The authors then leveraged the invertible property of their spherical transformation method 
to generate articular surface importance heat maps for model interpretation for each bone and each single 
biomarker. This process was performed on the first timepoint of every unique patient in the hold-out test set 
(n = 875) and is illustrated for the femur. Reproduced via Creative Commons License from.73
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not enough to definitively indicate a spe-
cific diagnosis. Consequently, interpreting 
radiologic studies is typically not a straight-
forward binary process of discriminating 
normal from pathologic entities. Profession-
al acceptability lies on an arbitrary scale, be-
tween an obvious error and the unavoida-
ble difference of opinion in interpretation.56 
This is particularly of concern given that 
most clinical AI applications are developed 
using data generated by “expert radiolo-
gists.” Thus, these models are subjected to 
many kinds of human errors and biases and 
it falls on us humans to be cognizant of ine-
quality, data availability, and privacy, ethical 
and medicolegal concerns with these rapid-
ly evolving technologies.57,58 

The top five most influential radiology 
societies from the USA, Canada, Europe, Aus-
tralia, and New Zealand recently released a 
joint statement on potential practical and 
ethical concerns in deploying and integrat-
ing AI in radiology practices. The key take-
home statements, which also apply spe-
cifically to MSK radiology, include a strong 
recommendation for rigorous monitoring of 
its uses and safety in clinical practice, close 
collaboration between developers, end-us-
ers, and regulators, and strict adherence to 
all the regulatory steps from the develop-
ment to deployment and integration in the 
clinical workflow.59 Radiologists in particular 
should be aware of automation bias as a po-
tential source of error when working with AI 
tools in decision making.60

Model deployment

Deploying and maintaining AI models re-
quires a robust infrastructure that addresses 
computational needs for both initial deploy-
ments using off-the-shelf pre-trained mod-
els and more advanced adaptations through 
fine-tuning. Most radiologists and clinical 
departments start with off-the-shelf pre-
trained AI models. These models are devel-
oped on large, general datasets and can be 
used directly for common imaging tasks with 
minimal setup and without extensive cus-
tomization. Standard computing hardware, 
including central processing units or mod-
est graphics processing units (GPUs), can be 
used to run these models, making them ac-
cessible to most clinical environments. 

Fine-tuning is necessary when adapting 
a pre-trained model to specific datasets or 
unique clinical scenarios in MSK radiology. 
This involves modifying the pre-trained 
model’s parameters to better fit the par-
ticular characteristics of the new data, 

such as custom protocols for rare condi-
tions, integrating specific patient demo-
graphics, or adapting models to unique 
imaging modalities or contrasts, improv-
ing the performance and relevance of the 
model. From a computational perspective, 
fine-tuning is less resource-intensive than 
training a model from scratch, as the mod-
el has already learned useful features from 
the initial large-scale dataset. This can be 
particularly beneficial in medical imaging, 
where annotated datasets are often limited 
and expensive to acquire. For instance, a 
model initially trained on a large dataset of 
general MRI images can be fine-tuned on a 
smaller dataset of specific MSK conditions. 
Studies using this approach have been re-
viewed by Cheplygina et al.61, demonstrat-
ing improved performance on the tasks of 
interest. However, higher computational 
resources than those used for deployment 
are still needed for the fine-tuning process 
to handle the training workload. High-per-
formance GPUs or tensor processing units 
are resources that can accelerate the pro-
cessing of large datasets and complex mod-
el architectures during the training phase of 
fine-tuning. Cloud-based solutions with an 
environment that is secure and compliant 
with the Health Insurance Portability and 
Accountability Act also offer scalable re-
sources that can be dynamically adjusted 
based on the computational load, making 
them ideal for training and deploying mod-
els without the need for local high-perfor-
mance hardware.

Successful deployment of AI tools re-
quires seamless integration into clinical 
workflows, which may involve Digital Im-
aging and Communications in Medicine 
(DICOM) standards and interoperability with 
various Picture Archiving and Communica-
tion System software, supported by robust 
infrastructure capable of handling ongoing 
model monitoring and updates to ensure 
sustained performance over time, adjust for 
any data shifts or incorporate new data, and 
maintain model relevance and performance.

Equitable medical artificial intelligence

The development and deployment of AI 
technologies in MSK radiology must be pri-
oritized for fairness and justice. Algorithms 
should aim to mitigate biases, ensure acces-
sibility to all demographic groups, and de-
liver personalized care tailored to individual 
needs, irrespective of socio-economic status 
or background. Doo and McGinty62 argue 
that bias in radiology AI stems from various 
stages of model design encompassing the 

selection of training data, algorithm de-
velopment, deployment, and performance 
assessment. These biases, in turn, have re-
percussions on patient care and health out-
comes. Notably, there is a lack of standard-
ized protocols for demographic labeling in 
AI. Existing datasets often blur distinctions 
between crucial identifiers, such as sex and 
gender, or oversimplify complex racial cat-
egories, leading to distorted outcomes and 
predictive inaccuracies. Consequently, AI 
models trained on such biased datasets tend 
to reinforce preexisting biases, contributing 
to unintended consequences. 

When contemplating advanced health-
care imaging within the AI landscape, a 
fundamental query arises: Is it possible to 
completely anonymize (deidentifying with-
out any possibility of reidentification) data?63 
At first glance, the task appears simple: se-
lectively erase or encode identifiers within 
the metadata headers of images. Despite 
the widespread use of the DICOM standard 
for radiologic data, an increasing number 
of exceptions complicate efforts to estab-
lish standardized procedures. Recently, the 
progress in facial recognition technology 
has raised concerns about the potential for 
matching images from CT or MRI scans with 
individuals’ photographs. Consequently, it 
has become standard practice in medical 
imaging research to alter images using de-
facing or skull-stripping algorithms to elim-
inate facial features. Unfortunately, such al-
terations can undermine the generalizability 
of ML models developed using such data.64 
The topic is extremely complicated in terms 
of types of biases and there are several rem-
edies, which are almost impossible to com-
prehensively cover in the scope of the article. 
However, it is important to introduce the 
concepts of bias and equitable medical AI 
in MSK radiology and something to be con-
scious of while utilizing the AI tools.64 Some 
of the most common issues with MSK imag-
ing in AI and potential solutions to those are 
listed in Table 3. 

Conclusion: current trends and future di-
rections

Integration of AI with other emerging 
technologies, such as augmented reality 
and virtual reality is enabling more immer-
sive and interactive visualization of medical 
images. New tools may facilitate better sur-
gical planning, training, and intraoperative 
guidance. Additionally, AI-assisted tools 
have a niche role in aiding radiologists who 
are training and provide an avenue for ad-
ditional diagnostic opinion where multiple 
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radiologists reading images is not feasible.  
Protocolling, which involves choosing the 
right imaging protocol to obtain the most 
diagnostic images for each patient, is su-
pervised by a radiologist and is particularly 
important in MSK MRI applications where 
imaging protocols frequently require pa-
tient-specific tailoring. The limited number 
of research reports, using CNN and natural 
language classifier-based algorithms, have 
demonstrated encouraging outcomes.65-67 
Nevertheless, it is important to acknowledge 
the diversity of MSK imaging protocols for a 
wide spectrum of clinical scenarios, where 
these tools should be fine-tuned and ad-
vanced by taking medical history, prior im-
aging studies, scanner-specific data, contrast 
information, and radiation exposure dose 
into account.68 AI can also offer dual working 
solutions for scheduling, by reducing both 
MRI times and waiting times by identifying 
no-shows or canceled appointments ahead 
of time.69 Finally, radiology reports are the fi-
nal product of radiologists and are the means 
of communication of findings between phy-
sicians. ML can help generate decision-mak-
ing algorithms as a support system based 
on the available information on the patient’s 
medical background.68,70 Conversely, ML-
based NLP can be a powerful tool to harness 
data from radiology reports and is currently 
being investigated.9 
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Artificial intelligence system for identification of overlooked lung 
metastasis in abdominopelvic computed tomography scans of patients 
with malignancy

PURPOSE
 

This study aimed to evaluate whether an artificial intelligence (AI) system can identify basal lung 
metastatic nodules examined using abdominopelvic computed tomography (CT) that were initially 
overlooked by radiologists.

METHODS
We retrospectively included abdominopelvic CT images with the following inclusion criteria: a) CT 
images from patients with solid organ malignancies between March 1 and March 31, 2019, in a 
single institution; and b) abdominal CT images interpreted as negative for basal lung metastases. 
Reference standards for diagnosis of lung metastases were confirmed by reviewing medical records 
and subsequent CT images. An AI system that could automatically detect lung nodules on CT im-
ages was applied retrospectively. A radiologist reviewed the AI detection results to classify them as 
lesions with the possibility of metastasis or clearly benign. The performance of the initial AI results 
and the radiologist’s review of the AI results were evaluated using patient-level and lesion-level 
sensitivities, false-positive rates, and the number of false-positive lesions per patient.

RESULTS
A total of 878 patients (580 men; mean age, 63 years) were included, with overlooked basal lung 
metastases confirmed in 13 patients (1.5%). The AI exhibited an area under the receiver operat-
ing characteristic curve value of 0.911 for the identification of overlooked basal lung metastases. 
Patient- and lesion-level sensitivities of the AI system ranged from 69.2% to 92.3% and 46.2% to 
92.3%, respectively. After a radiologist reviewed the AI results, the sensitivity remained unchanged. 
The false-positive rate and number of false-positive lesions per patient ranged from 5.8% to 27.6% 
and 0.1% to 0.5%, respectively. Radiologist reviews significantly reduced the false-positive rate 
(2.4%–12.6%; all P values < 0.001) and the number of false-positive lesions detected per patient 
(0.03–0.20, respectively).

CONCLUSION
The AI system could accurately identify basal lung metastases detected in abdominopelvic CT im-
ages that were overlooked by radiologists, suggesting its potential as a tool for radiologist inter-
pretation. 

CLINICAL SIGNIFICANCE
The AI system can identify missed basal lung lesions in abdominopelvic CT scans in patients with 
malignancy, providing feedback to radiologists, which can reduce the risk of missing basal lung 
metastasis.
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 Abdominopelvic computed tomogra-
phy (CT) is frequently performed in 
patients with cancer to evaluate var-

ious cancers of the abdominopelvic or ex-
tra-abdominopelvic organs. Lung metastasis 
frequently occurs in the advanced stages 
of various solid organ cancers, and abdom-
inopelvic CT images inevitably capture the 
base of the lungs. Therefore, evaluating the 
presence of nodules suggestive of metasta-
sis to the lung base is an important compo-
nent in the interpretation of abdominopelvic 
CT scans in patients.1-4 However, in a busy 
clinical environment, a radiologist may pay 
relatively less attention to the basal lungs 
compared with the abdominal organs, which 
are the main targets of evaluation.4 There-
fore, metastatic nodules in the basal lungs 
can be overlooked by interpreting radiolo-
gists, which may adversely affect a patient’s 
treatment policy decisions or prognosis, 
leading to a medicolegal dispute.

The automatic detection of pulmonary 
nodules on chest CT images is one of the 
most widely investigated topics in artifi-
cial intelligence (AI)-based medical image 
analysis. Various studies have reported the 
radiologist-level performance of AI and the 
enhanced performance of radiologists using 
AI for lung nodule detection on CT scans.5,6 
Based on these impressive results, commer-
cial AI-based software medical devices have 

begun to be utilized in daily clinical practice 
as computer-aided detection (CAD) tools.7-10

In addition to its use as a CAD tool, AI’s 
utilization as a second reader–that is, for use 
in analyzing images after the radiologist’s 
interpretation and providing feedback to 
the radiologist in case of suspected interpre-
tation errors–can be another attractive sce-
nario for applying AI in daily practice.11-15 AI, 
as a second reader, can provide a safety net 
for radiologists against the risk of interpreta-
tion errors or medicolegal disputes without 
requiring the rigorous effort of scrutinizing 
the AI’s results following every examination. 
The detection of pulmonary nodules in the 
basal lungs, as acquired using abdominopel-
vic CT, can serve as a compelling scenario 
for employing an AI second reader.15 This is 
because it is beyond the primary focus of 
examination, yet carries a relatively high risk 
of interpretation errors, which could result in 
critical outcomes. 

In consideration of the above, we aim to 
evaluate whether an AI system could detect 
metastatic pulmonary nodules in the basal 
lungs that have been overlooked by radiolo-
gists on abdominopelvic CT images. 

Methods
This single-center, retrospective, diagnos-

tic cohort study was approved by the Seoul 
National University Hospital Institutional 
Review Board on January 5, 2022 (approval 
number: 2112-142-1284). During the ap-
proved research period, patient data required 
for this study were accessed for research pur-
poses. The requirement for informed consent 
was waived by the institutional review board.

Patients

Patients were consecutively included in 
a single tertiary referral institution in South 
Korea with the following criteria: a) patients 
diagnosed with solid organ cancers (Inter-
national Statistical Classification of Diseases 
and Related Health Problems, 10th revision, 
C00 to C75); b) patients who underwent 
abdominopelvic CT between March 1 and 
March 31, 2019; and c) abdominopelvic CT 
scans interpreted as negative for basal lung 
metastasis in the formal reports of radiolo-
gists, based on a manual review of unstruc-
tured radiological reports by a thoracic ra-
diologist. Patients who underwent chest CT 
on the same day as abdominopelvic CT and 
those lost to follow-up within 3 years without 
a clinical diagnosis of lung metastasis were 
excluded (Figure 1).

The first CT examination was performed 
on patients who underwent CT more than 
once. For multiphase CT examinations, im-
ages that captured the largest portion of the 
basal lungs were included in the analyses.

Diagnosis of pulmonary metastasis

To confirm the clinical diagnosis of pul-
monary metastasis in patients, one thoracic 
radiologist (E.J.H., with 5 years of experience 
as a faculty thoracic radiologist) reviewed the 
medical records and CT images (including 
the index abdominopelvic CT and follow-up 
chest and abdominopelvic CT images). Pul-
monary lesions that were pathologically con-
firmed as metastases, as well as lesions with 
persistent growth on follow-up CT images 
and a clinical impression of metastasis, were 
regarded as pulmonary metastases. Pulmo-

Figure 1. Flow diagram of the study. CT, computed tomography.

Main points

• An artificial intelligence (AI) system for pul-
monary nodule detection on computed 
tomography (CT) images can be utilized as 
a second reader after the radiologist’s inter-
pretation, to identify overlooked pulmonary 
nodules.

• As a second reader, the AI may analyze im-
ages after the radiologist’s interpretation 
and provide feedback to the radiologist only 
when the AI suspects that the radiologist 
has overlooked a pulmonary nodule. In this 
scenario, the oversight of significant pul-
monary nodules can be prevented without 
the need to review the AI results of all the 
examinations. In our study, the applied AI 
system could accurately identify basal lung 
metastases captured in abdominopelvic 
CT images that were overlooked by radiol-
ogists, suggesting its potential as a second 
reader after the radiologist’s interpretation. 

• We believe that our study contributes sig-
nificantly to the literature by highlighting 
the effectiveness of AI in improving the ac-
curacy of interpreting abdominopelvic CT 
images in patients with malignancies. Addi-
tionally, it underscores the importance of AI 
as a second reader to reduce interpretation 
errors.
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nary lesions that were stable for >3 years 
were considered benign. All individual pul-
monary metastases present on the index ab-
dominopelvic CT images but not document-
ed in the radiologist’s report were recorded 
as “overlooked metastases.”

Artificial intelligence system

To detect pulmonary metastases in the 
basal lungs captured by abdominopelvic 
CT, an AI model based on a commercialized 
deep-learning-based CAD system (AVIEW 
Lung Nodule CAD, Coreline Soft, Seoul, Ko-
rea) was used. The CAD system was designed 
to detect pulmonary nodules in chest CT 
images and was approved for clinical use in 
Korea as an assistant tool for physicians in in-
terpreting chest CT scans. 

Since the original CAD system was opti-
mized for low-dose chest CT images for lung 

cancer screening, the performance of the AI 
model may degrade when used for detecting 
pulmonary metastasis. Therefore, additional 
training of the AI model was conducted to 
optimize its performance in detecting small 
metastatic pulmonary nodules. A total of 
3,558 CT scans were conducted, with 21,469 
clinically diagnosed pulmonary metastases 
from a single institution (the same institution 
as where the present study was conducted). 
All of the abdominopelvic CT images were 
analyzed using an additionally trained AI 
model. Each pulmonary nodule was annotat-
ed by drawing three-dimensional bounding 
boxes on the CT images, along with a prob-
ability score (between 0 and 1) for the pres-
ence of a lesion (Figures 2-5). Then, these an-
notated CT images were used for the existing 
AI model for the original CAD system. 

Radiologist’s evaluation of artificial intelli-
gence findings

All abdominopelvic CT images with corre-
sponding AI results were reviewed by a fel-
lowship trainee in thoracic radiology (H.S.C., 
1st year of fellowship training) who was blind-
ed to the diagnosis of pulmonary metastasis. 
The radiologist classified all lesions identified 
by the AI into three groups: those with the 
potential for pulmonary metastasis, clearly 
benign lesions, and pseudo-lesions. Subse-
quently, the radiologist checked the diag-
noses of pulmonary metastasis to confirm 
that the lesions detected by AI were over-
looked pulmonary metastases and classified 
the individual AI-detected lesions as either 
true-positives or false-positives.

Figure 2. (a) This abdominal computed tomography (CT) image of a 72-year-old male patient with hepatocellular carcinoma shows a small nodule in the right lower 
lobe (arrow), a feature that was overlooked in the initial interpretation. (b) The artificial intelligence system detected the nodule with a probability score of 0.79. (c) 
A chest CT image obtained 167 days later shows growth of the nodule (arrow), which was clinically diagnosed as metastasis.

a b c

Figure 3. (a) This abdominopelvic computed tomography (CT) image of a 65-year-old male patient with colon cancer shows a nodule in the left lower lobe (arrow), 
a feature that was overlooked in the initial interpretation. (b) The artificial intelligence system detected the nodule with a probability score of 0.87. The radiologist 
who reviewed the AI results interpreted the lesion as a true nodule with the possibility of metastasis. (c) A chest CT image obtained 28 months later shows that the 
lesion remains unchanged, suggesting benignancy. AI, artificial intelligence.

a b c
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Performance metrics and statistical analysis

First, the discriminative performance of 
the AI model in identifying patients with 
overlooked metastases was evaluated using 
an area under the receiver operating char-
acteristic curve (AUC-ROC) analysis. Subse-
quently, the performance and efficacy of the 
AI model were evaluated using metrics at 
threshold probability scores of 0.4, 0.5, 0.6, 
and 0.7.

• Patient-level sensitivity = number of 
patients with true-positive detection of over-
looked metastases/number of patients with 
overlooked metastases.

• Patient-level false-positive rate = num-
ber of patients with false-positive detection 
of overlooked metastases/number of pa-
tients without overlooked metastases.

• Patient-level positive predictive value 
(PPV) = number of patients with true-pos-
itive detection of overlooked metastases/
number of patients with positive AI results.

• Lesion-level sensitivity = number of 
true-positive detections of overlooked me-
tastases/number of all overlooked metasta-
ses.

• Number of false-positive lesions per pa-
tient = number of false-positive detections of 
overlooked metastases/number of patients.

• Lesion-level PPV = number of true-pos-
itive detections of overlooked metastases/
number of all lesions detected by AI.

All metrics were obtained for both the 
AI results and the radiologist’s review of the 
AI results (following the exclusion of clearly 
benign lesions or pseudo-lesions). The per-

formance metrics of the AI results and the ra-
diologist’s review of the AI results were com-
pared using McNemar’s tests, chi-squared 
tests, and paired t-tests.

Decision curve analysis was conducted to 
evaluate the net benefit of using the AI tool 
as a second reader for detecting overlooked 
pulmonary metastasis, considering the ben-
efit of true-positive results and the cost of 
false-positive results.

Statistical analysis

All statistical analyses were performed 
using MedCalc statistical software (MedCalc 
Software Ltd, Ostend, Belgium, 22.006 ver-
sion). Statistical significance was set at P < 
0.05. 

Results

Patient characteristics

A total of 878 abdominopelvic CT imag-
es from 878 patients (580 men; mean age ± 
standard deviation: 62 ± 11 years) were in:-
cluded in the study (Figure 1). The most com-
mon primary malignancy was hepatocellular 
carcinoma (411, 47%), followed by stomach 
cancer (169, 19%) and colorectal cancer (96, 
11%). A total of 707 CT examinations (81%) 
were obtained after the administration of 
intravenous contrast media. Table 1 presents 
the demographic information of the patients 
and their CT imaging characteristics.

Sixty-nine (7.8%) patients were diag-
nosed with lung metastases within 3 years of 
an abdominopelvic CT, including 5 patients 
who had already been diagnosed with lung 
metastases at the time of the CT. In a retro-
spective evaluation of abdominopelvic CT 

Figure 4. (a) This abdominopelvic computed tomography (CT) image of a 58-year-old female patient with colon cancer shows a nodular lesion in the right lower 
lobe (arrow), an observation that was not described in the initial interpretation. (b) The artificial intelligence (AI) system identified the lesion with a probability score 
of 0.50. The radiologist who reviewed the AI results interpreted the lesion as focal atelectasis rather than a true nodule. (c) A chest CT image obtained 44 months 
later shows that the lesion remained stable, suggesting benignancy.

a b c

Figure 5. (a) This abdominopelvic computed tomography (CT) image of a 72-year-old male patient with 
colon cancer shows a tiny nodule in the left lower lobe (arrow), an observation that was overlooked in 
the initial interpretation. The artificial intelligence system did not detect the lesion. (b) A chest CT image 
obtained 204 days later shows the growth of the nodule, suggesting a diagnosis of lung metastasis (arrow).

ba
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images, 13 (1.5%) patients had pulmonary 
metastases that were overlooked during 
interpretation. Of these 13 patients, 3 had 
already been diagnosed with lung metas-
tases at the time of the CT. For the other 10 
patients, the time interval between the ab-
dominopelvic CT with overlooked lung me-
tastases and the clinical diagnosis of lung 
metastasis was 141 days (interquartile range, 
78–195 days).

Performance of the artificial intelligence 
system

For the discrimination of CT examinations 
with and without overlooked pulmonary 

metastases, the AI system exhibited an AUC-
ROC value of 0.911 [95% confidence interval 
(CI), 0.890–0.929; Figure 6]. The results of 
the AI analyses and their performances for 
different thresholds are listed in Table 2 and 
Table 3. At the lowest threshold (0.4), the AI 
system detected 475 lesions (0.54 per exami-
nation) in 251 patients (positive rate, 28.7%). 
In contrast, it detected 100 lesions (0.11 per 
examination) in 59 (positive rate, 6.7%) pa-
tients at the highest threshold (0.7). The sen-
sitivities of the AI system for the identifica-
tion of patients with overlooked metastases 
were 92.3% (12/13; 95% CI, 64.0%–99.8%) at 
the lowest threshold and 69.2% (9/13; 95% 

CI, 38.6%–90.9%) at the highest threshold. 
Correspondingly, the patient-level false-pos-
itive rates ranged from 5.8% (50/865; 95% 
CI, 4.3%–7.6%) to 27.6% (239/865; 95% CI, 
24.7%–30.7%), and the PPVs ranged from 
4.8% (12/251; 95% CI, 2.5%–8.2%) to 15.3% 
(9/59; 95% CI, 7.2%–27.0%). The accuracy of 
the AI system ranged from 72.7% (638/878; 
95% CI, 69.6%–75.6%) to 93.8% (824/878; 
95% CI, 92.1%–95.4%).

Among 26 overlooked pulmonary me-
tastases in eight patients, the sensitivities 
of the AI system were 92.3% (24/26; 95% CI, 
74.5%–99.1%) at the lowest threshold and 
46.2% (12/26; 95% CI, 26.6%–66.6%) at the 
highest. Correspondingly, the number of 
false-positive detections per examination 
ranged from 0.10 (88/878; 95% CI, 0.03–0.17) 
to 0.51 (451/878; 95% CI, 0.35–0.69), and 
the PPVs ranged from 5.1% (24/475; 95% CI, 
3.3%–7.4%) to 12.0% (12/100; 95% CI, 6.4%–
20.0%).

In the decision curve analysis, using the 
AI system as a second reader for detecting 
overlooked pulmonary metastases exhibited 
a higher net benefit than the default scenar-
io without AI when the risk threshold was 
≤3.7% (Figure 7). In other words, using the 
AI would be beneficial if the ratio of the cost 
from false-positive results to the benefit from 
true-positive results is ≤3.7:96.3 (1:26).

Review of the artificial intelligence results 
by the radiologist

Following the review of the AI results 
by the radiologist, 57.9% (275/475) of the 

Table 1. Patients and computed tomography characteristics

Variables All patients 
(n = 878)

Patients with overlooked lung 
metastases (n = 13)

Patients without overlooked lung 
metastases (n = 865)

Age, mean ± SD (years) 62 ± 11 65 ± 13 62 ± 11

Male-to-female patient ratio 580:298 7:6 573:292

Primary malignancy

 Hepatocellular carcinoma 411 (47%) 3 (25%) 408 (47%)

 Stomach cancer 169 (19%) 1 (8%) 168 (19%)

 Colorectal cancer 96 (11%) 2 (15%) 94 (11%)

 Biliary tree or pancreatic cancer 46 (5%) 5 (42%) 41 (5%)

 Uterus or ovary cancer 25 (3%) 0 25 (3%)

Urinary tract cancer 16 (2%) 1 (8%) 15 (2%)

 Breast cancer 15 (2%) 1 (8%) 14 (2%)

 Prostate cancer 9 (1%) 0 9 (1%)

 Others 91 (10%) 0 91 (11%)

CT examination with intravenous contrast media 844 (96%) 10 (83%) 834 (96%)

Multiphase CT examination 707 (81%) 9 (75%) 699 (81%)

Numbers in parentheses indicate proportions among all patients. CT, computed tomography; SD, standard deviation.

Figure 6. Receiver operating characteristic (ROC) curve for the identification of abdominopelvic computed 
tomography (CT) scans with overlooked basal lung metastases. (a) A ROC curve show that the artificial 
intelligence (AI) system identified abdominopelvic CT scans with overlooked basal lung metastases with an 
area under the ROC curve of 0.911. (b) The modified ROC curve shows that the sensitivity and false-positive 
rate of the AI system ranged from 69.2–92.3% and 46.2–92.3%, respectively at thresholds between 0.4 and 
0.7. The radiologist’s review significantly reduced the false-positive rate (2.4–12.6%) while preserving the 
sensitivity. AUC, area under the curve.
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lesions detected by the AI were regarded 
as false-positive detections at the lowest 
threshold, while 65.0% (65/100) were regard-
ed as false-positive detections at the highest 
threshold. As a result, the positivity rate after 
the radiologist’s review was 13.8% (121/878) 
at the lowest threshold and 3.4% (30/878) at 
the highest threshold.

The sensitivities in the identification of 
patients with overlooked metastases were 
92.3% (12/13; 95% CI, 64.0%–99.8%) at the 
lowest threshold and 69.2% (9/13; 95% CI, 
38.6%–90.9%) at the highest threshold, 
consistent with the initial analyses by the 
AI. Meanwhile, the patient-level false-pos-
itive rates ranged from 2.4% (21/865; 95% 
CI, 1.5%–3.7%) to 12.6% (109/865; 95% CI, 

10.5%–15.0%), representing a significant re-
duction compared with the initial analyses 
by the AI (all p < 0.001). Additionally, the pa-
tient-level PPVs ranged from 9.9% (12/121; 
95% CI, 5.2%–16.7%) to 30.0% (9/30; 95% CI, 
14.7%–49.4%) (Table 2) and were increased 
from the initial analyses by the AI, although 
the difference was not statistically significant. 
The accuracy ranged from 87.5% (768/878; 

Table 2. Patient-level performance of the artificial intelligence system and the radiologist’s review of the artificial intelligence results

Performance metric Threshold probability 
0.4

Threshold probability 
0.5

Threshold probability 
0.6

Threshold probability 
0.7

AI system

Number of true-positive results 12 12 11 9

Number of false-positive results 239 164 107 50

Number of true-negative results 1 1 2 4

Number of false-negative results 626 701 758 815

Positive rate
28.7% 

(251/878; 25.6%, 
31.7%)

20.0% 
(176/878; 17.4, 22.9)

13.4% 
(118/878; 11.3, 15.9)

6.7% 
(59/878; 5.2, 8.6)

Number of detections per patient 0.54 
(475/878; 0.37, 0.71)

0.36 
(319/878; 0.22, 0.50)

0.23 
(205/878; 0.12, 0.35)

0.11 
(100/878; 0.05, 0.18) 

Sensitivity 92.3% 
(12/13; 64.0, 99.8)

92.3% 
(12/13; 64.0, 99.8)

84.6% 
(11/13; 54.6, 98.1)

69.2% 
(9/13; 38.6, 90.9)

False-positive rate 27.6% 
(239/865; 24.7, 30.7)

19.2% 
(164/865; 16.4, 21.7)

12.4% 
(107/865; 10.3, 14.8)

5.8% 
(50/865; 4.3, 7.6)

PPV 4.8% 
(12/251; 2.5, 8.2)

6.8% 
(12/176; 3.6, 11.6)

9.3% 
(11/118; 4.8, 16.1)

15.3% 
(9/59; 7.2, 27.0)

Accuracy 72.7% 
(638/878; 69.6, 75.6)

81.2% 
(713/878; 78.5, 83.7)

87.6% 
(769/878; 85.2, 89.7)

93.8% 
(824/878; 92.1, 95.4)

Radiologist’s review of the AI results

Number of true-positive results 12 12 11 9

Number of false-positive results 109 74 48 21

Number of true-negative results 1 1 2 4

Number of false-negative results 756 791 817 844

Positive rate 13.8% 
(121/878; 11.6, 16.2)

9.8% 
(86/878; 7.9, 12.0)

6.7% 
(59/878; 5.2, 8.6)

3.4% 
(30/878; 2.3, 4.8)

 P value <0.001 <0.001 <0.001 <0.001

Number of detections per patient 0.23 
(200/878; 0.18, 0.28)

0.15 
(128/878; 0.11, 0.18)

0.09 
(78/878; 0.06, 0.11)

0.04  
(35/878; 0.02, 0.06)

 P value <0.001 <0.001 <0.001 <0.001

Sensitivity 92.3% 
(12/13; 64.0, 99.8)

92.3% 
(12/13; 64.0, 99.8)

84.6% 
(11/13; 54.6, 98.1)

69.2% 
(9/13; 38.6, 90.9)

 P value NA NA NA NA

False-positive rate 12.6% 
(109/865; 10.5, 15.0)

8.6% 
(74/865; 6.8, 10.6)

5.5% 
(48/865; 4.1, 7.3)

2.4% 
(21/865; 1.5, 3.7)

 P value <0.001 <0.001 <0.001 <0.001

PPV 9.9% 
(12/121; 5.2, 16.7)

14.0% 
(12/86; 7.4, 23.1)

18.6% 
(11/59; 9.7, 30.9)

30.0% 
(9/30; 14.7, 49.4)

 P value 0.059 0.061 0.077 0.104

Accuracy 87.5% 
(768/878; 85.1, 89.6)

91.5% 
(803/878; 89.4, 93.2)

94.3% 
(828/878; 92.6, 95.7)

97.2% 
(853/878; 95.8, 98.2)

 P value <0.001 <0.001 <0.001 <0.001

Numbers in parentheses indicate numerators/denominators and 95% confidence intervals. P values indicate a comparison between the AI system and the radiologist’s review of 
the AI’s result. AI, artificial intelligence; PPV, positive predictive value; NA, not applicable.
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95% CI, 85.1%–89.6%) to 97.2% (853/878; 
95% CI, 95.8%–98.2%). The accuracies exhib-
ited significant improvement compared with 
the initial analyses by the AI (all P < 0.001).

The lesion-level sensitivities after the ra-
diologist’s review also remained similar to 
those following the initial analyses by the 
AI [92.3% (24/26; 95% CI, 74.5%–99.1%) at 
the lowest threshold; 46.2% (12/26; 95% 
CI, 26.6%–66.6%) at the highest threshold]. 
Meanwhile, the number of false-positive de-
tections per examination ranged from 0.03 
(23/878; 95% CI, 0.02–0.04) to 0.20 (176/878; 
95% CI, 0.17–0.25), representing a significant 
reduction compared with the initial analy-
ses by the AI (all P < 0.001). In addition, the 
lesion-level PPVs exhibited a significant in-
crease compared with the initial analyses 
by the AI [P ≤ 0.001; 12.0% (24/200; 95% CI, 
7.8%–17.3%) at the lowest threshold; 34.3% 
(12/35; 95% CI, 19.1%–52.2%) at the highest 
threshold].

Table 4 displays the patterns of false-pos-
itive detections by the AI system. The most 
common cause of false-positive detection 
was pulmonary nodules with the possibility 
of metastasis, based on the radiologist’s re-
view. Among clearly benign lesions that were 

regarded as false-positive detections by the 
radiologist’s review, findings of infection or 
inflammation were the most common caus-
es of false-positive detections, followed by 
calcified nodules.

Clinical significance

The AI system may identify missed basal 
lung lesions in abdominopelvic CT scans in 
patients with malignancy, providing feed-
back to radiologists, which can reduce the 
risk of missing basal lung metastasis. 

Discussion
An AI system for pulmonary nodule de-

tection on CT images can be utilized as a 
second reader after the radiologist’s interpre-
tation to prevent radiologists from overlook-
ing clinically relevant pulmonary nodules. In 
the present study, we used an AI system to 
detect metastatic pulmonary nodules in the 
basal lungs captured by abdominopelvic CT 
images that were overlooked by radiologists. 
The results showed that the AI system could 
identify CT images with overlooked pulmo-
nary metastases, with an AUC-ROC value of 
0.911 and maximum patient-level and le-
sion-level sensitivity of 92.3%, respectively. 

Although the AI generated several false-pos-
itive detections (maximum false-positive 
rate of 27.6%, 0.51 false-positive detections 
per patient), the radiologist’s review of the 
AI results could effectively reduce the rate 
and number of false-positive detections 
(maximum false-positive rate of 12.6%, 0.20 
false-positive detections per patient; P < 
0.001, respectively).

Multiple studies have reported good per-
formance of AI in the detection of pulmonary 
nodules on chest CT images.16-19 In this study, 
the performance of the AI reached a level 
similar to that of radiologists. However, con-
sidering that AI cannot replace a radiologist’s 
interpretation, its efficacy needs to be inves-
tigated based on its method of utilization. 
Since the most widely accepted methods of 
utilization involve CAD tools,20-25 many stud-
ies have reported that AI can improve the 
performance of radiologists in lung nodule 
detection.5,6,15-17 In addition to the use of AI 
as a CAD tool, several other utilization meth-
ods may also be feasible.15 For instance, one 
promising method is its use as a second read-
er. In this context, the AI may analyze images 
after the radiologist’s interpretation and pro-
vide feedback to the radiologist only when 

Table 3. Lesion-level performance of the artificial intelligence system and the radiologist’s review of the artificial intelligence results

Performance metric Threshold probability 0.4 Threshold probability 0.5 Threshold probability 0.6 Threshold probability 0.7

AI system

Number of true-positive results 24 18 16 12

Number of false-positive results 451 301 189 88

Number of true-negative results 401 547 663 764

Number of false-negative results 2 12 10 14

Number of detection per patient 0.54 (475/878; 0.37, 0.71) 0.36 (319/878; 0.22, 0.50) 0.23 (205/878; 0.12, 0.35) 0.11 (100/878; 0.05, 0.18) 

Sensitivity 92.3% (24/26; 74.5, 99.1) 69.2% (18/26; 48.2, 85.7) 61.5% (16/26; 40.6, 79.8) 46.2% (12/26; 26.6, 66.6)

Number of false-positive lesions per patient 0.51 (451/878; 0.35, 0.69) 0.34 (301/878; 0.20, 0.48) 0.22 (189/878; 0.10, 0.33) 0.10 (88/878; 0.03, 0.17)

PPV 5.1% (24/475; 3.3, 7.4) 5.6% (18/319; 3.4, 8.8) 7.8% (16/205; 4.5, 12.4) 12.0% (12/100; 6.4, 20.0)

Radiologist’s review of the AI results

Number of true-positive results 24 18 16 12

Number of false-positive results 176 110 62 23

Number of true-negative results 676 738 790 829

Number of false-negative results 2 12 10 14

Number of detection per patient 0.23 (200/878; 0.18, 0.28) 0.15 (128/878; 0.11, 0.18) 0.09 (78/878; 0.06, 0.11) 0.04 (35/878; 0.02, 0.06)

Sensitivity 92.3% (24/26; 74.5, 99.1) 69.2% (18/26; 48.2, 85.7) 61.5% (16/26; 40.6, 79.8) 46.2% (12/26; 26.6, 66.6)

 P value NA NA NA NA

Number of false-positive lesions per patient 0.20 (176/878; 0.17, 0.25) 0.12 (110/878; 0.10, 0.16) 0.07 (62/878; 0.05, 0.09) 0.03 (23/878; 0.02, 0.04)

 P value <0.001 <0.001 <0.001 <0.001

PPV 12.0% (24/200; 7.8, 17.3) 14.1% (18/128; 0.09, 0.21) 20.5% (16/78; 0.12, 0.31) 34.3% (12/35; 19.1, 52.2)

 P value 0.001 0.003 0.003 0.003

Numbers in parentheses indicate numerators/denominators and 95% confidence intervals. P values indicate a comparison between the AI system and the radiologist’s review of 
the AI’s result. AI, artificial intelligence; PPV, positive predictive value; NA, not applicable.
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the AI suspects that the radiologist has over-
looked a pulmonary nodule. In this scenario, 
the oversight of significant pulmonary nod-
ules can be prevented without the need to 
review the AI results of all the examinations. 

We performed decision curve analyses 
to evaluate the net benefit of applying the 
AI system for true-positive and false-posi-
tive identifications. The scenario with AI as 
a second reader showed a higher net ben-
efit than the scenario without AI when the 
ratio between the harm of false-positive 
interpretations to the benefit of true-posi-
tive interpretations is ≤1:26. In most clinical 
situations, overlooking pulmonary metas-
tases could have significant consequences, 

potentially depriving the patient of timely 
systemic treatment. Meanwhile, false-pos-
itive detections by AI may lead to a review 
by the radiologist, and the associated costs 
would be relatively much smaller compared 
with the risks of overlooking pulmonary me-
tastases. Therefore, we believe that using the 
AI as a second reader would be a reasonable 
scenario.

In our study, an AI system was applied 
to the abdominopelvic CT scans of patients 
with cancer who were interpreted as neg-
ative for basal lung metastasis. In a retro-
spective evaluation of available follow-up 
examinations, overlooked pulmonary me-
tastases were identified in 1.5% of patients, 
a frequency that should not be ignored. In 
this context, the AI could accurately discrim-
inate between CT images with and without 
overlooked pulmonary metastases (AUC-
ROC, 0.911). Furthermore, at a sensitive op-
erating threshold, the AI could identify most 
CT scans with overlooked metastases (sen-
sitivity: 92.3%). Notably, the identification 
of false-negative interpretations by radiol-
ogists using AI has been investigated in the 
field of chest radiography. Specifically, Nam 
et al.26 and Jang et al.27 reported that AI can 
identify lung cancers overlooked by radiol-
ogists on chest X-rays. In addition, Hwang 
et al.28 reported that AI can identify various 
clinically relevant abnormalities on chest ra-
diographs that were previously interpreted 
as normal. 

Because benign pulmonary nodules and 
pulmonary metastases are often difficult to 
differentiate, false-positive detection by AI is 
inevitable. When used as a second reader,15 
false-positive detection may lead to unnec-
essary feedback to the radiologist, followed 

by reinterpretation by the radiologist. In our 
study, the maximum false-positive rate was 
27.6%, indicating that the AI may generate 
false-positive feedback in 27.6% of CT images 
without overlooking metastases. Based on the 
review of the AI results by a radiologist, more 
than half of the AI detections were regarded as 
clearly benign nodules (findings of pulmonary 
infection and calcified nodules). Notably, the 
radiologist’s review was effective because it 
significantly reduced the rate of false positives 
while maintaining a similar sensitivity for me-
tastasis. The results also suggest that further 
improvements in AI performance may reduce 
the false-positive rate and the frequency of 
unnecessary reinterpretation by radiologists. 

Pulmonary metastases and benign pul-
monary nodules are often indistinguishable, 
even when evaluated by a radiologist. There-
fore, as expected, there were considerable 
false-positive detections even after the ra-
diologist’s review (maximum false-positive 
rate: 12.6%). Moreover, the identification of 
benign nodules may lead to the requirement 
of chest CT examinations for further evalua-
tion or follow-up of the pulmonary nodules. 
Considering that all patients were under fol-
low-up for malignancies, we believe that ad-
ditional chest CT scans may not significantly 
harm the patients.

Our study has several limitations. First, 
since our study was conducted at a single ter-
tiary medical institution, the reproducibility 
of our results remains uncertain. Future stud-
ies may be required to confirm the reproduci-
bility of our results in other clinical situations. 
Second, although we consecutively included 
878 abdominopelvic CT scans, the absolute 
number of overlooked pulmonary metasta-
ses is quite small (n = 13), limiting the statis-

Figure 7. Decision curve for the identification 
of overlooked basal lung metastases in 
abdominopelvic computed tomography scans. The 
artificial intelligence (AI) as a second reader scenario 
(blue line) exhibited a higher net benefit than the 
default scenario without AI (black line) when the 
risk threshold is 3.7% or smaller. In other words, 
using the AI tool would be beneficial if the ratio of 
cost from false-positive results to benefit from true-
positive results is 3.7:96.3 (1:26) or smaller.

Table 4. Detection patterns of the artificial intelligence system

Variable Threshold 
probability 0.4

Threshold 
probability 0.5

Threshold 
probability 0.6

Threshold 
probability 0.7

Lesions with the possibility of metastasis based on the radiologist’s review

 Metastasis 24 (5.1%) 18 (5.6%) 16 (7.8%) 12 (12%)

 Benign lung nodules 176 (37.1%) 110 (34.5%) 62 (30.2%) 23 (23%)

Clearly benign lesions based on the radiologist’s review

 Findings of infection/inflammation 116 (24.4%) 88 (28%) 66 (32.2%) 40 (40%)

 Calcified nodules 90 (18.9%) 72 (27.6%) 49 (24.0%) 23 (23%)

 Ground-glass nodules 33 (6.9%) 21 (6.6%) 9 (4.4%) 1 (1%)

 Pulmonary vessels 24 (5.1%) 3 (0.9%) 1 (0.5%) 0 (0%)

 Atelectasis 7 (1.5%) 4 (1.3%) 1 (0.5%) 1 (1%)

 Others 5 (1.1%) 3 (0.9%) 1 (0.5%) 0 (0%)

Total 475 (100%) 319 (100%) 205 (100%) 100 (100%)

Numbers in parentheses indicate the proportions among the total detections by the artificial intelligence system.
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tical power. A multicenter study with a larger 
sample size may be required to confirm the 
efficacy of AI as a second reader. Third, in this 
study, AI was retrospectively applied to ab-
dominopelvic CT scans. Therefore, the practi-
cal efficacy of AI systems remains unknown. 
A prospective study following the integration 
of AI into the workflow may be required to 
investigate its real-world efficacy. Finally, the 
effect of AI beyond the detection of over-
looked metastases, including its effects on 
patient outcomes and changes in treatment 
decision-making, remains unknown.

In conclusion, the applied AI system could 
accurately identify basal lung metastases 
captured in abdominopelvic CT images that 
were overlooked by radiologists, suggesting 
its potential as a second reader after the radi-
ologist’s interpretation. Further prospective 
studies are warranted to investigate the re-
al-world efficacy of AI as a second reader as 
well as the impact of AI beyond the detection 
of metastases.
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Evaluating text and visual diagnostic capabilities of large language 
models on questions related to the Breast Imaging Reporting and Data 
System Atlas 5th edition

PURPOSE
This study aimed to evaluate the performance of large language models (LLMs) and multimodal 
LLMs in interpreting the Breast Imaging Reporting and Data System (BI-RADS) categories and pro-
viding clinical management recommendations for breast radiology in text-based and visual ques-
tions.

METHODS
This cross-sectional observational study involved two steps. In the first step, we compared ten LLMs 
(namely ChatGPT 4o, ChatGPT 4, ChatGPT 3.5, Google Gemini 1.5 Pro, Google Gemini 1.0, Microsoft 
Copilot, Perplexity, Claude 3.5 Sonnet, Claude 3 Opus, and Claude 3 Opus 200K), general radiolo-
gists, and a breast radiologist using 100 text-based multiple-choice questions (MCQs) related to 
the BI-RADS Atlas 5th edition. In the second step, we assessed the performance of five multimodal 
LLMs (ChatGPT 4o, ChatGPT 4V, Claude 3.5 Sonnet, Claude 3 Opus, and Google Gemini 1.5 Pro) in 
assigning BI-RADS categories and providing clinical management recommendations on 100 breast 
ultrasound images. The comparison of correct answers and accuracy by question types was ana-
lyzed using McNemar’s and chi-squared tests. Management scores were analyzed using the Krus-
kal–Wallis and Wilcoxon tests.

RESULTS
Claude 3.5 Sonnet achieved the highest accuracy in text-based MCQs (90%), followed by ChatGPT 
4o (89%), outperforming all other LLMs and general radiologists (78% and 76%) (P < 0.05), except 
for the Claude 3 Opus models and the breast radiologist (82%) (P > 0.05). Lower-performing LLMs 
included Google Gemini 1.0 (61%) and ChatGPT 3.5 (60%). Performance across different categories 
of showed no significant variation among LLMs or radiologists (P > 0.05). For breast ultrasound im-
ages, Claude 3.5 Sonnet achieved 59% accuracy, significantly higher than other multimodal LLMs 
(P < 0.05). Management recommendations were evaluated using a 3-point Likert scale, with Claude 
3.5 Sonnet scoring the highest (mean: 2.12 ± 0.97) (P < 0.05). Accuracy varied significantly across 
BI-RADS categories, except Claude 3 Opus (P < 0.05). Gemini 1.5 Pro failed to answer any BI-RADS 5 
questions correctly. Similarly, ChatGPT 4V failed to answer any BI-RADS 1 questions correctly, mak-
ing them the least accurate in these categories (P < 0.05).

CONCLUSION
Although LLMs such as Claude 3.5 Sonnet and ChatGPT 4o show promise in text-based BI-RADS as-
sessments, their limitations in visual diagnostics suggest they should be used cautiously and under 
radiologists’ supervision to avoid misdiagnoses.

CLINICAL SIGNIFICANCE
This study demonstrates that while LLMs exhibit strong capabilities in text-based BI-RADS assess-
ments, their visual diagnostic abilities are currently limited, necessitating further development and 
cautious application in clinical practice.
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 The emergence of large language mod-
els (LLMs) marks a transformative mile-
stone in the development of artificial 

intelligence (AI). These models offer unprec-
edented potential for understanding and 
generating human-like text by leveraging 
extensive datasets. This technological ad-
vancement holds significant promise for ap-
plication in medicine.1,2 As radiology increas-
ingly relies on the interpretation of complex 
imaging data, the integration of advanced AI 
tools, such as LLMs, becomes crucial to en-
hance diagnostic accuracy and streamline 
workflows. LLMs have demonstrated remark-
able performance in various realms of radi-
ology, including testing radiological knowl-
edge in different board-style examinations, 
simplifying radiology reports , and providing 
patient information.3-7

Recent studies have also explored the po-
tential of LLMs specifically in breast imaging, 
where their capabilities show particular prom-
ise.8-10 For instance, Rao et al.9 evaluated the per-
formance of two well-known LLMs, ChatGPT 
3.5 and ChatGPT 4, in adhering to the Ameri-
can College of Radiology (ACR) eligibility crite-

ria for breast pain and breast cancer screening, 
revealing impressive accuracy rates of 88.9% 
and 98.4%, respectively. These findings high-
light the potential of LLMs as supportive tools 
in breast imaging, which is especially relevant 
given the ongoing radiologist shortages and 
the increasing volume of imaging studies.11,12 
Despite these advancements, it is crucial to 
acknowledge the limitations and challenges 
associated with LLMs, including their suscep-
tibility to generating plausible-sounding but 
incorrect answers (hallucinations).13

The Breast Imaging Reporting and Data 
System (BI-RADS) Atlas, released in its latest 
edition in 2013, has provided standardized 
nomenclature, report organization, assess-
ment structure, and a classification system 
for mammography, ultrasound, and magnet-
ic resonance imaging (MRI) of the breast.14 
 The BI-RADS Atlas is crucial for radiologists as 
it standardizes breast imaging terminology 
and reporting, ensuring clear communica-
tion and consistent, accurate patient man-
agement.15

 While the BI-RADS Atlas offers a stand-
ardized approach to breast imaging, recent 
research has begun exploring how LLMs can 
further enhance radiological assessment and 
reporting accuracy. Haver et al.16 demonstrat-
ed that ChatGPT 4 accurately predicted the 
BI-RADS category in 73.6% of 250 fictitious 
breast imaging reports. Cozzi et al.17 evaluat-
ed the concordance between different LLMs 
(ChatGPT 3.5, ChatGPT 4, and Google Bard) 
and radiologists across 2,400 reports in three 
different languages, revealing a moderate 
agreement (Gwet’s agreement coefficient: 
0.52–0.42). Despite the growing emphasis on 
the importance of LLMs in breast imaging, 
there is a significant gap in the literature re-
garding the evaluation of multimodal LLMs’ 
performance on breast ultrasound images. 
Additionally, no studies compare LLMs’ knowl-
edge of BI-RADS Atlas with that of radiologists. 
Hence, the first aim of this study is to evaluate 
the performance of nine large LLMs compared 
with breast and general radiologists on text-
based multiple-choice questions (MCQs) relat-
ed to the BI-RADS Atlas, 5th edition. The second 
aim is to assess the capability of five multi-
modal LLMs in assigning BI-RADS categories 
and providing clinical management recom-
mendations for breast ultrasound images.

Methods

Study design

 This cross-sectional observational study 
had two steps. In the first step, it compared 

different LLMs, namely ChatGPT 4o, ChatGPT 
4, ChatGPT 3.5, Google Gemini 1.5 Pro, Goog-
le Gemini 1.0, Microsoft Copilot, Perplexi-
ty, Claude 3.5 Sonnet, Claude 3 Opus, and 
Claude 3 Opus 200K, along with the respons-
es of two general radiologists and a breast 
radiologist in answering MCQs regarding the 
5th edition of the BI-RADS Atlas. 

In the second step, the study compared 
different multimodal LLMs, namely ChatGPT 
4o, ChatGPT 4V, Claude 3.5 Sonnet, Claude 3 
Opus, and Google Gemini 1.5 Pro. This step 
focused on determining the correct BI-RADS 
category and clinical management by evalu-
ating breast ultrasound images. An overview 
of the workflow is shown in Figure 1.

The study did not require ethics commit-
tee approval as it relied solely on fictional 
MCQs and a publicly available breast ultra-
sound dataset that had no identifiable pa-
tient information. Its design conformed to 
the principles articulated in the Standards 
for Reporting Diagnostic Accuracy Studies 
statement.18

Data collection for breast multiple-choice 
questions

The ACR published the 5th edition of the 
BI-RADS Atlas in 2013 to standardize termi-
nology and reporting organization in breast 
radiology.14 A total of 100 MCQs were pre-
pared and categorized using the information 
in this atlas related to ultrasound, mammog-
raphy, MRI, and general BI-RADS knowledge 
by general radiologist 3 (Y.C.G.).  Each ques-
tion had four choices, with only one correct 
answer and three distractors. The distrac-
tors were carefully chosen to be reasonable 
and related to the question. Each question 
was formulated to be clear and focused on 
a single concept to assess breast radiology 
knowledge. The questions were categorized 
according to the BI-RADS Atlas sections as 
follows: 16 on breast ultrasound, 39 on mam-
mography, 22 on breast MRI, and 23 on gen-
eral BI-RADS knowledge. All created MCQs 
are listed in Supplementary Material 1.

 Design of input–output procedures and 
performance evaluation for large language 
models

The input prompt was initiated as follows: 
“I am working on a breast radiology quiz 
and will provide you MCQs. Act like a radi-
ology professor with 30 years of expertise in 
breast imaging. Please indicate the correct 
answer. There is only one correct answer.” 
This prompt was presented in April 2024 on 
eight distinct platforms with default param-

Main points

• This study evaluated the performance of 
large language models (LLMs) and multi-
modal LLMs in interpreting the Breast Imag-
ing Reporting and Data System categories 
and providing clinical management recom-
mendations. The evaluation involved two 
steps: assessing LLMs on text-based multi-
ple-choice questions (MCQs) and evaluat-
ing multimodal LLMs on breast ultrasound 
images.

• Claude 3.5 Sonnet and ChatGPT 4o achieved 
high accuracy rates of 90% and 89%, respec-
tively, in text-based MCQs, outperforming 
general radiologists, who had accuracy rates 
of 78% and 76%. This demonstrates the 
strong potential of these advanced LLMs in 
supporting and enhancing the diagnostic 
accuracy of radiologists in text-based as-
sessments.

• Multimodal LLMs showed lower accuracy in 
evaluating breast ultrasound images, with 
Claude 3.5 Sonnet achieving only 59% ac-
curacy. This highlights a critical limitation 
in their current ability to handle visual diag-
nostic tasks effectively compared with text-
based assessments.

• The study underscores the necessity for fur-
ther development of multimodal LLMs to 
improve their visual diagnostic capabilities. 
Until these improvements are realized, the 
use of multimodal LLMs in clinical practice 
should be closely supervised by experi-
enced radiologists to prevent potential mis-
diagnoses and ensure patient safety.
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eters: OpenAI’s ChatGPT 4 and 3.5 (https://
chat.openai.com), Google Gemini 1.5 Pro 
and 1.0 (https://gemini.google.com/), Mi-
crosoft Copilot (https://copilot.microsoft.
com) (Balanced), Perplexity (https://perplex-
ity.ai), Claude 3 Opus (https://claude.ai), and 
Claude 3 Opus 200K  (https://poe.com).  The 
same prompt was presented to OpenAI’s 
ChatGPT 4o (https://chat.openai.com) in May 
2024 and Claude 3.5 Sonnet (https://claude.
ai) in July 2024 (Figure 2). Specific settings, 
such as temperature and randomness, were 
left at their default values unless specified 
otherwise by the platform.

The MCQs were sequentially added to the 
same chat session by copying and pasting 
from the MCQs list. Each LLM was presented 
with 100 questions by general radiologist 3, 
and the responses were evaluated. It is cru-
cial to note that the employed LLMs were not 
pre-trained with a specific prompt or ques-
tion set for this study. Each question was 
asked in a single chat session, without open-
ing a new chat tab for individual inquiries.

Radiologist 3 evaluated LLMs’ answers 
according to the correct answer list, marking 
them either correct (1) or incorrect (0). 

Radiologists performance evaluation for 
breast multiple-choice questions

Two European Board of Radiology-certi-
fied junior general radiologists–radiologist 1 
(T.C.) with 6 years of experience, and radiolo-
gist 2 (E.Ç.) with 6 years of experience–and a 

breast radiologist (L.G.K.) with 13 years of ex-
perience, independently assessed the MCQs 
blindly using their computers. All three an-
swered questions in different sessions. Upon 
completion of all questions, radiologist 3 
evaluated each other’s answers according to 
the correct answer list, marking them either 
correct (1) or incorrect (0).

 Multimodal large language models and 
visual breast ultrasound questions

The publicly available Breast Ultrasound 
Images dataset was utilized to assess the 
performance of multimodal LLMs with breast 
ultrasound images.19 This dataset comprises 
780 images classified as normal, benign, and 
malignant, sourced from 600 women aged 
25–75 years. The images were acquired us-
ing the LOGIQ E9 ultrasound system [Gen-
eral Electric (GE) Healthcare, Wauwatosa, WI, 
USA] and the LOGIQ E9 Agile ultrasound sys-
tem [General Electric (GE) Healthcare, Wau-
watosa, WI, USA] at Baheya Hospital in Cairo, 
Egypt. The transducers used were 1–5 MHz 
on an ML6-15-D Matrix linear probe, and the 
images were stored in PNG format with di-
mensions of 500 × 500 pixels.19

The breast radiologist selected 20 images 
for each BI-RADS category from 1 to 5, result-
ing in a total of 100 images. These BI-RADS 
categories served as a reference standard. 
These images were presented to five differ-
ent multimodal LLMs: Claude 3.5 Sonnet, 
Claude 3 Opus, Google Gemini 1.5 Vision Pro, 
ChatGPT 4o, and ChatGPT 4V.

For each image, the multimodal LLMs re-
ceived the following prompt: “I am working 
on a breast radiology quiz and will provide 
you with breast ultrasound images. Please 
act as a radiology professor with 30 years 
of expertise in breast imaging. Evaluate the 
images and assign only one correct BI-RADS 
category from BI-RADS 1 to BI-RADS 5 ac-
cording to the 5th edition of the BI-RADS At-
las. Lastly, provide clinical management rec-
ommendations for each category according 
to the same Atlas” (Figure 3).

This evaluation was conducted in July 
2024, with each image presented along with 
the prompt, using the multimodal LLMs’ de-
fault parameters.

The management recommendations pro-
vided by the multimodal LLMs, based on the 
BI-RADS categories, were evaluated using a 
3-point Likert scale defined as the Manage-
ment Score:

• 3 points: Correct management recom-
mendations according to the BI-RADS cate-
gory

• 2 points: Partially correct management 
recommendations according to the BI-RADS 
category

• 1 point: Completely incorrect manage-
ment recommendations according to the BI-
RADS category

Radiologist 3 provided the images and 
prompts to the multimodal LLMs and record-

Figure 1. The workflow of the study. MCQs, multiple-choice questions; LLMs, large language models; MRI, magnetic resonance imaging.
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ed their responses. The accuracy of these 
responses for BI-RADS categories was classi-
fied as correct (1) or incorrect (0), and clini-
cal management recommendations were 
scored using the Management Score by the 
breast radiologist.

Statistical analysis

The distribution of variables was assessed 
using the Kolmogorov–Smirnov test. De-
scriptive statistics were represented using 
percentages.  Non-parametric tests were 
employed to compare quantitative data due 
to the nature of the data distribution. The 

Kruskal–Wallis test was used to compare 
quantitative data, and Tamhane’s T2 test 
was employed for multiple post-hoc com-
parisons following the initial Kruskal–Wallis 
test. McNemar’s test was used to compare 
the proportion of correct responses between 
different questions. The chi-squared test 
was used to compare the correct answers 
by question types. The Wilcoxon test was 
used to compare the Management Scores of 
multimodal LLMs. The SPSS 26.0 (IBM, USA) 
package was used for statistical analyses, and 
statistical significance was set at P < 0.05.

Results

 Accuracy of large language models on text-
based breast multiple-choice questions

 The highest success among the LLMs was 
achieved by Claude 3.5 Sonnet with an accu-
racy rate of 90%. ChatGPT 4o ranked second 
with an accuracy rate of 89%, followed by 
Claude 3 Opus 200K with an accuracy rate 
of 84%. Subsequently, Claude 3 Opus had an 
accuracy rate of 82%, and ChatGPT 4 had an 
accuracy rate of 79%. The diagnostic accura-
cy of the breast radiologist was 82%, radiolo-
gist 1 was 78%, radiologist 2 was 76%. Goog-
le Gemini 1.5 Pro had a 67% accuracy rate, 
and Microsoft Copilot with a 65% accuracy 
rate, while both Google Gemini 1.0 and Per-
plexity scored 61%, and ChatGPT 3.5 scored 
60% accuracy  (Figure 4). 

Claude 3.5 Sonnet achieved the highest 
accuracy rate among the evaluated LLMs, 
outperforming most models with a statis-
tically significant difference (P < 0.05), ex-
cept when compared with ChatGPT 4o and 
Claude 3 Opus. Both Claude 3.5 Sonnet and 
ChatGPT 4o also surpassed the accuracy of 
the general radiologists (P < 0.05), although 
their performance was comparable with that 
of the breast radiologists (P > 0.05). Addition-
ally, no significant differences were observed 
between the breast radiologist and general 
radiologists (P > 0.05).

When comparing the LLMs Claude 3 Opus 
200K, Claude 3 Opus, and ChatGPT 4 with 
the radiologists, there were no statistically 
significant differences (P > 0.05); however, 
these models showed significant superiority 
over lower-performing LLMs, namely Goog-
le Gemini 1.5 Pro, Microsoft Copilot, and 
ChatGPT 3.5 (P < 0.001). No significant differ-
ences were found between the performanc-
es of the LLMs and radiologists across differ-
ent question categories (P > 0.05). Detailed 
comparisons of the performance between 
radiologists and LLMs are shown in Table 1, 

Figure 3. Illustrations of prompts and breast ultrasound images provided to multimodal large language 
models and their responses. MCQs, multiple-choice questions; BI-RADS, Breast Imaging Reporting and Data 
System.

Figure 2. Demonstration of prompts provided to large language models and their responses. MCQs, 
multiple-choice questions; BI-RADS, Breast Imaging Reporting and Data System.
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while the performance across question cat-
egories is illustrated in Figure 5 and Table 2.

 Accuracy of multimodal large language 
models on visual breast ultrasound ques-
tions

In a visual test consisting of 100 ques-
tions on breast ultrasound images, Claude 
3.5 Sonnet achieved an accuracy rate of 59%, 
ChatGPT 4o 39%, Google Gemini 1.5 Pro 
31%, ChatGPT 4V 20%, and Claude 3 Opus 
19% (Figure 6). The performance of Claude 
3.5 Sonnet was significantly higher than 
that of the other multimodal LLMs (P < 0.05). 
While there was no significant difference 
in performance between ChatGPT 4o and 

Google Gemini 1.5 Pro (P = 0.067), Claude 3 
Opus and ChatGPT 4V had significantly lower 
performance (P < 0.05) (Table 3).

The accuracy rates of each model by BI-
RADS categories were analyzed using the 
chi-squared test. The statistical analysis re-
vealed that only Claude 3 Opus’s accuracy 
rate did not vary by BI-RADS categories (P 
= 0.992); for other models, accuracy rates 
showed significant variation by category (P < 
0.05) (Table 4). 

In post-hoc tests:

• Claude 3.5 Sonnet had a higher accuracy 
rate for BI-RADS 5 questions (85%) compared 
with other categories (P = 0.001), while its 

accuracy rate for BI-RADS 1 questions (35%) 
was lower compared with other categories (P 
= 0.001).

• Google Gemini 1.5 Pro’s accuracy rate 
for BI-RADS 5 questions (0%) was lower com-
pared with other categories (P < 0.001).

• ChatGPT 4V had a higher accuracy rate 
for BI-RADS 5 questions (45%) compared 
with other categories (P = 0.001), but a lower 
accuracy rate for BI-RADS 1 questions (0%) (P 
= 0.012).

• ChatGPT 4o had a higher accuracy rate 
for BI-RADS 2 questions (65%) compared 
with other categories (P = 0.007) (Figure 7).

Accuracy of multimodal large language 
models on clinical management recom-
mendations

The mean Management Score of Claude 
3.5 Sonnet (mean: 2.12 ± 0.97) was signifi-
cantly superior to that of all other multimod-
al LLMs (P < 0.05). The mean Management 
Score of ChatGPT 4o (mean: 1.78 ± 0.98) was 
not significantly different from Google Gem-
ini 1.5 Pro (mean: 1.64 ± 0.93), but it outper-
formed ChatGPT 4V (mean: 1.40 ± 0.80) and 
Claude 3 Opus (mean: 1.42 ± 0.81) (P < 0.05). 
The details of the Management Score are giv-
en in Supplementary Material 2.

Discussion
 This study aimed to evaluate the per-

formance of LLMs and multimodal LLMs 
in breast radiology knowledge. The most 
striking finding of our study is that although 
LLMs excel at text-based questions, their per-

Figure 4. Accuracy of large language models and radiologists on breast multiple-choice questions. MCQs, 
multiple-choice questions.

Table 1. Comparison of the accuracy of LLMs and radiologists with P values obtained from McNemar’s test

 Claude 
3.5 
Sonnet

Claude 
3 Opus 
200k

Claude 
3 Opus

ChatGPT 
4o

ChatGPT 
4

ChatGPT 
3.5

BR R-1 R-2 Google 
Gemini 1.5 
Pro

Google 
Gemini 
1.0

Perplexity

Claude 3.5 Sonnet - 0.210 0.096 1 0.019 <0.001 0.077 0.004 <0.001 <0.001 <0.001 <0.001

Claude 3 Opus 200k 0.210 - 0.774 0.302 0.359 0.001 0.832 0.327 0.152 <0.001 <0.001 <0.001

Claude 3 Opus 0.096 0.774 - 0.189 0.648 0.002 1 0.584 0.361 0.007 <0.001 <0.001

ChatGPT 4o 1 0.302 0.189 - 0.041 <0.001 0.210 0.035 0.004 <0.001 <0.001 <0.001

ChatGPT 4 0.019 0.359 0.648 0.041 - 0.004 0.710 1 0.700 0.038 0.002 0.002

ChatGPT 3.5 <0.001 0.001 0.002 <0.001 0.004 - 0.003 0.005 0.012 0.337 1 1

BR 0.077 0.832 1 0.210 0.710 0.003 - 0.208 0.327 0.029 0.002 0.002

R-1 0.017 0.327 0.584 0.035 1 0.005 0.208 - 0.805 0.091 0.005 0.005

R-2 0.004 0.152 0.361 0.004 0.700 0.012 0.327 0.805 - 0.176 0.018 0.018

Google Gemini 1.5 Pro <0.001 <0.001 0.007 <0.001 0.038 0.337 0.029 0.091 0.176 - 0.263 0.263

Google Gemini 1.0 <0.001 <0.001 0.001 <0.001 0.002 1 0.002 0.005 0.018 0.263 - 1

Perplexity <0.001 <0.001 0.001 <0.001 0.002 1 0.002 0.005 0.018 0.263 1 -

Microsoft Copilot <0.001 0.002 <0.001 <0.001 0.035 0.522 0.007 0.037 0.100 0.860 0.607 0.607

LLMs, large language model; BR, breast radiologist; R-1, general radiologist 1; R-2, general radiologist.
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formance in evaluating real-life case images 
is not as successful. Multimodal LLMs fall 
short compared with their text-based coun-
terparts. Considering that real clinical cases 
are often complex and diagnoses are made 
through visual assessment by physicians, 
multimodal LLMs have not yet demonstrated 
sufficient performance to be used as clinical 
decision support systems in real-world set-
tings.

 Claude 3.5 Sonnet demonstrated the 
highest accuracy rate, achieving 90% in an-
swering BI-RADS Atlas 5th edition questions. 
Following closely were ChatGPT 4o and 
Claude 3 Opus 200k with accuracy rates of 
89% and 84%, respectively, while ChatGPT 

4 achieved an accuracy rate of 79%. Among 
the radiologists, the breast radiologist exhib-
ited the best performance with an accuracy 
rate of 82%, followed by general radiologist 
1 with 78%, and general radiologist 2 with 
76%. Claude 3.5 Sonnet demonstrated su-
perior performance compared with all other 
LLMs, except for ChatGPT 4o and Claude 3 
Opus models (P < 0.05). The performance of 
Claude 3.5 Sonnet and ChatGPT 4o did not 
show a significant difference from that of the 
breast radiologist (P > 0.05), but it notably 
outperformed both general radiologists (P < 
0.05). 

No statistically significant difference was 
found between ChatGPT 4o, Claude 3 Opus 

200k, Claude 3 Opus, and ChatGPT 4 (P > 
0.05). These LLMs, along with both the breast 
and general radiologists, performed signifi-
cantly better than ChatGPT 3.5, Google Gem-
ini 1.5 Pro, Google Gemini 1.0, and Perplexity 
(P < 0.05).

 While interpreting real-life breast ultra-
sound images, Claude 3.5 Sonnet achieved 
an accuracy rate of 59%, ChatGPT 4o 39%, 
Google Gemini 1.5 Pro 31%, ChatGPT 4V 20%, 
and Claude 3 Opus 19%. Claude 3.5 Sonnet 
outperforms all the other multimodal LLMs (P 
< 0.05). The diagnostic performance of multi-
modal LLMs significantly differs with the BI-
RADS category, except Claude 3 Opus. Claude 
3.5 Sonnet (85%) and Chat GPT 4V (45%) 
showed superior performance in the BI-RADS 
5 category (P = 0.001), while Google Gemini 
1.5 Pro showed a higher accuracy rate (65%) 
for BI-RADS 2 questions (P = 0.007). Gemini 
1.5 Pro did not correctly answer any ques-
tions in the BI-RADS 5 category, and ChatGPT 
4V did not correctly answer any questions 
in the BI-RADS 1 category, making them the 
least accurate in these respective categories 
(P < 0.05).

 In the Management Score, which com-
pares the recommendations of multimodal 
LLMs according to BI-RADS categories, Claude 
3.5 Sonnet (mean: 2.12 ± 0.97) outperformed 
all other multimodal LLMs (P < 0.05).

Notably, our study is the first to evaluate 
the diagnostic performance of multimodal 
LLMs breast radiology visual cases. Moreo-
ver, this study is the first to demonstrate the 
performance of the newly released Claude 
3.5 Sonnet and ChatGPT 4o in breast radiolo-
gy. Furthermore, there are currently no other 
studies that have evaluated the proficiency 
of different LLMs in breast radiology MCQs, 
both in internal comparisons and when com-
pared with radiologists.

Multimodal LLMs, such as Claude 3.5 Son-
net and ChatGPT 4o, may perform better 
than a breast radiologist on text-based ques-
tions, but they can make critical errors when 
questions involve images that impact clinical 
management. For example, Gemini 1.5 Pro 
failed to recognize any cases in the BI-RADS 
5 category, and Claude 3 Opus could not 
identify any normal images in the BI-RADS 
0 category. This finding suggests that using 
multimodal LLMs without an experienced 
radiologist in clinical practice could lead to 
misdiagnoses, either missing critical condi-
tions or misinterpreting normal findings as 
pathological.

Figure 5. Accuracy of large language models and radiologists by multiple-choice question types. MCQs, 
multiple-choice questions; MRI, magnetic resonance imaging.

Figure 6. Accuracy of multimodal large language models on breast ultrasound images. LLMs, large language 
models.
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On the other hand, the superior perfor-
mance of LLMs on text-based questions 
compared with general radiologists suggests 
that they could serve as a supportive tool, es-

pecially for junior radiologists. They can aid 
in the correct use of BI-RADS nomenclature 
and proper classification.

When multimodal LLMs correctly identify 
an image and assign an appropriate BI-RADS 
score, their management recommendations 
for patients closely align with the BI-RADS 
categories. Therefore, their success with text-
based questions indicates that if they can vis-
ually determine the correct BI-RADS catego-
ry, they are likely to provide accurate clinical 
management advice.

The variability in LLM text-based perfor-
mance may be due to differences in training 
designs, such as different datasets, model 
architectures, and fine-tuning techniques.20 
LLMs such as Microsoft Copilot, Google 
Gemini 1.0, and Perplexity, which have in-
ternet access, sometimes provide arbitrary 
answers based on non-scientific information 
they reference.21 This could explain their low-
er performance compared with other LLMs. 
ChatGPT and Claude 3 Opus models are 
trained on closed datasets, and it is unclear 
whether the BI-RADS Atlas was used in their 
training. Memorization may contribute to 
their high performance.

Several studies have explored the per-
formance of LLMs on text-based radiology 
questions.22,23 For instance, Almeida et al.22 
found that ChatGPT 4 achieved a 76% ac-
curacy rate on mammography questions 
during the Brazilian radiology board exami-
nation, compared with 65% for ChatGPT 3.5. 
Our study showed higher accuracy rates, 
with ChatGPT 4 at 79% and ChatGPT 4o at 
89%, suggesting that the difference in ques-
tion difficulty may account for this variance. 
Furthermore, ChatGPT 4 demonstrated a 
general accuracy rate of 58.5%, surpassing 
that of 2nd-year radiology residents (52.8%) 
but falling short of 3rd-year residents (61.9%) 
in the ACR Diagnostic Radiology In-Training 
(DXIT) examination.23 However, with only 10 
breast radiology questions, the DXIT exam 
may not fully capture overall performance 
in this specialty. In contrast, our study’s fo-
cus on a comprehensive set of BI-RADS Atlas 

Table 2. Accuracy rates of radiologists and LLMs by categories
Mammography MRI General 

knowledge
P

ChatGPT 4o False
True

n
n

7 (17.9%)
32 (82.1%)

2 (9.1%)
20 (90.9%)

1 (4.3%)
22 (95.7%) 0.332 X2

ChatGPT 4 False
True

n
n

10 (25.6%)
29 (74.4%)

5 (22.7%)
17 (77.3%)

4 (17.4%)
19 (82.6%) 0.700 X2

ChatGPT 3.5 False
True

n
n

14 (35.9%)
25 (64.1%)

11 (50.0%)
11 (50.0%)

9 (39.1%)
14 (60.9%) 0.744 X2

Claude 3.5 Sonnet False
True

n
n

4 (10.3%)
35 (89.7%)

2 (9.1%)
20 (90.9%)

1 (4.3%)
22 (95.7%) 0.542 X2

Claude Opus 3 200k False
True

n
n

10 (25.6%)
29 (74.4%)

2 (9.1%)
20 (90.9%)

2 (8.7%)
21 (91.3%) 0.209 X2

Claude Opus 3 False
True

n
n

10 (25.6%)
29 (74.4%)

5 (22.7%)
17 (77.3%)

2 (8.7%)
21 (91.3%) 0.193 X2

Breast radiologist False
True

n
n

10 (25.6%)
29 (74.4%)

3 (13.6%)
19 (86.4%)

2 (8.7%)
21 (91.3%) 0.364 X2

General radiologist I False
True

n
n

9 (23.1%)
30 (76.9%)

8 (36.4%)
14 (63.6%)

1 (4.3%)
22 (95.7%) 0.074 X2

General radiologist II False
True

n
n

9 (23.1%)
30 (76.9%)

5 (22.7%)
17 (77.3%)

5 (21.7%)
18 (78.3%) 0.905 X2

Google Gemini Pro 1.5 False
True

n
n

17 (43.6%)
22 (56.4%)

4 (18.2%)
18 (81.8%)

7 (30.4%)
16 (69.6%) 0.235 X2

Google Gemini 1.0 False
True

n
n

16 (41.0%)
23 (59.0%)

11 (50.0%)
11 (50.0%)

7 (30.4%)
16 (69.6%) 0.513 X2

Microsoft Copilot False
True

n
n

15 (38.5%)
24 (61.5%)

7 (31.8%)
15 (68.2%)

7 (30.4%)
16 (69.6%) 0.906 X2

Perplexity False
True

n
n

16 (41.0%)
23 (59.0%)

9 (40.9%)
13 (59.1%)

10 (43.5%)
13 (56.5%) 0.885 X2

X2, Chi-squared; LLM, large language model; MRI, magnetic resonance imaging.

Table 3. Comparison of accuracy of multimodal large language models with P values 
obtained from McNemar’s test
 Claude 3.5 

Sonnet
Claude 3 

Opus
ChatGPT 

4o
ChatGPT 

4V
Google Gemini 

1.5 Pro

Claude 3.5 Sonnet - <0.001 0.006 <0.001 <0.001

Claude 3 Opus <0.001 - 0.003 1 0.067

ChatGPT 4o 0.006 0.003 - 0.302

ChatGPT 4V <0.001 1 0.003 - 0.109

Google Gemini 1.5 Pro <0.001 0.067 0.302 0.109 -

Table 4. Accuracy rates of multimodal large language models by categories
BI-RADS-1 BI-RADS-2 BI-RADS-3 BI-RADS-4 BI-RADS-5 P

Claude 3.5 Sonnet False
True

n
n

 13 (65.0%)
 7 (35.0%)

5 (25.0%)
15 (75.0%)

12 (60.0%)
8 (40.0%)

8 (40.0%)
12 (60.0%)

3 (15.0%)
17 (85.0%) 0.004 X2

ChatGPT 4o False
True

n
n

13 (65.0%)
 7 (35.0%)

7 (35.0%)
13 (65.0%)

17 (85.0%)
3 (15.0%)

14 (70.0%)
6 (30.0%)

10 (50.0%)
10 (50.0%) 0.015 X2

ChatGPT 4V False
True

n
n

20 (100.0%)
0 (0.0%)

14 (70%)
6 (30%)

19 (95.0%)
1 (5.0%)

16 (80.0%)
4 (20.0%)

11 (55.0%)
9 (45.0%) 0.002 X2

Claude Opus 3 False
True

n
n

16 (80.0%)
4 (20.0%)

17 (85%)
3 (15%)

16 (80.0%)
4 (20.0%)

16 (80.0%)
4 (20.0%)

16 (80.0%)
4 (20.0%) 0.992 X2

Google Gemini 1.5 Pro False
True

n
n

10 (50.0%)
10 (50.0%)

13 (65.0%)
7 (35.0%)

14 (70.0%)
6 (30.0%)

12 (60.0%)
8 (40.0%)

20 (100%)
0 (0.0%) 0.010 X2

BI-RADS, Breast Imaging Reporting and Data System.
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questions resulted in higher accuracy rates, 
underscoring that LLM performance is great-
ly influenced by both the specificity and 
quantity of the questions.

Rao et al.9 observed that ChatGPT 4 out-
performed ChatGPT 3.5 on select-all-that-ap-
ply questions related to breast pain and can-
cer screening, with both models performing 
better on these MCQs than on open-ended 
ones. This aligns with our findings, where 
the use of MCQs with a single correct answer 
likely contributed to the elevated success 
rates of LLMs. In a different context, Haver et 
al.24 demonstrated ChatGPT’s ability to sim-
plify responses to frequently asked questions 
about breast cancer prevention and screen-
ing, achieving a 92% simplification rate. Our 
study, which focused on more technical and 
specific questions, showed that ChatGPT 4 
had an accuracy rate of 79%, while ChatGPT 
4o performed even better, with an accuracy 
rate of 89%.

When comparing the performance and 
readability of different LLMs, Tepe and 
Emekli25 found that responses generated by 
Gemini 1.0 and Microsoft Copilot achieved 
higher readability scores (P < 0.001), whereas 
ChatGPT 4 demonstrated superior accuracy 
(P < 0.001). Our study confirmed these re-
sults, showing that ChatGPT 4 outperformed 
both Gemini 1.0 and Microsoft Copilot in 
terms of accuracy. Similarly, Griewing et al.26 
noted a 58.8% concordance between breast 
tumor board decisions and those generated 
by ChatGPT 3.5 and 4, with Sorin et al.27 re-
porting a 70% agreement for ChatGPT 3.5. 
These findings suggest a partial alignment 

between LLMs and radiologists in clinical 
decision-making, though the variations in 
performance are likely due to differences in 
study designs and the prompts used. These 
studies collectively suggest that although 
LLMs show promise, their current perfor-
mance may not yet be adequate for seamless 
integration into clinical decision support sys-
tems.

The challenges LLMs face in interpreting 
visual questions are evident in several stud-
ies.28-30 Horiuchi et al.30 conducted a study 
involving 106 musculoskeletal radiology cas-
es, comparing the performance of ChatGPT 
4 on text-based questions with ChatGPT 4V 
on visual questions. ChatGPT 4 correctly an-
swered 46 out of 106 questions, significantly 
outperforming ChatGPT 4V, which correctly 
answered only 9 out of 106 (P < 0.001). Simi-
larly, Dehdab et al.28 evaluated ChatGPT 4V’s 
performance on chest computed tomogra-
phy slices across 60 different cases, includ-
ing coronavirus disease-2019, non-small cell 
lung cancer, and control cases, finding an 
overall diagnostic accuracy of 56.76%, with 
variability depending on the case type.

In breast radiology, Haver et al.29 com-
pared ChatGPT 4V’s performance on 151 
mammography images from the ACR BI-
RADS Atlas, reporting an accuracy rate of 
28.5% (43/151). Although ChatGPT 4V cor-
rectly identified more than 50% of cases in-
volving mass shape, architectural distortion, 
and associated features, it performed poor-
ly on calcifications, intramammary lymph 
nodes, skin lesions, and solitary dilated ducts, 
with less than 15% correct responses.29 In our 

study, ChatGPT 4V similarly showed low per-
formance, correctly answering only 20% of 
breast ultrasound questions. Notably, it had 
an accuracy rate of 45% (9/20) for BI-RADS 5 
lesions but failed to correctly identify any BI-
RADS 0 lesions (0/20), indicating a tendency 
to misinterpret normal parenchymal tissue 
as pathology.

Nonetheless, as LLMs and  multimodal 
LLMs continue to rapidly evolve and new-
er, more advanced models emerge, they 
are poised to become supportive tools for 
radiologists in the future. However, ethical 
considerations, such as ensuring patient pri-
vacy and obtaining informed consent from 
patients involved in the integration of LLMs 
into clinical decision support systems, are 
paramount.31 Moreover, the lack of transpar-
ency in the decision-making mechanisms of 
LLMs during the diagnostic process is a sig-
nificant concern.32 Therefore, it is imperative 
that LLMs and multimodal LLMs are utilized 
under the supervision of a responsible radi-
ologist to ensure their contribution to the 
diagnostic process aligns with the highest 
standards of patient care and safety.

An intriguing finding of our study is the 
notable performance of the recently intro-
duced Claude 3.5 Sonnet, which closely 
rivals ChatGPT 4o. This suggests that the 
Claude models hold promise in the medical 
domain as well. Furthermore, our study con-
tributes significantly to the existing literature 
by evaluating the performance of various 
LLMs, including both free and paid versions, 
alongside radiologists in the realm of breast 
radiology. 

 While our study offers valuable insights 
into LLMs’ and multimodal LLMs’ under-
standing of the BI-RADS Atlas, it does have 
limitations. First, the number of text-based 
questions was limited and presented in an 
MCQ format. Considering LLMs capacity to 
handle open-ended questions in real clini-
cal scenarios, their performance may bet-
ter reflect real-world situations with such 
questions. Further research comparing LLM 
performance on both open-ended and 
MCQs is warranted. Second, in our study 
evaluating multimodal LLMs’ performance, 
we only used breast ultrasound images. 
Further research should include ultrasound, 
mammography, and MRI images to better 
understand the comprehensive capabilities 
of multimodal LLMs across different imag-
ing modalities. Last, our study employed a 
single prompt to assess the performances, 
highlighting the need for research into the 
impact of different prompts and various 

Figure 7. Accuracy of multimodal large language models on Breast Imaging Reporting and Data System 
(BI-RADS) categories. LLMs, large language models.
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prompt settings on LLMs’ performance in 
breast radiology.

 In conclusion, although LLMs such as 
Claude 3.5 Sonnet and ChatGPT 4o show po-
tential in supporting radiologists with text-
based BI-RADS assessments, their current 
limitations in visual diagnostics suggest that 
these tools should be used with caution and 
under the supervision of experienced radiol-
ogists to avoid misdiagnoses.
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1. Which of the following BI-RADS breast density categories has 
the lowest sensitivity for detecting cancer on mammograms?

A) Category A 

B) Category B

C) Category C

D) Category D

2. According to the BI-RADS breast density categories, in which 
of the following categories is mammography the most sensitive 
for detecting cancer?

A) Category A

B) Category B

C) Category C

D) Category D

3. Which of the following statements about BI-RADS breast den-
sity categories is true?

A) Mammography is equally sensitive for detecting cancer in all 
breast density categories.

B) Mammography is more sensitive for detecting cancer in women 
with dense breasts than in women with fatty breasts.

C) Mammography is less sensitive for detecting cancer in women 
with dense breasts than in women with fatty breasts.

D) There is no relationship between breast density and the sensitiv-
ity of mammography.

4. According to the BI-RADS assessment categories, which of the 
following categories has the highest likelihood of malignancy?

A) Category 1

B) Category 2

C) Category 3

D) Category 4

5. Which of the following BI-RADS assessment categories has a 
likelihood of malignancy of > 2% but <95%?

A) Category 1

B) Category 2

C) Category 3

D) Category 4 

6. Which of the following management recommendations is as-
sociated with BI-RADS assessment category 3?

A) Routine mammography screening

B) Short-interval follow-up or continued surveillance mammogra-
phy

C) Tissue diagnosis

D) Surgical excision

7. When is it appropriate to use BI-RADS assessment category 6?

A) When a mammographic examination is incomplete

B) When a finding is probably benign

C) When a malignancy has been biopsy-proven

D) When a finding is highly suggestive of malignancy

8. What is the management recommendation for a BI-RADS cat-
egory 4 assessment?

A) Routine mammography screening

B) Short-interval follow-up or continued surveillance mammogra-
phy

C) Tissue diagnosis

D) Surgical excision

9. Which of the following findings is NOT typically assessed as 
BI-RADS category 3?

A) Non-calcified circumscribed solid mass

B) Palpable lesion

C) Focal asymmetry

D) Solitary group of punctate calcifications

10. What is the likelihood of malignancy for a finding assessed as 
BI-RADS category 3?

A) Essentially 0%

B) > 0% but ≤2%

C) >2% but <95%

D) ≥ 95%

Supplementary Material 1. MCQs
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11. Which of the following is NOT a characteristically benign 
finding that may be assessed as BI-RADS category 2?

A) Involuting calcified fibroadenoma

B) Skin calcifications

C) Non-calcified circumscribed solid mass

D) Oil cyst

12. Which of the following findings may be described in a BI-
RADS category 2 assessment?

A) Non-calcified circumscribed solid mass

B) Skin calcifications

C) Architectural distortion

D) Solitary group of punctate calcifications

13. Which of the following findings is NOT validated as being 
probably benign (BI-RADS category 3)?

A) Non-calcified circumscribed solid mass

B) Focal asymmetry

C) Solitary group of punctate calcifications

D) Palpable lesion

14. A screening mammogram shows unilateral axillary adenop-
athy with no suspicious findings in the breasts. The patient has 
no known infectious or inflammatory cause for the adenopathy. 
What should the BI-RADS® final assessment be?

A) Negative (BI-RADS® category 1)

B) Benign (BI-RADS® category 2)

C) Probably benign (BI-RADS® category 3)

D) Suspicious (BI-RADS® category 4) 

15. Which of the following US descriptors for tissue composition 
corresponds most closely to the BI-RADS® breast density catego-
ry “heterogeneously dense”?

A) Homogeneous background echotexture-fat

B) Homogeneous background echotexture-fibroglandular

C) Heterogeneous background echotexture

D) Not given in the provided text

16. Which of the following is NOT a finding that may be described 
in a BI-RADS® category 2 US assessment?

A) Simple cyst

B) Intramammary lymph node

C) Non-palpable solid mass

D) Postsurgical fluid collection

17. What is the recommended follow-up interval for a stable 
probably benign (BI-RADS® category 3) finding on US after the 
initial 6-month follow-up examination?

A) 3 months

B) 6 months

C) 1 year

D) 2 years

18. A US examination reveals a large axillary mass in a patient 
with known metastatic melanoma. The mass was previous-
ly biopsied and confirmed to be an axillary lymph node with 
metastatic melanoma. Except for the axillary mass, the US ex-
amination shows no abnormalities in the breast. What is the ap-
propriate BI-RADS® assessment for this examination?

A) BIRADS 1

B) BIRADS 2

C) BIRADS 3

D) BIRADS 4

19. Which of the following is NOT a category of background pa-
renchymal enhancement (BPE) on breast MRI?

A) Minima

B) Mild

C) Moderate

D) Severe

20. Which of the following is NOT a descriptor for the margin of 
a mass on breast MRI?

A) Circumscribed

B) Not circumscribed

C) Irregular

D) Rounded
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21. Which of the following is NOT a modifier describing non-
mass enhancement distribution?

A) Focal

B) Linear

C) Granular

D) Segmental

22. Which of the following is NOT an internal enhancement pat-
tern for non-mass enhancement?

A) Homogeneous

B) Heterogeneous 

C) Focal

D) Clumped

23. Which of the following is NOT an intracapsular silicone rup-
ture finding on MRI?

A) Linguine sign

B) Subcapsular line

C) Keyhole sign

D) Peri-implant fluid

24. Which BI-RADS® assessment category is not recommended 
for screening for mammography?

A) BIRADS 1

B) BIRADS 2

C) BIRADS 3

D) BIRADS 4

25. According to BI-RADS classification, which of the following is 
NOT a type of asymmetry?

A) Asymmetry

B) Global asymmetry

C) Focal asymmetry

D) Diffuse asymmetry

26. Which of the following calcification morphologies should be 
assigned to BI-RADS® category 4C?

A) Amorphous

B) Coarse heterogeneous 

C) Fine pleomorphic 

D) Fine linear or fine-linear branching

27. Which of the following statements is true regarding the mar-
gin of a mass in mammography?

A) The margin must be completely well-defined for the mass to be 
classified as circumscribed.

B) At least 75% of the margin must be well-defined for the mass to 
qualify as circumscribed.

C) If any portion of the margin is indistinct, the mass should be clas-
sified as such.

D) Spiculated margins are less suspicious than microlobulated mar-
gins.

28. What is an obscured margin in mammography?

A) A margin that is completely hidden by other tissue

B) A margin that is mostly well-defined, but part of it is hidden

C) A margin that is indistinct and irregular

D) A margin that is spiculated and jagged

29. Which of the following statements about density in mam-
mography is true?

A) Breast cancers are always lower in density than normal breast 
tissue.

B) Breast density is the most reliable mammographic feature of 
masses.

C) Breast cancers can be fat-containing.

D) The likelihood of malignancy for a high-density mass is signifi-
cantly greater than that for equal- and low-density masses.

30. Which of the following is a characteristic of a fat-containing 
mass in mammography?

A) It is always malignant.

B) It is almost always benign.

C) It is a mixed-density mass.

D) It is associated with a high risk of breast cancer.

31. Which of the following types of calcifications is typically be-
nign in mammography?

A) Fine and linear

B) Pleomorphic

C) Coarse or “popcorn-like”

D) Punctate
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32. Which of the following statements about coarse or “pop-
corn-like” calcifications in mammography is true?

A) They are typically associated with breast cancer.

B) They are small and difficult to see on mammograms.

C) They are a sign of a benign breast lesion.

D) They are more common in younger women

33. Which of the following is a characteristic of large rod-like cal-
cifications in mammography?

A) They are typically associated with breast cancer.

B) They are small and difficult to see on mammograms.

C) They are more common in younger women.

D) They follow a ductal distribution.

34. Which of the following is a characteristic of benign round cal-
cifications in mammography?

A) They are typically clustered together.

B) They are always larger than 1 mm in size.

C) They are more common in younger women.

D) They are often formed in the acini of lobules.

35. Which of the following statements about dystrophic calcifi-
cations in mammography is true?

A) They are typically associated with breast cancer.

B) They are always smaller than 1 mm in size.

C) They are more common in younger women.

D) They are caused by radiation therapy or trauma.

36. Which of the following is a characteristic of milk of calcium 
calcifications in mammography?

A) They are typically associated with breast cancer.

B) They always appear as round, smudgy deposits on all mam-
mographic projections.

C) They are more common in younger women.

D) They change shape on different mammographic projections.

37. Which of the following distributions of amorphous calcifica-
tions is suspicious and generally warrants biopsy?

A) Bilateral, diffuse

B) Grouped, linear, or segmental

C) Punctate

D) Coarse

38. What is the BI-RADS® assessment category for a single group 
of coarse heterogeneous calcifications, which has a positive pre-
dictive value of slightly less than 15%?

A) 4A

B) 4B

C) 4C

D) 5

39. What is the BI-RADS® assessment category for fine pleomor-
phic calcifications, which have a positive predictive value (PPV) 
of 29%?

A) 4A

B) 4B

C) 4C

D) 5

40. What is the BI-RADS® assessment category for fine linear and 
fine-linear branching calcifications, which have the highest PPV 
(70%) among suspicious calcifications?

A) 4A

B) 4B

C) 4C

D) 5

41. Which distribution of calcifications is of concern because it 
suggests deposits in a duct or ducts and their branches, raising 
the possibility of extensive or multifocal breast cancer?

A) Clustered

B) Grouped

C) Linear

D) Segmental

42. What is a possible cause of asymmetry that is visible on only 
one mammographic projection?

A) Summation artifacts

B) Real lesions

C) Cancer

D) Calcification
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43. Where are intramammary lymph nodes frequently located?

A) Medial and lower portions of the breast

B) Lateral and usually upper portions of the breast closer to the 
axilla

C) Central portion of the breast

D) Posterior portion of the breast

44. Which mammographic finding is a rare finding and has been 
reported to be associated with non-calcified DCIS?

A) Intramammary lymph node

B) Solitary dilated duct

C) Asymmetric breast tissue

D) Architectural distortion

45. Which of the following is a sign of malignancy?

A) Bilateral nipple inversion

B) New nipple retraction

C) Stable nipple inversion for a long period of time

D) Nipple eversion

46. Which of the following is NOT a concern for skin thickening?

A) Focal or diffuse skin thickening greater than 2 mm in thickness

B) Skin thickening that represents a change from previous mam-
mograms

C) Unilateral skin thickening after radiation therapy

D) Diffuse skin thickening with no other suspicious findings

47. Why did the fifth edition of BI-RADS® remove ranges of per-
centage dense tissue for the four density categories?

A) To emphasize the text descriptions of breast density

B) To indicate that percentage breast density is not associated with 
changes in mammographic sensitivity

C) To indicate that percentage breast density is more important 
than text descriptions of breast density for breast cancer risk as-
sessment

D) To simplify the BI-RADS® reporting system

48. What is the key difference between an asymmetry and a mass 
on a mammogram?

A) Asymmetry has concave-outward borders, while a mass has 
convex-outward borders.

B) Asymmetry is unilateral, while a mass can be bilateral.

C) Asymmetry is interspersed with fat, while a mass is not.

D) Asymmetry is less conspicuous than a mass.

49. Why was the shape descriptor “lobular” eliminated in the 
2013 edition of BI-RADS®?

A) Because it was redundant with the margin descriptor “microlob-
ulated”

B) Because it was always associated with benign masses

C) Because it was difficult to distinguish from other shape descrip-
tors

D) Because it was not a reliable indicator of malignancy

50. Which of the following is a key difference between “round” 
and “punctate” calcifications in the 2013 edition of BI-RADS®?

A) Round calcifications are typically benign, while punctate calcifi-
cations may be associated with malignancy 

B) Punctate calcifications are defined as particles <0.5 mm, while 
round calcifications are defined as particles ≥0.5 mm

C) Round calcifications are typically isolated, while punctate calcifi-
cations are typically grouped

D) Punctate calcifications are more common in younger women, 
while round calcifications are more common in older women

51. Which of the following statements about coarse heterogene-
ous calcifications is true?

A) They are always associated with malignancy.

B) They are typically benign when present as multiple bilateral 
groupings.

C) They are larger than dystrophic calcifications.

D) They are more likely to be malignant when they occur together 
with fine pleomorphic calcifications.

52. What percentage of cases of developing asymmetry are 
found to be malignant?

A) 5%

B) 15%

C) 25%

D) 35%
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53. What is the range of likelihood of malignancy for findings 
placed in BI-RADS® category 4A?

A) >2% TO ≤10%

B) >10% TO ≤20%

C) >20% TO ≤30%

D) >30% TO ≤50%

54. Which of the following findings is an example of a category 
4A finding in BI-RADS®?

A) A circumscribed solid mass with smooth margins

B) A partially (<75%) circumscribed solid mass with US features 
suggestive of a fibroadenoma

C) A mass with spiculated margins and heterogeneous internal 
echogenicity

D) A cluster of irregular microcalcifications

55. Which of the following findings is an example of a category 
4C finding in BI-RADS®?

A) A circumscribed solid mass with smooth margins

B) A partially circumscribed solid mass with US features suggestive 
of a fibroadenoma

C) A new indistinct, irregular solid mass

D) A cluster of punctate microcalcifications

56. When is BI-RADS® category 6 used?

A) When a tissue diagnosis of malignancy has been made but prior 
to complete surgical excision

B) When a biopsy is recommended for a suspicious lesion

C) When a benign lesion is found on imaging

D) When a patient has a history of breast cancer

57. What is the primary use of BI-RADS® category 0?

A) To indicate a finding that is highly suggestive of malignancy

B) To indicate the recommendation for additional imaging evalu-
ation

C) To indicate the presence of a benign lesion

D) To indicate the need for a biopsy

58. Which of the following is a common mammographic finding 
associated with gynecomastia?

A) A circumscribed solid mass with smooth margins

B) A cluster of round calcifications

C) A “flame-shaped” area of increased density extending postero-
laterally from the nipple 

D) A spiculated mass with heterogeneous internal echogenicity

59. Which of the following is recommended by the ACR Practice 
Guideline for the Performance of a Breast Ultrasound Examina-
tion (2011) for optimal US image quality?

(A) Use of a low-frequency linear array transducer

B) Use of a broad bandwidth linear array transducer with a center 
frequency of at least 10 MHz

C) Use of a handheld, high-frequency breast US system

D) Use of a system with a low-resolution imaging capability

60. What is an important consideration when setting the field of 
view (FOV) on a breast ultrasound examination?

A) The FOV should be deep enough to include the pleura and lung.

B) The FOV should be set to a shallower depth when a lesion is 
found.

C) The FOV should be set deeply enough to include breast tissue 
and the pectoralis muscle posterior to it.

D) The FOV should be set to a very narrow depth to improve image 
resolution.

61. Which of the following is the correct method for taking meas-
urements of a breast lesion on ultrasound?

A) Take two measurements from the same view, and take the third 
measurement from a view that is perpendicular to the first two.

B) Take three measurements from the same view, with each meas-
urement representing a different plane.

C) Take two measurements from the same view, and take the third 
measurement from a view that is parallel to the first two.

D) Take three measurements from different views, with each meas-
urement representing the longest axis of the lesion.

62. Which of the following is NOT a type of margin that can be 
used to characterize a mass on ultrasound?

A) Circumscribed

B) Indistinct

C) Spiculated

D) Irregular
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63. What is the key feature of an indistinct margin on ultrasound?

A) The margin is clearly demarcated from the surrounding tissue.

B) The margin is poorly defined and blends into the surrounding 
tissue. 

C) The margin is spiculated and irregular.

D) The margin is angular and has sharp corners.

64. What is the normal skin thickness in the periareolar area and 
inframammary folds on ultrasound?

A) Up to 2 mm

B) Up to 3 mm

C) Up to 4 mm

D) Up to 5 mm

65. Which of the following is a characteristic of edema on ultra-
sound?

A) Increased echogenicity of the surrounding tissue

B) Decreased echogenicity of the surrounding tissue

C) A mass-like appearance

D) Calcifications

66. Which of the following is a standardized descriptor for lesion 
stiffness on ultrasound elastography?

A) Soft

B) Intermediate

C) Hard

D) All of the above

67. What is the key difference between a “complicated cyst” and 
a “complex cystic and solid” mass on ultrasound?

A) The presence of internal echoes

B) The presence of septations

C) The presence of a discrete solid component

D) The size of the mass

68. Which of the following is a common benign mass that can be 
found in or on the skin on ultrasound?

A) Sebaceous cyst

B) Metastasis

C) Cancer

D) Abscess

69. What is the characteristic ultrasound appearance of extrava-
sated silicone or silicone gel bleed?

A) A well-defined mass with posterior acoustic shadowing

B) A cystic mass with internal echoes

C) An echogenic mass with a “snowstorm” appearance

D) A hypoechoic mass with indistinct margins

70. Which of the following is NOT a US descriptor for tissue com-
position?

A) Homogeneous background echotexture-fat

B) Homogeneous background echotexture-fibroglandular

C) Heterogeneous background echotexture

D) Coarse background echotexture

71. According to the BI-RADS fifth edition, what is the correct 
term for a mass that contains solid and cystic components on 
ultrasound?

A) Complex mass

B) Complicated mass

C) Complex cystic and solid mass

D) Cystic mass

72. Which type of calcification is typically associated with an in-
voluting fibroadenoma?

A) Fine linear and branching

B) Round

C) Coarse or “Popcorn-Like”

D) Amorphous

73. What is the recommended time point for assessing breast pa-
renchymal enhancement (BPE) on breast MRI?

A) 2 minutes

B) 5 minutes

C) 90 seconds

D) 15 minutes

74. Which of the following is NOT a characteristic of breast pa-
renchymal enhancement (BPE) on breast MRI?

A) Occurs regardless of menstrual cycle or menopausal status

B) Directly related to the amount of fibroglandular tissue

C) Evaluated with respect to the amount of fibroglandular tissue

D) May demonstrate progressive enhancement over time
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75. Which of the following is a consideration when scheduling a 
breast MRI for elective examinations?

A) Scheduling the patient early in her menstrual cycle to minimize 
background enhancement

B) Scheduling the patient late in her menstrual cycle to maximize 
breast enhancement

C) Avoiding the use of contrast agents in pre-menopausal women

D) Performing the MRI regardless of the menstrual cycle or men-
strual status

76. Which of the following features of a focus on breast MRI is 
suggestive of malignancy?

A) Not unique compared to the BPE

B) Bright on bright-fluid imaging

C) Washout kinetics

D) Persistent kinetics

77. Which of the following is a suggestive feature of a fibroade-
noma on breast MRI?

A) Enhancing internal septations

B) Non-enhancing dark internal septations

C) Washout kinetics

D) Irregular shape

78. Which of the following is a cause of a false-positive interpre-
tation of a rim-enhancing lesion on contrast-enhanced ultra-
sound?

A) Galactocele

B) Fat necrosis

C) Fibroadenoma

D) Malignant tumor

79. Which of the following internal enhancement patterns of 
non-mass enhancement (NME) is suggestive of malignancy?

A) Homogeneous

B) Heterogeneous

C) Clumped

D) Clustered ring

80. What is the primary factor used to determine the second 
phase of a contrast-enhanced lesion on MRI?

A) Initial-phase enhancement pattern

B) Delayed-phase enhancement pattern

C) Lesion morphology

D) Lesion size

81. Which of the following delayed-phase enhancement pat-
terns is most commonly associated with malignant lesions?

A) Persistent

B) Plateau

C) Washout

D) Mixed

82. Which of the following is a potential cause of asymmetric 
breast parenchymal enhancement (BPE) on contrast-enhanced 
MRI?

A) Radiation therapy

B) Menstrual cycle

C) Age

D) Menopausal status

83. What is the criterion for classifying the initial phase of en-
hancement on contrast-enhanced MRI?

A) Percent increase in signal intensity compared to precontrast im-
age

B) Time to peak enhancement

C) Shape of the enhancement curve

D) Type of contrast agent used

84. Which of the following is NOT a characteristic of intracapsular 
silicone rupture?

A) Linguine sign

B) Intraparenchymal oil cyst

C) Subcapsular line

D) Keyhole sign
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85. How can you differentiate between a focal bulge in an intact 
breast implant and extruded silicone from an extracapsular rup-
ture on MRI?

A) The focal bulge will have signs of intracarpsular rupture on MRI, 
while the extracapsular rupture will not.

B) The extracapsular rupture will have signs of intracapsular rup-
ture inside the implant on MRI, while the focal bulge will not.

C) The focal bulge will be located on the outer edge of the implant, 
while the extracapsular rupture will be located in the center of the 
implant.

D) The extracapsular rupture will be larger than the focal bulge.

86. What is the appearance of a subcapsular line on MRI in an 
intracapsular silicone implant rupture?

A) A dark line paralleling the implant edge

B) A white line paralleling the implant edge

C) A dark line perpendicular to the implant edge

D) A white line perpendicular to the implant edge

87. What are the four categories used to describe the amount of 
background enhancement on contrast-enhanced MRI?

A) None, minimal, moderate, marked 

B) Minimal, mild, moderate, marked

C) Mild, moderate, marked, severe

D) None, mild, moderate, severe

88. Which of the following statements about breast parenchy-
mal enhancement (BPE) on contrast-enhanced MRI is true?

A) BPE is only seen in patients with dense breasts.

B) BPE can occur regardless of the menstrual cycle or menopausal 
status of the patient.

C) BPE is always related to the amount of fibroglandular parenchy-
ma present.

D) Younger patients with dense breasts are less likely to demon-
strate BPE than older patients with dense breasts.

89. What is the key distinguishing feature of a focus on con-
trast-enhanced breast MRI?

A) It is a small, punctate enhancing dot that is non-specific

B) It is a small, punctate enhancing dot that shows washout kinetics

C) It is a non-enhancing dot that corresponds to a precontrast find-
ing

D) It is a small, punctate enhancing dot that is separated by inter-
vening normal breast parenchyma

90. What type of enhancement pattern on MRI most closely re-
sembles the pleomorphic pattern on mammography?

A) Punctate

B) Linear

C) Clumped

D) Regional

91. What is the appropriate BI-RADS® assessment for isolated uni-
lateral axillary adenopathy in the absence of a known infectious 
or inflammatory cause?

A) Benign (category 2)

B) Probably benign (category 3)

C) Suspicious (category 4)

D) Malignant (category 5)

92. What is the standard term for a mammographic view that is 
angled toward the axilla?

A) Craniocaudal view

B) Mediolateral oblique view

C) Lateral view

D) Axillary view

93. What is the standard abbreviation for a tangential mam-
mographic view?

A) TAN

B) CV

C) XCCM

D) XCCL

94. What is not the standard abbreviation for mammography 
views?

A) MLO75

B) SIO

C) FL

D) XCCL

95. What is not the standard abbreviation for a step-oblique 
view?

A) MLO15

B) MLO45

C) MLO75

D) MLO90
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96. Which of the following is NOT a type of fat-containing lesion 
that can be seen on a mammogram?

A) Oil cyst

B) Lipoma

C) Galactocele

D) Fibroadenoma

97. What is the standard abbreviation for a superolateral-to-in-
feromedial oblique view?

A) IOS

B) SOI

C) SIO

D) ISO

98. What is the recomended term for ultrasound regarding spe-
cial cases?

A) Clustered microcyst

B) Fibrocystic changes

C) Clustered fibrocyst

D) Microcyst

99. What is the recomended term for implants regarding loca-
tion?

A) Postglandular

B) Postpectoral

C) Retroglandular

D) Glandular

100. Which year was the fifth edition of the BI-RADS® Atlas re-
leased?

A) 2013

B) 2010

C) 2008

D) 2007
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PURPOSE
Patients with advanced non-small cell lung cancer (NSCLC) have varying responses to immunother-
apy, but there are no reliable, accepted biomarkers to accurately predict its therapeutic efficacy. 
The present study aimed to construct individualized models through automatic machine learning 
(autoML) to predict the efficacy of immunotherapy in patients with inoperable advanced NSCLC.

METHODS
A total of 63 eligible participants were included and randomized into training and validation 
groups. Radiomics features were extracted from the volumes of interest of the tumor circled in the 
preprocessed computed tomography (CT) images. Golden feature, clinical, radiomics, and fusion 
models were generated using a combination of various algorithms through autoML. The models 
were evaluated using a multi-class receiver operating characteristic curve.

RESULTS
In total, 1,219 radiomics features were extracted from regions of interest. The ensemble algorithm 
demonstrated superior performance in model construction. In the training cohort, the fusion mod-
el exhibited the highest accuracy at 0.84, with an area under the curve (AUC) of 0.89–0.98. In the 
validation cohort, the radiomics model had the highest accuracy at 0.89, with an AUC of 0.98–1.00; 
its prediction performance in the partial response subgroup outperformed that in both the clinical 
and radiomics models. Patients with low rad scores achieved improved progression-free survival 
(PFS); (median PFS 16.2 vs. 13.4, P = 0.009).

CONCLUSION
autoML accurately and robustly predicted the short-term outcomes of patients with inoperable 
NSCLC treated with immune checkpoint inhibitor immunotherapy by constructing CT-based radio-
mics models, confirming it as a powerful tool to assist in the individualized management of patients 
with advanced NSCLC.

CLINICAL SIGNIFICANCE
This article highlights that autoML promotes the accuracy and efficiency of feature selection and 
model construction. The radiomics model generated by autoML predicted the efficacy of immu-
notherapy in patients with advanced NSCLC effectively. This may provide a rapid and non-invasive 
method for making personalized clinical decisions.

KEYWORDS
Advanced non-small cell lung cancer, immunotherapy, radiomics, automatic machine learning, 
models
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Non-small cell lung cancer (NSCLC) is a 
prevalent and malignant tumor with 
high incidence and mortality rates 

globally.1 Over 30% of new NSCLC cases are 
diagnosed at locally advanced stages [tu-
mor–node–metastasis (TNM) stage III]. The 
absence of notable early symptoms often 
leads to diagnoses at advanced stages or af-
ter local metastasis has occurred, which fre-
quently delays surgical treatment. 

The current standard treatment for pa-
tients with advanced NSCLC involves concur-
rent chemoradiotherapy followed by immu-
notherapy.2 Definitive efficacy and improved 
prognoses have been achieved in all stages 
of NSCLC with the use of immune checkpoint 
inhibitors (ICIs), either alone or in combina-
tion with chemotherapy.3,4 In the CHECK-
MATE-816 clinical trial, nivolumab combined 
with chemotherapy extended event-free sur-
vival (EFS) by 10.8 months and decreased the 
risk by 37% compared with the control group 
[hazard ratio (HR) 0.63, confidence interval 
(CI): 0.43–0.91, P = 0.0052].5 Furthermore, 
the recent NEOTORCH trial reported a similar 
extension in EFS and a significantly higher 
pathological complete response (CR) rate 
(24.8% vs. 1.0%, P < 0.0001) in the group re-
ceiving combined immune-chemotherapy.6 

However, in the Pacific trial (NCT02125461), 
only one-third of patients who received ad-
juvant therapy with durvalumab remained 
disease-free after 5 years,7,8 indicating that 
immunotherapy may not be suitable for all 
patients due to factors such as the specific 
tumor immune microenvironment, resid-
ual toxicity, and societal expense. Effective 
immunotherapy is often positively correlat-
ed with high programmed death-ligand 1 
(PD-L1) expression and the tumor muta-
tion burden (TMB), but these require tissue 
from biopsies for detection. The challenge 
of not being able to perform repeated bi-
opsies after developing chemo-resistance 

complicates treatment options for patients 
at an advanced stage. Therefore, there is an 
urgent need to develop non-invasive meth-
ods to accurately predict the efficacy of im-
munotherapy, which could benefit a broader 
group of patients. 

In recent years, thin-slice computed to-
mography (CT) scans have become integral 
in diagnosing and staging NSCLC.9,10 With 
advancements in medical imaging, there has 
been a transition from traditional qualitative 
diagnosis to the extraction of multimodal 
image data for quantitative analysis. Radio-
mics, a promising tool in image analysis, al-
lows for the extraction of high-throughput 
features from imaging data. These features, 
combined with specific modeling tech-
niques, can enhance the accuracy of disease 
diagnosis, differentiation, and prognosis 
evaluation.11 Previously, we developed and 
implemented delta radiomics diagnostic fea-
tures to refine and personalize the diagnosis 
of invasive adenocarcinoma in lung partial 
solid nodules.12

Automatic machine learning (autoML) 
algorithms have facilitated the analysis of 
complex, large-sample data into predic-
tive models and automated classifications. 
By integrating substantial amounts of data 
from radiology, pathology, genomics, and 
proteomics, autoML has enhanced clinical 
decision-making.13 In the present study, we 
aimed to identify effective radiomics fea-
tures in CT images using autoML and inte-
grate them with clinical features to develop 
a fusion model for individualized efficacy 
prediction and progression assessment in 

patients with advanced NSCLC receiving im-
munotherapy.

Methods

Study design and population

In this retrospective observational sin-
gle-center study, we reviewed patients with 
NSCLC who underwent ICI treatment at 
Huadong Hospital between January 2020 
and December 2022. The inclusion criteria 
were as follows: (1) >18 years; (2) receiving 
ICI treatment (anti-PD-1/PD-L1) at Huadong 
Hospital for the first time; (3) a clinically 
confirmed diagnosis of unresectable locally 
advanced stage NSCLC [stage III–IV, Union 
for International Cancer Control/American 
Joint Committee on Cancer (8th edition)]; 
and (4) available thin-slice CT images (1–1.25 
mm), with lesions delineated and evaluated. 
The exclusion criteria were as follows: (1) a 
pathologically confirmed diagnosis of small 
cell lung cancer; (2) a history of malignancies 
other than NSCLC; (3) poor CT image quality 
with artifacts; and (4) failure to extract radio-
mics features due to other reasons.

Finally, a total of 63 eligible cases were en-
rolled (Figure 1). The clinical features before 
receiving ICIs were collected from medical 
records, including age, gender, smoking his-
tory, the time of diagnosis, pathological type, 
tumor location, the maximum diameter of 
the primary tumor site, clinical tumor stage, 
metastatic location, driver gene mutation, 
the start time and type of ICI treatment, treat-
ment regimen, and disease progression and 
survival information. The efficacy evaluation 

Main points

• Radiomics modeling based on computed 
tomography images predicted the effi-
cacy of immunotherapy in patients with 
advanced non-small cell lung cancer effec-
tively.

• Automatic machine learning can integrate 
multiple algorithms to obtain improved 
predictive capabilities.

• The diagnostic performance of the radiom-
ics model outperformed that of the clinical 
model.

• Patients with lower rad scores achieved su-
perior progression-free survival. Figure 1. Study flowchart. ICIs, immune checkpoint inhibitors; CT, computed tomography; NSCLC, non-

small cell lung cancer.
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was based on the immune-related response 
evaluation criteria in solid tumors,14 which 
classifies outcomes as CR, partial response 
(PR), stable disease (SD), and PD. The dis-
ease control rate (DCR) refers to the sum of 
all patients who were CR, PR, and SD. All the 
enrolled cases were further separated into a 
training and a validation cohort randomly af-
ter adjusting for potential confounders. The 
study was approved by the Ethics Committee 
of Huadong Hospital, and the requirement 
for informed consort was waived (approval 
no.: 2022K033,  date: 21.02.2022).

Computed tomography image acquisition 

The patients in this study were all subject-
ed to non-contrast-enhanced CT performed 
on two scanners: a Somatom Definition Flash 
scanner (Siemens Medical Solutions, Erlan-
gen, Germany) and a GE Discovery CT750 HD 
scanner (GE Healthcare, MO, USA) at 120 kV. 
The detailed scanning parameters are shown 
in Supplementary Table 1. The overall scan-
ning range was from the lung apex to the 
bilateral adrenal gland. During the examina-
tion, the patients were instructed to lie in a 
supine position and inhale deeply with both 
arms raised. 

Target segmentation and radiomics fea-
tures extraction

According to the target lesions on the ax-
ial slices of the initial CT scans, the volumes 
of interest (VOIs) were manually marked by 
two experienced radiologists, each with 5 
years’ expertise in diagnosing chest CT im-
ages, to achieve three-dimensional (3D) seg-
mentation using the open-source 3D Slicer 
software (version 4.13.0; National Institutes 
of Health).

The extraction of radiomic features from 
these tumor VOIs was automatically per-
formed using pyRadiomics (version: 3.0.1).15 
To assess the inter-rater reliability between 
the radiologists, the intraclass correlation 
coefficient (ICC) was employed, with ICC 
>0.75 indicating a high level of agreement. 
The types of radiomic features extracted in-
cluded grayscale, shape, texture, and wavelet 
transform features.

Feature selection and model construction

Due to the broad variability in the initial 
dataset, the data underwent normalization 
to control the radiomics features within a 
standardized intensity range. Feature selec-
tion was performed within the training co-
hort. The MLJAR platform, an open-source 
software based on Python, was employed for 

predictive feature selection and modeling.16 

This platform is designed to automatically 
address missing data by implementing strat-
egies such as mean or median imputation to 
maintain data integrity. It also manages cat-
egorical variables by automatically perform-
ing encoding transformations, such as one-
hot encoding or label encoding, enabling 
machine learning algorithms to effectively 
interpret these features. Subsequently, a fea-

ture engineering step was undertaken to cre-
ate “golden features” that possess enhanced 
predictive power, derived from the original 
dataset features through operations such 
as addition, subtraction, multiplication, and 
division. Throughout the training phase, ML-
JAR assessed the significance of each feature 
using techniques such as permutation im-
portance or SHapley Additive exPlanations, 
providing a quantitative measure of each 

Table 1. Basic characteristics of the enrolled patients in the training cohort and validation 
cohorts

Training cohort (n = 44) Validation cohort (n = 19)

Total PR SD PD P Total PR SD PD P

Age

<60 11 3 3 5 0.484 7 4 0 3
0.731

≥60 33 12 4 17 12 6 1 5

Gender

Male 34 14 4 16 0.13 10 6 1 3
0.396

Female 10 1 3 6 9 4 0 5

Pathological type

LSCC 13 8 2 3 0.034* 13 7 1 5
0.739

LUAD 31 7 5 19 6 3 0 3

Tumor location

Right 30 10 5 15 0.975 13 7 0 6
0.311

Left 14 5 2 7 6 3 1 2

cT stage

T1–T2 22 5 3 14 0.179 9 4 1 4
0.509

T3–T4 22 10 4 8 10 6 0 4

cN stage

N0 9 2 2 5 0.663 1 0 0 1
0.484

N+ 35 13 5 17 18 10 1 7

cM stage

M0–M1a 30 11 6 13 0.365 13 8 1 4
0.311

M1b–M1c 14 4 1 9 6 2 0 4

cTNM stage

III 11 5 2 4 0.563 4 3 1 0
0.041*

IV 33 10 5 18 15 7 0 8

Driver gene mutation

Negative 35 13 6 16 0.533 15 7 1 7
0.577

Positive 9 2 1 6 4 3 0 1

Smoking status

Never 22 7 5 10 0.464 12 7 0 5
0.383

Ex- or current 22 8 2 12 7 3 1 3

Treatment

Without CHT 9 1 3 5 0.137 5 2 1 2
0.221

With CHT 35 14 4 17 14 8 0 6

PD-L1 expression

<50% 33 11 6 16 0.573 11 6 1 4
1.000

≥50% 11 6 1 4 8 5 0 3

*Means statistical significance existed (Fisher exact probability test, P < 0.05). PR, partial response; SD, stable disease; 
PD, progressive disease; LSCC, lung squamous cell carcinoma; LUAD, lung adenocarcinoma; CHT, chemotherapy; 
cT stage, clinical tumor stage; cN stage, clinical node stage; cM stage, clinical metastasis stage; cTNM stage, clinical 
tumor-node-metastasis stage; PD-L1, programmed death-ligand 1.
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feature’s impact on the model’s predictive ac-
curacy and offering insight into the underly-
ing decision-making processes of the model. 

Afterward, in the “competition” mode of 
MLJAR, the software sought the most effec-
tive algorithms from a range, including linear 
regression, light gradient-boosting machine 
(LightGBM), eXtreme gradient boosting, 
neural networks (NN), and random forest 
(RF). Additionally, it considered assembling 
multiple algorithms to finalize the modeling 
process. The rad score was obtained by mul-
tiplying the coefficients of each feature by its 
value and then summing the results to get 
the final value.

The predictive model, which included 
clinical, radiomics, and fusion models, was 
developed using the aforementioned au-
toML algorithms. The efficacy of each model 
was assessed through receiver operator char-
acteristic (ROC) curves for both the training 
and validation cohorts. Subsequently, the 
area under the curve (AUC) was calculated 
to determine the predictive accuracy of each 
constructed model.

Statistical analysis

The feature extraction and statistical 
analysis procedures were conducted using R 
software (version 3.6.2; http://www.Rproject.
org and SPSS 22 (IBM, IL, USA). Categorical 
variables were analyzed using Fisher’s exact 
test. To evaluate the multi-class ROC curves, 
both the macro-AUC and micro-AUC were 
calculated. The macro-AUC averaged the 
AUC values from each category, whereas the 
micro-AUC computed the weighted average 
after evaluating each category independent-
ly. Furthermore, model performance was as-
sessed using statistical metrics such as accu-
racy, precision, recall, and F1-score.

Model performance was evaluated by 
ROC analysis, and the significance level of 
curves was compared using the DeLong test. 
A COX regression analysis was utilized to in-
vestigate factors associated with disease pro-
gression and survival. Survival rates were an-
alyzed using the Kaplan–Meier method, and 
survival data comparisons were conducted 
with the log-rank test. A two-sided P value 
less than 0.05 was considered statistically 
significant for all tests.

Results

Basic characteristics of patients

The basic characteristics of the patients 
are listed in Table 1. In total, 63 patients with 

advanced NSCLC who had received ICIs in 
our hospital were randomly divided into the 
training cohort (n = 44, PR: 15, SD: 7, and PD: 
22) and the validation cohort (n = 19, PR: 10, 
SD: 1, and PD: 8) based on the efficacy evalu-
ation (Supplementary Table 2). 

In the training cohort, differences were 
observed in the tumor pathological types of 
patients with various curative effects [lung 
squamous cell cancer vs. lung adenocar-
cinoma (LUAD), 13 vs. 31, P = 0.034]. In the 
validation cohort, a difference in the clinical 
TNM (cTNM) stage was observed (cTNM III vs. 
cTNM IV, 4 vs. 15, P = 0.041). No differences 
were observed in age, gender, tumor loca-
tion, driver gene mutations, smoking history, 
PD-L1 expression, or combination therapy 
among the patients (all P > 0.05). 

Selection of radiomics and clinical golden 
features 

The radiomics feature selection workflow 
is shown in Figure 2. The VOIs were automat-
ically extracted, yielding a total of 1,219 fea-
tures. Within the training cohort, the golden 
features, regarded as the most predictive 
features, were selected for the subsequent 
model construction by autoML. Among the 

radiomics features, based on the superior 
performance of the LightGBM algorithm, 
log-sigma-4-0mm_ Glrlm_ Lowgraylevelrun-
emphasis had the highest mean of feature 
importance; the top 25 golden features are 
listed in Supplementary Figure 1. The rad 
scores for patients undergoing ICI treatment 
were significantly lower in the DCR group 
than in the PD group in both the training 
(0.105 ± 0.284 vs. 0.502 ± 0.318, P < 0.001) 
and the validation cohorts (0.119 ± 0.224 vs. 
0.528 ± 0.262, P = 0.002) (Supplementary Fig-
ure 2). 

Among the clinical features, ten golden 
features were identified and selected for 
model building using autoML. Among these, 
the feature representing the combination 
with chemotherapy (feature 11) was identi-
fied as the most critical (Supplementary Fig-
ure 3).

Model construction and performance com-
parison

Based on the input of golden features 
with the highest importance, different learn-
ing algorithms were selected for establishing 
each model (Supplementary Figure 4). The 
ensemble algorithm demonstrated the low-

Table 2. Performance evaluation of the clinical, radiomics, and fusion models

Training cohort Validation cohort

Clinical 
model

Radiomics 
model

Fusion 
model

Clinical 
model

Radiomics 
model

Fusion 
model

Micro-AUC 0.93 0.94 0.93 0.90 0.98 0.97

Macro-AUC 0.92 0.94 0.95 0.92 0.99 0.98

Accuracy 0.80 0.77 0.84 0.74 0.89 0.84

AUC (95% CI)
PR

SD

PD

0.92 
0.646 to 

0.953
0.87

0.549 to 
0.925
0.96

0.664 to 
0.965

0.92
0.614 to 

0.928
0.96

0.638 to 
1.000
0.92

0.696 to 
0.928

0.89
0.602 to 

0.913
0.98

0.676 to 
0.996
0.91

0.688 to 
0.921

0.88
0.474 to 

0.895
1.00

/
0.83

0.605 to 
0.934

0.99
0.737 to 

1.000
1.00

/
0.98

0.605 to 
1.000

0.96
0.698 to 

0.968
1.00

/
0.94

0.653 to 
0.956

P value 0.004* 0.005* <0.001* 0.015* 0.060 0.010*

Precision
 PR
 SD
 PD

0.87
0.71
0.77

0.80
0.86
0.73

0.80
0.86
0.86

0.80
1.00
0.62

0.90
1.00
0.88

0.90
1.00
0.75

Recall
 PR
 SD
 PD

0.76
0.56
0.94

0.75
0.67
0.84

0.86
0.75
0.86

0.80
0.50
0.71

1.00
0.50
0.88

0.82
1.00
0.86

F1-score
 PR
 SD
 PD

0.81
0.85
0.63

0.77
0.75
0.78

0.83
0.80
0.86

0.80
0.67
0.67

0.95
0.67
0.88

0.86
1.00
0.80

*Means statistical significance existed between the AUC values among the models (DeLong test, P < 0.05). AUC, area 
under the curve; 95% CI, 95% confidence interval; PR, partial response; SD, stable disease; PD, progressive disease.
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est log-loss value in both the clinical and fu-
sion models, indicating greater accuracy and 
a superior alignment between the predicted 
results and actual outcomes. In the radiom-
ics model, the performance matched that of 
LightGBM, also suggesting improved accura-
cy and consistency.

Our study has shown that in both the ra-
diomics and fusion models, the micro-AUC 
and macro-AUC were higher than those in the 
clinical model across the training and valida-
tion cohorts. In terms of accuracy, the fusion 
model scored the highest in the training co-
hort with 0.84, whereas the radiomics model 

outperformed the other models in the valida-
tion cohort with 0.89. In the training cohort, 
the radiomics and fusion models both exhib-
ited optimal performance in SD, with an AUC 
of 0.96 (95% CI, 0.638–1.000) and 0.98 (95% 
CI, 0.676–0.996), respectively. In the valida-
tion cohort, the AUC of the radiomics model 
in three subgroups (PR, PD, and SD) were all 
higher than in the clinical and fusion models. 
Additionally, in the validation cohort, the PR 
subgroup exhibited better recall values and 
F1-scores than the SD and PD subgroups in 
both the clinical and radiomics models, sug-
gesting enhanced predictive performance for 
this subgroup (Table 2, Figure 3).

Model prediction of progression-free and 
overall survival

All the enrolled patients were followed up 
for progression-free survival (PFS) and over-
all survival (OS), including 30 disease-pro-
gressed cases and 8 deaths, with a median 
follow-up time of 20 months (range: 3–47 
months). Based on a nomogram derived from 
the multivariate COX regression analysis, pa-
tients undergoing ICI treatment were divid-
ed into high and low rad-score groups, with a 
threshold of 0.3 (Figure 4a). Regression anal-
ysis confirmed that the rad score was a more 
accurate predictor of progression risk than 
clinical factors (HR: 0.25, 95% CI: 0.10–0.63, 
P = 0.004) (Figure 4b). Although there was 
no significant difference in OS between the 
high and low rad-score groups (20.2 vs. 21.8 
months, P = 0.056), the median PFS was no-
tably longer in the low-score group, at 16.2 
months, compared with 13.4 months in the 
high-score group (P = 0.009) (Supplementary 
Figure 5). The above data suggest that pa-
tients with low rad scores, as determined by 
the radiomics model, tend to experience less 
progression following immunotherapy. 

Discussion
In the present study, we developed and 

validated a radiomics-based model using au-
toML algorithms to non-invasively assess the 
efficacy of immunotherapy in patients with 
inoperable advanced NSCLC. The findings 
revealed that the model, which incorporates 
features from CT images, displayed robust 
capabilities for diagnostics as well as for pre-
dicting therapeutic efficacy and disease pro-
gression. 

In addition to PD-L1 expression, recent 
studies have shown that ICIs are highly 
effective in patients with high microsatel-
lite instability or deficient mismatch repair 
(dMMR). Tumor cells with dMMR characteris-
tics tend to have a higher TMB, which leads 
to the production of a considerable number 
of neoantigens. These neoantigens facilitate 
the recruitment of lymphocytes that become 
tumor-infiltrating lymphocytes, inhibiting 
tumor growth and enhancing the efficacy of 
immunotherapy.17,18 However, these markers 
are typically identified through pathological 
immunohistochemistry or next-generation 
sequencing analysis, which require invasive 
tissue sampling and are costly. Therefore, 
there is a need for non-invasive, cost-effec-
tive, and accurate predictive methods using 
radiomics.

Progress in computerized imaging tech-
nology has led to the production of high-

Figure 3. Evaluation of the performance of the different models. (a) Clinical model in the training cohort; 
(b) radiomics model in the training cohort; (c) fusion model in the training cohort; (d) clinical model in the 
validation cohort; (e) radiomics model in the validation cohort; (f) fusion model in the validation cohort. 
ROC, receiver operator characteristic.

Figure 2. Workflow for the radiomics analysis. ROC, receiver operator characteristic; AUC, area under the 
curve.
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er-definition images, enhancing radiomics’ 
ability to extract more intricate features than 
traditional imaging methods. This advance-
ment supports the performance of high-di-
mensional quantitative analysis, providing 
additional insights for clinical decision-mak-
ing.19 At present, numerous researchers have 
developed models with refined features that 
demonstrate high evaluation efficacy in vari-
ous NSCLC application scenarios. These mod-
els have proven effective in predicting lesion 
benignity and malignancy, lymph node me-
tastasis, driver mutations, and the severity of 
adverse effects.20-23 For example, Yoon et al.24 
discovered that CT imaging features could 
non-invasively predict PD-L1 expression, 
identifying that validated radiomics models 
had greater discriminatory power than those 
generated from clinical features alone in an 
advanced LUAD cohort. Similarly, Trebeschi 
et al.25 identified a non-invasive machine 
learning biomarker capable of differentiating 
between responders and non-responders to 
immunotherapy, and this model achieved an 
AUC value of 0.83 in lung cancer studies.24

In all our models, the predictive perfor-
mance for the PR subgroup exceeded that 
for the PD subgroup. These results suggest 
that our model aided in identifying patients 
who are likely to benefit from immunothera-
py. However, the diagnostic consistency for 
the SD subgroup in the validation cohort 

remained uncertain due to the limited sam-
ple size. Previous studies typically focused 
on binary outcomes, such as categorizing 
responses as effective or ineffective or pro-
gressive and non-progressive, which often 
excluded patients in the SD subgroup. The 
antitumor effect in the SD subgroup is con-
sidered ambiguous, leading to no significant 
differences in OS compared with the PR or 
PD subgroups. Although fusion models are 
generally regarded as having superior pre-
dictive capabilities, in this study, they only 
excelled in the SD subgroup compared with 
both clinical and radiomics models alone. 
This occurred because the features extract-
ed from the images, when processed by au-
toML, might yield diagnoses that contradict 
clinical features, thereby reducing the pre-
dictive accuracy of the fusion model.

In the survival analysis, variations in PFS 
were observed among patients with differ-
ing rad scores (P = 0.056), though there was 
no statistically significant difference in OS. 
This lack of significance in OS could be due 
to all patients being in the advanced stages 
of the disease (cIII–cIV) and exhibiting ei-
ther lymph node or distant metastasis, both 
of which are associated with higher risks. In 
studies with smaller sample sizes and shorter 
follow-up times, PFS may be a more suitable 
endpoint than OS, although OS remains the 
gold standard for measuring clinical benefit. 

Furthermore, a positive result in PFS 
does not always translate to a benefit in OS. 
This discrepancy can arise because the tox-
ic side effects of a treatment might cause a 
statistical bias in the PFS assessment, with 
drugs that have higher side effects poten-
tially showing a “false” PFS advantage during 
shorter follow-up periods. In this study, the 
high rad-score group accounted for more 
than half of the recurrences (median PFS: 
13.8 months), whereas the low rad-score 
group did not reach the median PFS. Median 
OS was not achieved in either group. The me-
dian follow-up time was 20 months, exceed-
ing the median PFS by 6.2 months, which 
may also indicate robust results.

With the progression in central processing 
unit and graphics processing unit technolo-
gy, deep learning and autoML methods have 
gained popularity.26 In the present study, var-
ious algorithms were sequentially employed 
to develop clinical, radiomics, and fusion 
models via autoML. Among these, the en-
semble models that integrated multiple clas-
sifiers demonstrated superior performance. 
However, the radiomics model, developed 
using LightGBM, achieved prediction levels 
in the training cohort comparable to those 
of the ensemble model. LightGBM is a frame-
work that implements the gradient-boost-
ing decision tree algorithm. This algorithm 
is well-regarded in machine learning for its 

Figure 4. Rad score reflecting the risk of progression using COX regression analysis. (a) Nomogram of the rad scores and clinical risk factors; (b) results of the COX 
regression analysis.
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ability to iteratively train weak classifiers to 
derive an optimal model, notable for its ef-
ficient parallel training, improved accuracy, 
and capability to prevent overfitting.27,28 In 
response to the characteristics of the dataset, 
different machine learning algorithms have 
demonstrated their respective performance 
advantages. For instance, Wiesweg et al.29 
applied support vector machine modeling to 
analyze RNA expression from biopsy samples 
in patients with advanced NSCLC, identifying 
seven genes predictive of immunotherapy 
response. Similarly, using a cytokine-based 
ICI response index, Wei et al.30 employed RF 
modeling to predict responses to ICIs in pa-
tients with NSCLC. In the present study, we 
harnessed autoML to amalgamate multiple 
algorithms, developing models that exhib-
ited enhanced predictive efficacy. This ap-
proach could significantly aid in predicting 
the effectiveness and survival outcomes of 
ICI treatment in patients with advanced NS-
CLC.

The current study has several limitations. 
First, being a single-center retrospective 
study with a small sample size in the train-
ing cohort, there is a potential impact on 
the specificity of the models, necessitating 
the collection of multicenter clinical data to 
confirm the models’ robustness. Second, CT 
images were obtained from two scanning 
devices, which might have an adverse ef-
fect on radiomics feature extraction caused 
by uniformity. The MLJAR platform offers 
capabilities for model interpretation. As the 
complexity of the autoML models increases, 
their interpretability decreases, making it dif-
ficult for clinicians to understand and trust 
the model outputs, which could affect the 
reliability of model outcomes and the quality 
of decision-making. Moreover, the assess-
ment of PD-L1 expression was limited by the 
amount of tissue available for fine-needle 
biopsy, resulting in some patients not being 
accurately assessed. It is also crucial in prac-
tice to select the most suitable combination 
of autoML algorithms, tailored to the specific 
characteristics of the data.

Furthermore, although the primary goal 
of this study was to provide surgical and on-
cology specialists with a predictive tool for 
treatment efficacy in patients with advanced 
NSCLC, challenges have arisen in accurately 
identifying lesions on CT images. To address 
this, Jiang et al.31 developed a multi-scale 
convolutional NN method that integrates 
features from different resolutions to seg-
ment lung tumors accurately, facilitating the 
precise and automated tracking of tumor 
volumes. Integrating similar diagnostic mod-

els could enhance the utility of autoML in 
clinical settings. Moreover, although autoML 
allows for the training of numerous deep 
learning models with minimal coding or data 
input, the performance of these models can 
vary, and there remains room to improve 
both efficiency and prediction accuracy. 
Models that are designed and refined by ex-
perts may prove more reliable, and further 
clarification is needed on their clinical rele-
vance and guidelines for practical diagnosis 
and treatment.

In conclusion, autoML has the ability to 
accurately predict the efficacy of immuno-
therapy and the short-term prognosis of pa-
tients with inoperable advanced NSCLC by 
constructing CT-base radiomics models, aid-
ing the clinical evaluation and screening of a 
broader population and the development of 
personalized treatment strategies.
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Parameters GE Discovery 
CT750 HD

Somatom 
definition flash
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Rotation time (s/rot) 0.5 0.33

SFOV (cm) 50 50

Slice thickness of reconstruction (mm) 1.25 1

Slice interval of reconstruction (mm) 1.25 1

Reconstruction algorithm STND Medium sharp

kVp, kilovoltage peak; mAs, milliampere-seconds; SFOV, scan field of view; STND, standard reconstruction algorithm.

Supplementary Table 2. Evaluation of tumor response to immunotherapy

Tumor response All patients (n = 63)

CR 0

PR 25

SD 8

PD 30 (47.6%)

DCR (CR + PR + SD) 33 (52.4%)

CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease; DCR, disease control rate.
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Supplementary Figure 1. Top 25 important radiomics features selected by LightGBM algorithm. LightGBM, light 
gradient-boosting machine.

Supplementary Figure 2. The rad scores of patients in DCR and PD subgroups. (a) The training cohort; (b) the validation cohort. 
DCR, disease control rate; PD, progressive disease.
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Supplementary Figure 4. The performance of the detection models in the training cohort. (a, d) clinical model; (b, e) radiomics model; (c, f) fusion model.

Supplementary Figure 3. Predictive clinical features generated by ensemble algorithm.

a

d

b

e

c

f



 

140 • March 2025 • Diagnostic and Interventional Radiology Lin et al. 

Supplementary Figure 5. Survival analyses in different groups of disease progression risk classified by the 
radiomics model. (a) Progression-free survival in different groups of Rad scores (P < 0.01); (b) Overall survival 
in different groups of Rad scores (P = 0.056).

a b



I N T E R V E N T I O N A L  R A D I O L O G Y

Copyright© Author(s) - Available online at dirjournal.org.
Content of this journal is licensed under a Creative Commons
Attribution-NonCommercial 4.0 International License.

141

Diagn Interv Radiol 2025; DOI: 10.4274/dir.2024.232639

T E C H N I C A L  N O T E

ABSTRACT
Transperineal prostate microwave thermoablation (TPMT) has been established as a safe means of 
treating benign prostatic hyperplasia (BPH); however, its effectiveness in addressing BPH-related 
lower urinary tract symptoms (LUTS) remains unexplored. This case study aims to evaluate the effi-
cacy of TPMT in LUTS attributed to BPH. An 84-year-old man with LUTS due to BPH-induced bladder 
outlet obstruction, unresponsive to previous medical treatments, and failed prostate artery embo-
lization, underwent TPMT. Three coaxial needles were positioned at the midline, right, and left sides 
of the hypertrophic transitional zone of the prostate. Microwave energy, with parameters deter-
mined using liver data and targeted ablation area, was applied at 2,450 MHz in continuous mode. 
The tissue temperature was monitored using bilateral thermocouple sensors. The patient exhibited 
no changes in defecation rhythm, abdominal discomfort, or anorectal pain. Temporary postopera-
tive hematuria was promptly resolved through saline irrigation within 6 hours, and hematological 
evaluations showed normal results. Significant clinical improvements were observed (e.g., prostate 
volume, prostate-specific antigen levels) accompanied by an increase in peak flow rate. Thus, TPMT 
appears to be a promising intervention for bladder outlet stenosis and LUTS induced by BPH.
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toms
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Benign prostatic hyperplasia (BPH) has a substantial impact on the social and clinical as-
pects of geriatric men, and its significance cannot be overstated. It is a prevalent disease, 
affecting 50% of men in their sixth decade and 90% in their ninth decade, with an annual 

development of symptoms in 1.5% of men. Those with a prostate size >50 cm2 face a five-fold 
increased risk of experiencing clinically mild-to-severe lower urinary tract symptoms (LUTS) 
and a three-fold elevated risk of significant bladder outlet blockage (peak flow rate 10 mL/
sec).1 These findings indicate a correlation between prostate growth, LUTS, and blockage, par-
ticularly in men with larger prostates.

For the past 45 years, transurethral prostate removal has been the gold standard for BPH 
surgery.2 However, concerns regarding sexual dysfunction, hospitalization, and cost have 
prompted the exploration of alternative minimally invasive therapies.1,2

Among the alternative methods, microwave ablation has been valuable for treating hy-
perplasia. When tissue is exposed to microwave radiation (900–2,450 MHz), water molecules 
begin to oscillate, and the temperature increases due to friction. If the increase in temperature 
is sufficient, proteins and enzymes start to degrade, resulting in coagulative necrosis.3 As per 
the guidelines of the American Urological Association, transurethral microwave thermothera-
py (TUMT) is recognized as a potential treatment for LUTS associated with BPH4 and is widely 
utilized.5 Nevertheless, TUMT is contraindicated for patients with urethral strictures, as well as 
those with penile or urinary sphincter devices or a history of pelvic radiation. Conversely, tran-
sperineal prostate microwave thermoablation (TPMT) presents a viable alternative for these 
individuals.
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TPMT offers the advantage of a shorter 
duration-typically approximately 5 min-
utes-compared with the 30 minutes or 
so required for TUMT. Furthermore, TPMT 
may lead to a reduction in the risk of sexu-
al dysfunction, persistent irritative voiding 
symptoms, incontinence, urinary tract infec-
tions, and repeated acute urinary retention 
episodes. Despite these potential benefits, 
TPMT has been explored in only a limited 
case series, focusing on the safety and com-
fort assessment of the device and the impact 
of microwaves on prostatic tissue in vivo, as 
reported by Bartoletti et al.1 It is noteworthy 
that, to the best of our knowledge, there is 
currently no evidence supporting or refuting 
the efficacy of TPMT in addressing LUTS. In 
this case study, TPMT was performed on an 
84-year-old patient whose LUTS resulting 
from bladder outlet obstruction due to BPH 
were resistant to medical treatment and did 
not show any improvement after prostate 
embolization (PE). Surgery was also deemed 
unsuitable due to the patient’s underlying 
morbidities. The results showed that TPMT 
was effective in addressing LUTS attributed 
to BPH. 

The patient

An 84-year-old man was presented with 
LUTS resulting from bladder outlet obstruc-
tion attributed to BPH (Figure 1a, Figure 2a). 
. Prior treatment with α-blockers had proven 
ineffective. The patient’s advanced age and 
extensive arteriosclerosis of the anterior divi-
sion of the internal iliac artery resulted in the 
failure of PE conducted at another medical 
facility. He experienced severe symptoms, as 
indicated by an international prostate symp-
tom score of 28. Additionally, the patient ex-
hibited a diminished maximum urinary flow 
rate of 5.1 mL/sec and incomplete bladder 
emptying, evidenced by a post-void residu-

al urine volume of 350 mL. Prostate volume 
(PV) assessment revealed significant enlarge-
ment, at 218 mL. Elevated total and free pros-
tate-specific antigen (PSA) serum levels were 
noted (total PSA: 14.9 ng/mL, free PSA: 7.78 
ng/mL), with a free-to-total PSA ratio of >0.2. 
The PSA density (total PSA/PV) was calculat-
ed as 0.068, falling below the 0.15 limit.

Given the patient’s advanced age, comor-
bidities (diabetes mellitus, hypertension, 
coronary artery disease, atrial fibrillation, 
cerebrovascular disease), and a poor 10-year 
prognosis, a decision was made to forego a 
prostate cancer study. 

Technique

The patient received a 7-day course of ce-
fixime (400 mg/day), Ibuprofen (2 × 600 mg/
day), and gastroprotective therapy. Notably, 
the treatment initiation occurred 12 hours 
before the scheduled procedure.

The patient was positioned in the dorsal 
lithotomy posture. For anesthesia, lidocaine 
(10 mL) was administered into the prostate/
seminal vesicle angle and the bilateral pros-
tate apex. The coaxial needles and micro-
wave antenna were inserted under guidance 
from ultrasound (Aplio 500, with a 3.5 MHz 
Convex ultrasound probe; Toshiba, Japan) 
and computerized tomography (SOMATOM 
Scope; Siemens AG, Germany). Three 15-
G/13.8 cm coaxial needles (TruGuide; Bard, 

GA, USA) were strategically placed behind 
the urethra at the midline, right, and left 
sides of the hypertrophic transitional zone of 
the prostate (Figure 1b).

The exposure energy and duration were 
calculated using liver data, measuring the 
targeted ablation area around the microwave 
antenna. The antenna’s tip was positioned at 
a distance >1 cm from the capsule and >0.5 
cm from the rectal wall and the urethra, en-
suring the preservation of the rectal wall 
and the urethra during thermoablation. The 
microwave ablation device, equipped with 
a 16-G/20-cm microwave ablation antenna 
(Canyon; Nanjing, China), operated at 2,450 
MHz in continuous mode. The midline of the 
prostate received an exposure power of 20 W 
for 2 minutes, and the right and left sides had 
exposure powers of 40 W for 3 minutes and 2 
minutes, respectively.

To monitor the temperature of the peri-
prostatic tissue around the treatment site, 
two interstitial thermocouple sensors were 
placed bilaterally just outside the prostatic 
capsule, using two 19-G/20-cm microwave 
ablation temperature probes (Canyon; Nan-
jing, China). Post-treatment, the patient un-
derwent immediate magnetic resonance 
imaging, followed by assessments at 1- and 
3-month intervals. An 18-F urethral catheter, 
placed before TPMT, was removed 2 weeks 
later.

Main points

• Transurethral prostate resection is currently 
the recommended benign prostatic hyper-
plasia (BPH) procedure; however, mortality, 
sexual dysfunction, hemorrhage hospital-
ization, and high costs have led to less inva-
sive options.

• BPH treatment using transperineal prostate 
microwave thermoablation (TPMT) is safe, 
but its efficacy in treating BPH-related lower 
urinary tract symptoms (LUTS) is unknown.

• This case study examined TPMT’s effective-
ness in BPH-related LUTS.

• Transperineal prostate microwave is an ef-
fective treatment method in BPH-related 
LUTS.

Figure 1. Ultrasound (US) image (a) before, computed tomography (CT) image (b) during, and US images 
(c, d) after the intervention. (a) The prostate gland was enlarged as measured on the US image before 
transperineal prostate microwave thermoablation (TPMT). (b) TPMT was performed under CT guidance. 
Three coaxial needles are observable in the image. The prostate gland was reduced in size after (c) 1 month 
and (d) 3 months post-procedure.
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The safety and efficacy of the technique 
were assessed through a series of tests con-
ducted before (within 30 days), as well as 1 
and 3 months after TPMT. The assessments 
included blood tests, urine culture, complete 
urinalysis, uroflowmetry, and chest X-rays, 
as well as comprehensive abdominal, trans-
perineal, and transrectal ultrasounds. These 
evaluations were repeated at 1 and 3 months 
post-TPMT to monitor any changes or devel-
opments. This study has obtained informed 
consent.

Results
The procedure was conducted as an 

outpatient procedure in a day hospital. The 
patient did not exhibit any abdominal dis-
comfort, anorectal pain, or any changes in 
defecation rhythm following TPMT. The only 
transient issue observed was post-operative 
hematuria, which was promptly addressed 
through saline irrigation within 6 hours and 
did not require a blood transfusion. The ini-
tial PV of 218.8 mL decreased to 94.1 mL 1 
month after TPMT and further to 80.8 mL 3 

months after TMPT (Table 1). Subsequent 
hematological assessments conducted after 
TPMT consistently indicated normal results, 
while functional measures showed improve-
ment (Table 1). The ejaculatory function was 
not recorded due to the limited sexual ac-
tivity reported by the elderly patient. Mean-
while, a significant reduction in the prostate 
gland size was noted (Figure 1c, d, Figure 
2b-d). The patient experienced approximate-
ly 3 weeks of dysuria following TPMT, which 
necessitated catheterization for 2 weeks 
post-procedure.

Discussion
We did not observe any of the clinical 

indications reported in the literature,6 such 
as orchitis, prostatic abscess, urethral burn, 
urinary tract infections, or severe urinary re-
tention. The episode of urinary incontinence 
lasting approximately 2 weeks may be at-
tributed to the external urethral sphincter 
undergoing degeneration due to prolonged 
and severe BPH. We opted to retain the blad-
der catheter for 2 weeks to facilitate the re-
duction of the adenoma after consultation 
with the relevant urologists. Consequently, 
we recommend choosing a course of action 
for a bladder catheter on an individual basis. 
The occurrence of dysuria lasting approx-
imately 3 weeks following TPMT is consis-
tent with the patterns observed in previous 
minimally invasive thermal interventions for 
BPH.6

Bartoletti et al.1 conducted open prosta-
tectomy procedures in three groups at differ-
ent intervals following TPMT. Their findings 
demonstrated that treating BPH with micro-
wave thermotherapy is a safe, tolerable, and 
repeatable procedure, especially when em-
ploying a dedicated probe (AMICA-PROBE). 
The presented case further supports the ver-
satility of using a common microwave probe. 
Notably, these microwave probes offer the 
advantage of customization for various an-
atomical sites. The studies targeting BPH us-
ing microwave thermoablation mostly occu-
py the transurethral method, which may not 
be suitable for some patients due to urethral 

Table 1. Clinical measures related to the severity of lower urinary tract symptoms before and after the transperineal prostate microwave 
thermoablation procedure

BII IPSS IPSS-QoL Qmax (mL/sec) PVR (mL) Prostate size T-PSA (ng/mL) F-PSA (ng/mL)

X × Y × Z (mm) PV (mL)

Before 11 28 6 5.1 350 74.3 × 73.6 × 76.4 218.8 14.9 7.78

After 1 month 5 15 3 7.3 150 60.3 × 55.1 × 54.1 94.1 1.32 0.56

After 3 months 2 7 1 11.5 90 51.5 × 56.2 × 53.3 80.8 1.19 0.44

BII, benign prostatic hyperplasia impact index; IPSS, international prostate symptom score; IPSS-QoL, IPSS quality of life index; Qmax, peak flow rate; PVR, postvoid residual volume; 
PV, prostate volume; PSA, prostate-specific antigen; T-PSA, total PSA; F-PSA, free PSA.

Figure 2. Contrast-enhanced T1-weighted magnetic resonance images before and after the intervention. 
The shrinkage of the prostate gland is observable immediately after transperineal prostate microwave 
thermoablation (TPMT) (transverse diameter of the prostate and the ablated zone: 7.26 and 5.38 cm) (b), as 
well as in the follow-up controls 1 month (7.13 and 5.17 cm) (c) and 3 months after TPMT (6.11 and 2.05 cm) 
(d) in comparison with before TPMT condition (7.44 and 0.00 cm) (a).
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strictures or a history of radiation therapy in 
the pelvic region. To reliably compare the 
outcomes of these studies with the TPMT 
procedure using a common microwave 
probe, a further large-scale clinical study is 
needed. Although similar microwave abla-
tion settings (e.g., frequency and operation 
mode) can be used for the treatment of both 
BPH and prostate cancer, further studies are 
still needed to optimize the duration and the 
power of microwave radiation in the treat-
ment of LUTS due to BPH. Although the aged 
participant already reported limited sexual 
activity, we do not expect any significant ef-
fects on ejaculatory functions because the 
technique maintains the prostate capsule, 
urethra, and ejaculatory pathways similar to 
cryoablation. Nevertheless, further studies 
are required to confirm this.

In conclusion, the utilization of intersti-
tial microwave ablation antennas in TPMT 

appears to be a promising treatment for 
LUTS caused by BPH. However, the need for 
randomized clinical studies is imperative to 
comprehensively assess the effectiveness 
and practicality of implementing TPMT in 
clinical settings.
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PURPOSE
The aim of the present study is to report the clinical results of patients with advanced intrahepatic 
cholangiocarcinoma (ICC) who received combination therapy of hepatic arterial infusion chemo-
therapy (HAIC), toripalimab and surufatinib.

METHODS
The study cohort consisted of 28 patients with advanced ICC who were treated with HAIC (mFOLF-
OX6 regimen, Q3W) in combination with intravenous toripalimab (240 mg, Q3W) and oral surufa-
tinib (150 mg, once daily). The cohort had 14 male and 14 female patients. The baseline character-
istics of the study cohort were obtained. The tumor response and drug-associated toxicity were 
assessed and reported.

RESULTS
During the follow-up period (median follow-up time: 11.3 months; range: 4–19 months), four pa-
tients died of tumor progression. The objective response rate and disease control rate were 58% 
and 79%, respectively. The mPFS was 9.5 months, and the overall survival rate was 83.3%. The most 
frequent adverse events were nausea and vomiting (100%) and abdominal pain (85.7%). Serious 
complications related to death were not observed.

CONCLUSION
The combination treatment schedule for advanced ICC demonstrated positive efficacy and safety 
profiles. 

CLINICAL SIGNIFICANCE
This study provides promising clinical guidance for the treatment of advanced cholangiocarcinoma 
and is expected to modify the treatment strategy for this disease.
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Hepatic arterial infusion chemotherapy 
(HAIC) is a well-established transcatheter ther-
apy for hepatic malignancies. With the use of 
an intraarterially inserted catheter, HAIC may 
effectively deliver highly concentrated dos-
es of chemotherapy to the tumor bed while 
sparing the surrounding liver parenchyma.6 
HAIC has been demonstrated to be safe and 
effective for the treatment of advanced liv-
er-confirmed and unresectable ICC.7 Given the 
promising efficacy of targeted therapy and 
immunotherapy in various malignant tumors, 
the combination of HAIC with tyrosine kinase 
inhibitors (TKIs) and programmed cell death 
protein 1 (PD-1) inhibitors for treating ad-
vanced ICC has recently been investigated.8,9 

Toripalimab is a humanized anti-PD-1 
immunoglobulin G4 (IgG4) monoclonal anti-
body. This drug has demonstrated promising 
efficacy and safety profiles for treating uro-
logic cancer, melanoma, and gastric cancer. 
Surufatinib is a small molecule inhibitor of 
vascular endothelial growth factor (VEGF) 
receptors 1, 2, and 3, fibroblast growth fac-
tor receptor (FGFR) 1, and colony-stimulating 
factor 1 receptor. Similar to toripalimab, sur-
ufatinib has demonstrated promising clinical 
efficacy and positive tolerability and safety 
profiles in patients with advanced solid tu-
mors, such as neuroendocrine neoplasms 
and thyroid tumors. Recently, the use of to-
ripalimab and surufatinib for treating unre-
sectable ICC has been reported.10,11

However, the use of HAIC plus toripalimab 
and surufatinib for the treatment of unresect-
able ICC has not yet been reported. Therefore, 
we conducted this study to explore the effica-
cy and safety of this triple combination treat-
ment for the treatment of unresectable ICC.

Methods
Our study was a retrospective cohort 

study. The clinical outcomes of patients 
with advanced ICC who received HAIC + to-

ripalimab + surufatinib maintenance com-
bination therapies between July 2021 and 
Oct 2023 at Union Hospital, Tongji Medical 
College, Huazhong University of Science and 
Technology, Wuhan, China, were analyzed 
(Figure 1). The inclusion criteria before treat-
ment were (1) age >18 years, (2) histologically 
confirmed diagnosis of ICC through ultrason-
ic-guided biopsy, (3) previous systemic and/
or locoregional therapy, (4) Eastern Cooper-
ative Oncology Group (ECOG) performance 
status 0–2, (5) tumor size evaluable using the 
Response Evaluation Criteria in Solid Tumors 
(RECIST; version 1.1) guidelines,12 (6) liver, re-
nal, and hematological functions compatible 
with chemotherapy, and (7) life expectancy 
≥3 months. Patients were excluded if they 
had (1) severe infection or heart, liver, or lung 
failure, (2) other malignant tumors, (3) un-
controlled ascites, or (4) incomplete medical 
information or were lost to follow-up.

All patients were informed of the pur-
pose of this study, and written consent was 
obtained. All study protocols were approved 
by the Ethics Committee of Union Hospital, 
Tongji Medical College, Huazhong Univer-
sity of Science and Technology (UHCT-IEC-
SOP-014-01-02, 2023/07/20) in accordance 
with the 1975 Declaration of Helsinki.

The baseline characteristics included the 
patients’ demographics, presence of extrahe-
patic metastases, previous therapies, tumor 
stage, tumor dimension determined through 
enhanced computed tomography (CT) and/
or magnetic resonance imaging (MRI), and 
tumor marker levels [carbohydrate antigen 
19-9: (CA19-9)]. 

Treatment procedures and regimens

To perform HAIC, an intraarterial cathe-
ter was inserted through the femoral artery 

using the method described by Irie.13 A 5F 
catheter was inserted through the right fem-
oral artery using the Seldinger method. After 
localization of the ICC, a 5F heparin-coated 
polyurethane catheter (Braun Medical, Chas-
seneuil du Poitou, France) was placed at the 
depth of the gastroduodenal artery (3–5 cm 
from the origin) to avoid dislocation of the 
catheter tip, and a side hole (2–3 mm in a 
longitudinal direction) was made at the level 
of the common hepatic artery with scissors. 
The other end of the catheter was connected 
to the injection port, which was implanted in 
a subcutaneous pocket created in the right 
thigh. The gastroduodenal artery and right 
gastric artery were occluded with steel coils 
to prevent gastroduodenal injury by the che-
motherapeutic agents (Figure 2).

When the blood supply to the HCC 
stemmed partly from the extrahepatic ar-
tery (e.g., a replaced/accessory right hepatic 
artery from the superior mesenteric artery, 
replaced/accessory left hepatic artery from 
the left gastric artery, or other extrahepatic 
collateral vessels), the artery was first em-
bolized with coils to redistribute the flow 
of the whole hepatic artery perfusion from 
multiple arteries to a single artery. This step 
ensured effective hepatic intraarterial infu-
sion through a single infusion catheter. In 
this study, arterial port implantation was not 
suitable for 20 patients as a result of vascular 
anatomical variation (e.g., the right gastric 
artery could not be embolized). Therefore, an 
alternative approach was used to temporar-
ily insert the catheter, and the catheter was 
removed after chemotherapy.

In the present study, we used an mFOLF-
OX6 regimen for HAIC (oxaliplatin: 85 mg/m2 
for 2 h on day 1; calcium folinate: 200 mg/m2 
for 2 h on day 1; 5-Fu: 400 mg/m2 for bolus 

Figure 1. Study treatment flowchart. HAIC, hepatic arterial infusion chemotherapy; mPFS, median 
progression-free survival; OS, overall survival.

Main points

• The current first-line intravenous chemo-
therapy regimen for advanced intrahepatic 
cholangiocarcinoma (ICC) is deemed unsat-
isfactory due to its short survival period.

• Tyrosine kinase inhibitors, whether used 
alone or in combination with immunother-
apy, have shown limited efficacy in treating 
advanced ICC. 

• Combining hepatic arterial infusion chemo-
therapy with toripalimab and surufatinib 
has demonstrated a significant improve-
ment in the survival period of patients with 
advanced ICC.
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on day 1, followed by 2400 mg/m2 for 46 h; 
Q3W). Following HAIC therapy, the patients 
also received intravenous toripalimab (240 
mg on day 3, Q3W) and oral surufatinib (150 
mg, once daily). The treatment was per-
formed until unacceptable toxicity or disease 
progression occurred (Figure 3). Toxicity was 
recorded and evaluated in accordance with 
the National Cancer Institute Common Tox-
icity Criteria for Adverse Events (NCI-CTCAE; 
version 5.0) guidelines.

Tumor response 

The disease responses after therapy were 
classified as complete response (CR), partial re-
sponse (PR), stable disease (SD), or progressive 
disease (PD). Every two cycles, the response to 
therapy was assessed using RECIST through 
CT or MRI. A CR was defined as the complete 
disappearance of all target lesions, a PR was 
defined as a ≥30% decrease in the maximum 
diameter of the target lesion compared with 
the baseline maximum diameter, PD was de-

fined as a ≥20% increase in the maximum 
diameter of the target lesion, and SD was de-
fined as disease meeting neither the PR nor 
PD criteria. For responses other than PD, the 
combination treatment was repeated. Clinical 
visits, laboratory testing for blood counts, liver 
functionality, and tumor marker levels (CA19-
9) were performed monthly.

Tolerability

Toxicity was evaluated according to the 
NCI-CTCAE guidelines. In the case of toxici-
ty of grade 3 or above, treatment was tem-
porarily suspended. Toxicity was evaluat-
ed every 2 or 3 days for each patient. After 
confirming that the toxicity had resolved to 
grade 1 or below, treatment was resumed 
with the same regimen. If toxicity of grade 
3 or above was observed again after retreat-
ment, treatment was temporarily suspended, 
and the patient resumed treatment at a re-
duced dose after the resolution was verified.

Statistical analysis

The statistical analyses were performed 
using SPSS 26.0 (IBM, Armonk, NY, USA). 
Continuous variables are expressed as the 
means and standard deviations or medians 
with ranges where appropriate. Qualitative 
variables are described as percentages or 
frequencies. The median progression-free 
survival (mPFS) and overall survival rate (OS 
%), objective response rate (ORR), disease 
control rate (DCR), and CR, PR, SD, and PD 
rates were also calculated.

Results

Baseline characteristics

The included patients’ baseline charac-
teristics are summarized in Table 1. Among 
the 28 patients, 10 had abdominal lymph 
node metastasis and 2 had portal vein tumor 
thrombus. All the patients were confirmed to 
have ICC through pathological examination. 
Of the 16 patients with abnormal CA 19-9 
values, 12 (75%) exhibited a reduction from 
baseline. Additionally, 18 patients (64%) with 
an initial ECOG performance status >0 im-
proved during therapy. Pain improved in 20 
of the 28 initially symptomatic patients (71%).

Clinical outcomes of the combination therapy

The response and survival outcomes are 
summarized in Table 2. The mean number of 
treatment cycles for all participants was 6.4 
cycles (range: 4–10 cycles). With regard to an 

Figure 2. Intraoperative diagram of hepatic arterial infusion chemotherapy. The arterial port (Bard Access 
Systems, USA) is usually implanted subcutaneously 2 cm below the right groin of the patient, and the 
arterial catheter (a and b, red arrow) is then connected. The distal end of the arterial catheter is located 
in the gastroduodenal artery (c, yellow arrow). The distal hole of the arterial catheter is opened to allow 
the microcatheter into the gastroduodenum through the lateral hole, and the spring ring is implanted 
through the microcatheter to fix the arterial catheter into the gastroduodenal artery. The ductus arteriosus 
is compressed, and the chemotherapy drug flows to the internal hepatic artery through the lateral pore (if 
the right gastric artery is found, embolization is performed at the same time. D, schematic diagram).

Figure 3. Schedule of chemotherapy administration. HAIC, hepatic arterial infusion chemotherapy.

a b

dc
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early response, only two CRs were observed 
(Figure 4), and 14 and 6 patients achieved 
a PR and SD, respectively. However, six pa-
tients had PD. The ORR (CR + PR/all patients) 
and DCR (CR + PR + SD/all patients) were 
57% and 79%, respectively.

The mPFS of the patients was 9.5 months 
(median follow-up time: 11.3 months; range: 

4–19 months). The cumulative survival rate 
at 1 year was 83.3% (Figure 5). Four patients 
died of tumor progression.

Adverse effects

All patients were evaluated for adverse 
effects and complications related to the im-
plantable port system. Port systems were 

successfully implanted in eight patients, with 
other patients receiving alternative meth-
ods. No complications were considered to be 
catheter-related toxicity. The adverse effects 
at initial treatment are summarized in Table 
3. No treatment-related deaths occurred.

All 28 patients (100%) developed nausea 
and vomiting, but no severe cases of nausea 
or vomiting were observed. Twenty-four of 
the 28 (85.7%) patients developed abdom-
inal pain, and two patients experienced 
severe abdominal pain after oxaliplatin in-
jection. In these two patients, no significant 
improvement in symptoms was observed af-
ter lidocaine injection. Subsequently, when 
an intravenous infusion of butorphanol 
tartrate was used, the pain was significantly 
relieved. Mild diarrhea was observed in four 
patients (14.3%), and mild neurotoxicity was 
observed in two patients (7.1%).

Regarding blood toxicity, eight patients 
developed leukopenia, including two with 
grade 3 leukopenia. Moreover, 12 patients 
developed thrombocytopenia, including 
2 with grade 3 thrombocytopenia. Severe 
blood toxicity complications in both of 
these patients were subsequently corrected 
through splenic artery embolization.

All patients were treated for at least four 
cycles. During the follow-up period, six pa-
tients discontinued treatment because of 
disease progression.

Discussion
Recent phase III clinical trials have demon-

strated that treatment with GEMCIS in com-
bination with durvalumab or pembrolizum-
ab significantly improved OS compared with 
conventional chemotherapy alone with sim-
ilar safety profiles in patients with unresect-
able or metastatic biliary tract cancers.14,15 
These studies have prompted further explo-
ration of the triple combination treatment of 
HAIC, TKIs, and immune checkpoint inhibi-
tors. In the present study, we demonstrated 
that the combination of HAIC, surufatinib, 
and toripalimab achieved promising patient 
survival (mPFS, 9.5 months; 1-year survival 
rate, 83.3%) as well as sufficient tumor re-
sponse (ORR, 57%; DCR, 79%). In addition, 
the combination treatment-related adverse 
events were manageable. 

Systemic chemotherapy can increase OS 
and improve the quality of life of patients 
with advanced ICC.14 Several combination 
chemotherapy regimens have been investi-

Table 1. The baseline characteristics of included patients

Characteristics All patients (n = 28)

Age, year, median (range) 51.5 (28–62)

Gender (f/m) 14/14

PLT, × 109/L, median (range) 203 (89–449)

ECOG performance status

 0 0

 1 24

 2 4

WBC, × 109/L, median (range) 4.75 (2.33–13.1)

HB, g/L, median (range) 118 (74–155)

ALT, U/L, median (range) 55 (11–110)

AST, U/L, median (range) 44 (23–90)

TBIL, μmol/L, median (range) 17.5 (5.5–45.8)

ALB, g/L, median (range) 37.2 (26.5–41.9)

Child–Pugh class 

 A 14

 B 14

Portal vein tumor thrombus 2

Abdominal lymph node metastasis 10

Pretreatment

 TACE 5

 PTCD 4

 Systemic chemotherapy 19

CA 19-9 (U/mL)

 Baseline ≥1200 16

 3 months later <1200 12

Number of treatment cycles 6.4 (4–10)

Follow-up time (months) 11.3 (4–19)

PLT, platelet; ECOG: Eastern Cooperative Oncology Group; WBC, white blood cell; AST, aspartate aminotransferase; 
ALT, alanine aminotransferase; TBIL, total bilirubin; ALB, albumin; TACE, transcatheter arterial chemoembolization; 
PTCD: percutaneous transhepaticcholangial drainage.

Table 2. Tumor response

Responses All patients (n = 28) 

CR, n (%) 2 (7%)

PR, n (%) 14 (50%)

SD, n (%) 6 (21%)

PD, n (%) 6 (21%)

ORR, n (%) 16 (57%)

DCR, n (%) 22 (79%)

CR, complete response; PR, partial response; SD, stable disease; PD, progression disease; ORR, objective response 
rate; DCR, disease control rate.
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gated, including gemcitabine/capecitabine, 
with an ORR of 25%, and gemcitabine/
oxaliplatin, with an ORR of 50%.14 A multi-
center, open-label, phase 1 trial revealed that 
nivolumab (a PD-1 inhibitor) monotherapy 
had antitumor activity in Japanese patients 
with advanced cholangiocarcinoma, yielding 

an ORR of 3.3%, a median OS of 5.2 months, 
and an mPFS of 1.4 months. However, the 
combination therapy with nivolumab and 
chemotherapy achieved improved survival 
benefits in terms of a higher ORR (33.3%), 
longer median OS (15.4 months), and longer 
mPFS (4.2 months).16 The multicenter, global, 

phase-3 TOPAZ-1 trial reported that GEM-
CIS chemotherapy plus durvalumab could 
significantly increase the median OS by 1.3 
months (median OS: 12.8 vs. 11.5 months) 
when used as the first-line treatment for un-
resectable and metastatic cholangiocarcino-
ma compared with GEMCIS chemotherapy 
alone. In another study, the ORR was 26.7% 
in a GEMCIS chemotherapy plus durvalumab 
group, which surpassed that in the GEMCIS 
chemotherapy group.17 Systemic chemother-
apy has only limited benefits. The median OS 
after GEMCIS therapy is still <1 year.18,19 Some 
studies have evaluated the use of cisplatin in 
combination with a bolus of 5-FU and epiru-
bicin, with tumor ORRs ranging from 10% to 
35% and a median OS of 11 months.10,20 An-
other study by Valle et al.3 reported a medi-
an OS of 11.7 months from the ABC-02 trial, 
and this was also reported in a study by Fu 
et al.21 These rates were higher in our study 
than in previous studies. However, Shi et al.10 
reported on the efficacy of toripalimab com-
bined with lenvatinib and GEMOX as first-line 
therapy for advanced ICC. The median OS and 
PFS were 22.5 and 10.2 months, respectively. 
Our data demonstrated a similar clinical ap-
plication prospect (mPFS of 9.5 months, and 
the cumulative survival rate from the time of 
diagnosis was 83.3% at 1 year. The rationale 
for the use of HAIC can be summarized as 
follows. First, ICCs are usually confined to the 
liver, and patients mainly die of liver failure. 
Second, some drugs result in high hepat-
ic extraction after the first pass. Moreover, 
the blood supplied to the upper biliary tree 
and gallbladder is derived from the hepatic 
artery.17,22 The administration of oxaliplatin 
through the hepatic artery provides a high 
drug concentration in the perfused blood, 
and systemic complications are much lower.23

Few studies have focused on systemic ICC 
treatments, and most of these studies did not 
yield clear results. Therefore, it is difficult to 
draw a conclusion about which is preferable 
for systemic or locoregional therapies. More-
over, limited data related to maintenance 
therapy for ICC are available. For this reason, 
the present study adopted toripalimab and 
surufatinib maintenance therapy, and inno-
vative data for the treatment method were 
reported.

Toripalimab is a humanized anti-PD-1 
IgG4 monoclonal antibody approved for 
clinical trials by the US Food and Drug Ad-
ministration (FDA) and China’s National Med-
ical Products Administration. This drug has 
demonstrated promising efficacy and safety 
profiles for use in treating urologic cancer, 
melanoma, and gastric cancer.21,24-26

Figure 5. Kaplan–Meier curves illustrate the patient survival rates during the follow-up period.

Figure 4. A 51-year-old female patient with ICC (confirmed through puncture biopsy). Magnetic resonance 
imaging revealed a large mixed density shadow in the liver (62 × 55 × 53 mm) (a). Digital subtraction 
angiography revealed an increased tortuous hepatic artery and obvious tumor staining (b). After three cycles 
of combination treatment, the computed tomography arterial phase demonstrated that the enhancement 
degree of the lesions was significantly reduced (c). Digital subtraction angiography indicated that the tumor 
staining had disappeared (d). ICC, intrahepatic cholangiocarcinoma.

a b
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Surufatinib is a multikinase inhibitor that 
targets VEGF receptors 1 to 3, FGFR 1, and col-
ony-stimulating factor 1 receptors. A high ex-
pression level of VEGF was detected in 53.8% 
of ICCs and was considered to be involved 
in hematogenous metastasis. The FGFR sig-
naling pathway is also abnormally activated 
in ICC and is associated with an unfavorable 
prognosis.27,28 Finally, considering that surufa-
tinib and chemotherapy regimens can signifi-
cantly upregulate PD-L1 expression, using 
these therapies with anti-PD-1 treatment 
may significantly enhance their effects. Nota-
bly, combined therapy with an anti-PD-1 an-
tibody and surufatinib has been reported to 
be useful for the treatment of several cancer 
types, and the FDA has approved the com-
bination of surufatinib and toripalimab for 
treating advanced endometrial cancer and 
advanced renal cell carcinoma.

Maintenance therapy cannot be per-
formed in unfit patients who are not clini-
cally indicated for chemotherapy. For this 
reason, maintenance therapy is usually per-
formed only in those who respond to HAIC, 
primarily to prolong the benefits of HAIC on 
survival. Maintenance therapy has demon-
strated promising results in terms of tumor 
response, survival, and progression delay 
in many types of cancers. These results may 
suggest a possible advantage of mainte-
nance therapy for ICC. Therefore, combining 
anti-PD-1 therapy with the combination of 
surufatinib and HAIC for the treatment of ICC 
seems reasonable. Our findings suggest that 
HAIC combined with toripalimab and surufa-
tinib may be a new and promising treatment 
approach for advanced ICC.

The present study has certain limitations 
that must be considered. The main limitation 
of this study is that it is retrospective, and the 
number of participants was relatively limit-
ed. A technical limitation is that polymerase 
chain reaction and DNA sequencing have 

not yet been performed to detect antimicro-
bial resistance genes, whose characterization 
is also essential for surveillance, infection 
control, and therapeutic purposes. In addi-
tional studies, we will perform genome-wide 
sequencing to identify a pathogen by com-
paring its sequence to a database of known 
pathogens to determine its closest relatives.

In conclusion, future randomized con-
trolled studies are needed to enhance the 
reliability of the findings because of the 
short follow-up duration. Finally, as previ-
ously mentioned, the sample size should be 
increased to obtain more conclusive results. 
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Pulmonary arteriovenous malformation (PAVM) describes a direct connection between 
the pulmonary artery and vein, which can lead to paradoxical embolism and result in 
serious complications, such as stroke and brain abscess.1 Endovascular embolization has 

emerged as the preferred treatment for PAVM.2 The once conventional “3 mm rule,” which rec-
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To evaluate the efficacy and safety of Amplatzer Vascular Plug 4 (AVP4) embolization in pulmonary 
arteriovenous malformations (PAVMs) with small- to medium-sized feeding arteries (<6 mm) and to 
identify factors affecting persistence and the main persistence patterns after embolization.

METHODS
Between June 2013 and February 2023, we retrospectively reviewed 100 patients with 217 treated 
PAVMs. We included PAVMs with feeding arteries <6 mm, treated with AVP4 embolization, and fol-
lowed adequately with computed tomography (CT). Technical success was defined as flow cessa-
tion observed on angiography. Persistence was defined as less than a 70% reduction of the venous 
sac on CT. We evaluated adverse events for each embolization session. Patterns of persistence were 
assessed using follow-up angiography. Univariate and multivariate analyses were performed to 
evaluate factors affecting persistence based on the 70% CT criteria.

RESULTS
Fifty-one patients (48 women, 3 men; mean age: 50.8 years; age range: 16–71 years) with 103 PAVMs 
met the inclusion criteria. The technical success rate was 100%. The persistence rate was 9.7% 
(10/103), and the overall adverse event rate was 2.9% (3/103) during a mean follow-up of 556 days 
(range: 181–3,542 days). In two cases, the persistence pattern confirmed by follow-up angiography 
involved reperfusion via adjacent pulmonary artery collaterals. The location of embolization rela-
tive to the last normal branch of the pulmonary artery was the only factor substantially affecting 
persistence.

CONCLUSION
Embolization with AVP4 appears to be safe and effective for small- to medium-sized PAVMs. The 
location of the embolization relative to the last normal branch of the pulmonary artery was found 
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ommended treating feeding arteries larger 
than 3 mm, no longer holds universal accep-
tance.3,4 The current consensus now supports 
embolization for feeding arteries that are 2–3 
mm or larger or when catheterization is feasi-
ble.5 Nonetheless, the choice of embolic ma-
terials for small PAVMs remains limited, and 
the results from coil embolization in these 
cases are generally less favorable.6

The issue of persistence following PAVM 
embolization is substantial, often necessitat-
ing further interventions.7 To address this, re-
search has been conducted on the effective-
ness of various embolic materials, including 
coils,6,8 Amplatzer Vascular Plugs (AVPs),9,10 
and microvascular plugs (MVPs).11,12 Despite 
the longstanding use of coils, their associ-
ated persistence rates are notably high.6,8,13 
While venous sac embolization yields favor-
able outcomes, employing multiple detach-
able coils is costly and extends procedural 
times.14 More recently introduced MVPs have 
demonstrated promising results, although 
they are more expensive, and their long-term 
efficacy remains uncertain.15

AVPs are composed of a braided nitinol 
mesh and are noted for their low risk of mi-
gration in high-flow vessels or short landing 
zones, which permits device repositioning 
and provides the potential for single-de-
vice occlusion.16,17 The latest generation, 
Amplatzer Vascular Plug 4 (AVP4), features 
a small-profile catheter with a 0.038-inch 
luminal diameter, suitable for navigating 
small- to medium-sized vessels and handling 
vascular tortuosity. Since its introduction for 
PAVM embolization in 2014, several studies 
have reported on the use of AVP4, with per-
sistence rates ranging from 0% to 16%.10,15,18 
However, many of these studies have been 
limited by small sample sizes or the inclusion 
of different generations of AVP.

Consequently, this retrospective sin-
gle-center study aims to evaluate the effica-
cy and safety of AVP4 embolization in PAVMs 
with small- to medium-sized feeding arteries 
(<6 mm). Additionally, this study seeks to 
identify factors affecting persistence and to 
delineate the main persistence patterns fol-
lowing AVP4 embolization.

Methods
This retrospective study received ap-

proval from the Institutional Review Board 
of Kyungpook National University Hospital 
(KNUH 2023-12-027). All participants provid-
ed informed consent prior to the procedure.

Patient selection

The study cohort included patients who 
underwent endovascular embolization for 
PAVM from June 2013 to February 2023. 
The eligibility criteria for inclusion were as 
follows: (1) treatment-naïve PAVM with a 
feeding artery diameter of <6 mm; (2) em-
bolization performed using the AVP4; and 
(3) availability of both initial and follow-up 
computed tomography (CT) scans before 
and after embolization. The exclusion crite-
ria were as follows: (1) underwent additional 
embolization sessions for the same lesion 
without an intervening follow-up CT; or (2) 
had a follow-up period of <6 months. Data 
on clinical history, physical examination, and 
PAVM characteristics were extracted from 
electronic medical records. Adverse events 
associated with the procedure during hospi-
talization and outpatient follow-up were also 
meticulously analyzed.

Embolization procedure

Vascular access was obtained via the 
right femoral vein, followed by intravenous 
administration of a heparin sodium bolus 
(3,000–5,000 IU; JW Pharmaceutical, Seoul, 
Korea). Subsequent pulmonary angiography 
facilitated the selective catheterization of 
the juxta-sac feeding artery using a coaxial 
system composed of a 6-Fr guiding catheter 
(Flexor Shuttle Guiding Sheath; Cook Med-
ical, Bloomington, IN, USA) and a 5-Fr diag-
nostic catheter (Torcon NB Advantage, MPA; 
Cook Medical, or Glidecath, Angled Taper; 
Terumo, Tokyo, Japan). In cases involving 
challenging navigation due to small tortu-
ous feeders, a triaxial system was employed, 
which included a 1.98-Fr microcatheter 
(Masters Parkway Soft; Asahi Intecc, Tokyo, 
Japan). The procedure began with the micro-
catheter, followed by the advancement of a 
5-Fr hydrophilic-coated catheter over it. The 

size of the AVP4 (Abbott, Plymouth, MN, USA) 
ranged from 30% to 300% oversizing, based 
on preprocedural CT and selective angiog-
raphy findings. The AVP4 was advanced into 
position within the 5-Fr catheter by pushing 
the guidewire to the catheter tip, and then 
the catheter was withdrawn to deploy the 
device. Proper placement of the plug was 
verified by injecting a contrast medium 
through the guiding catheter; if necessary, 
the plug was recaptured, repositioned, and 
redeployed. Depending on the operator’s 
preference, additional coil embolization was 
performed occasionally to expedite flow ces-
sation and provide reinforcement. Complete 
cessation of PAVM flow was confirmed in all 
patients through the completion of the digi-
tal subtraction angiography (DSA).

Acquisition and protocol for computed to-
mography and follow-up digital subtrac-
tion angiography

Initial and follow-up CT scans were pri-
marily conducted using contrast-enhanced 
CT with multidetector-row scanners (Revo-
lution EVO, Optima CT660, LightSpeed16; 
GE Healthcare, Chicago, IL, USA; SOMATOM 
Force, SOMATOM Definition Edge; Siemens 
Healthineers, Erlangen, Germany). For these 
examinations, a contrast agent (80–100 mL) 
was intravenously injected at a rate of 1.5–2 
mL/s. CT images targeting the area of inter-
est were reconstructed with a slice thickness 
of 2.5 mm in both transverse and coronal 
orientations. Follow-up CT scans were sched-
uled at 6 and 12 months post-embolization 
and subsequently every 2–3 years to monitor 
the persistence or resolution of PAVMs.19

DSA was conducted on previously treated 
PAVMs, particularly in cases in which multiple 
PAVMs were treated across separate sessions. 
The procedure typically began with either 
right or left pulmonary angiography, utiliz-
ing an injector with injection rates of 10–15 
mL/s and volumes of 20–30 mL per injection. 
For more detailed assessments, selective an-
giography was performed at the segmental 
pulmonary artery levels, using injection rates 
of 3–5 mL/s and volumes of 9–15 mL. In cer-
tain instances, more precise visualization was 
achieved through meticulous manual injec-
tions at the distal levels of the pulmonary 
arteries.

Imaging analysis 

All imaging obtained before, during, and 
following AVP4 embolization was reviewed 
by two experienced cardiovascular radiolo-
gists who were blinded to the outcomes of 

Main points

• Amplatzer Vascular Plug 4 embolization was 
performed on 103 pulmonary arteriove-
nous malformations (PAVMs) with small- to 
medium-sized feeding arteries (<6 mm). 
This resulted in a persistence rate of 9.7% 
(10/103) based on the 70% reduction crite-
ria on computed tomography and an overall 
adverse event rate of 2.9% (3/103).

• Follow-up angiography conducted on 28 
PAVMs identified persistence in 2 PAVMs, 
both of which showed reperfusion via adja-
cent pulmonary artery collaterals.

• The only substantial factor affecting per-
sistence was the location of the emboliza-
tion relative to the last normal branch of the 
pulmonary artery.
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PAVM embolization. Discrepancies between 
radiologists were resolved by consensus.

The analysis included reviewing the lo-
cation, multiplicity, complexity (categorized 
as simple vs. complex), and original vessel 
diameters, along with their changes (feed-
ing artery, venous sac, and draining vein) 
between the initial and final post-procedural 
CT scans. Changes in vessel diameter were 
quantified as reduction rates and recorded 
separately. Additionally, the origin of the last 
normal branch of the pulmonary artery was 
documented on the initial CT and during 
procedural DSA,20 and the embolization lo-
cation relative to this branch (either proximal 
or distal) was confirmed on post-procedural 
CT. The distance from the plug to the sac was 
also evaluated using pre- and post-procedur-
al CT scans.

During the procedural imaging of AVP4 
embolization, the size and number of plugs, 
the plug oversizing ratio, the type and num-
ber of additional coils, and the procedure 
time were all documented. Technical suc-
cess was defined as the complete cessation 
of flow in the PAVM upon completion of the 
DSA. Treatment outcomes were assessed us-
ing the widely accepted CT criteria, where 
occlusion was defined as a 70% reduction in 
the venous sac in pre- and post-procedure 
comparisons (referred to as the 70% CT crite-
ria).21 Persistence was noted when the reduc-
tion rate of the venous sac was less than 70%. 

Procedure time was recorded from the fem-
oral vein puncture to the completion of an-
giography, exclusively for sessions treating a 
single PAVM to ensure accurate assessment.

Adverse events were classified accord-
ing to the Society of Interventional Radiol-
ogy standards.22 Both peri-procedural and 
post-procedural adverse events were docu-
mented for each embolization session.

To investigate factors affecting per-
sistence, variables such as sex, age, smoking 
history, use of antithrombotic agents, lobar 
location, complexity, multiplicity, feeding 
artery diameter, venous sac diameter, plug 
oversizing ratio, sac-to-plug distance, embo-
lization location relative to the last normal 
branch, and additional coil embolization 
were evaluated.

Angiographically confirmed cases by 
follow-up DSA were analyzed to determine 
patterns of persistence. Persistence was clas-
sified as resulting from (a) recanalization of a 
previously treated feeding artery, (b) reper-
fusion via adjacent pulmonary artery collat-
erals, or (c) the presence of a previously un-
recognized feeder (incomplete treatment).7 
Reperfusion from systemic arteries was not 
assessed.

Statistical analysis

Continuous variables were expressed as 
the mean and range, whereas categorical 

variables were reported as the frequency 
(percentage). Multivariate logistic regression 
analysis was performed to identify factors 
affecting persistence using odds ratios (OR) 
and confidence intervals (CI). This analysis 
utilized the R software package (version 4.0.3, 
The R Foundation for Statistical Computing, 
Vienna, Austria). Variables that achieved a P 
value of <0.20 in the univariate analysis were 
selected as input variables for the multivar-
iate analysis, which was conducted using 
a backward stepwise method. A P value of 
<0.05 was considered statistically significant.

Results
Fifty-one patients [48 women and 3 

men; mean age: 50.8 years (range: 16–71)] 
with 103 PAVMs met the inclusion criteria 
and were included in the analysis (Figure 1). 
Among these patients, 9 (17.6%) exhibited 
symptoms of hereditary hemorrhagic tel-
angiectasia, and 22 (43.1%) presented with 
symptoms attributable to PAVM. Sixteen pa-
tients (31.3%) had multiple PAVMs, averaging 
2.26 lesions per patient (range: 1–10). Of the 
103 PAVMs analyzed, 97 (94.2%) were classi-
fied as simple, with the remaining identified 
as complex. The mean diameter of the feed-
ing arteries was 3.00 mm (range: 1.50–5.70 
mm). The mean follow-up period was 556 
days (range: 181–3,542 days). The character-
istics of the patients and the PAVMs are sum-
marized in Table 1.

Figure 1. Flow chart summarizing patient enrollment according to study eligibility criteria. PAVM, pulmonary arteriovenous malformation; AVP, amplatzer vascular 
plug; CT, computed tomography.
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All 103 PAVMs were successfully treated 
with AVP4 embolization across 59 sessions 
(Figure 2). On average, 1.75 PAVMs were 
treated per session (range: 1–8). The mean 
size and number of AVP4 devices used per 

PAVM were 6.34 mm and 1.09, respectively. 
Additional coils were used in 9 PAVMs (8.7%), 
with an average of 2.89 coils per PAVM (range: 
1–5). The mean procedure time for sessions 
treating a single PAVM was approximately 

39.62 minutes (range: 18–96 minutes). De-
tails of the AVP4 embolization procedures 
are summarized in Table 2.

The technical success rate for AVP4 em-
bolization was 100%. The persistence rate of 
the treated PAVMs, using the 70% CT criteria, 
was 9.7% (10/103). Stratified by embolization 
type, the persistence rates were 9.6% (9/94) 
for AVP4 alone and 11.1% (1/9) for AVP4 com-
bined with coil embolization. During the 59 
sessions for 103 PAVMs, three mild adverse 
events were reported (5.1% per session): 
two instances of self-limiting pleuritic chest 
pain and one case of transient bradycardia. 
There were no severe adverse events, with an 
overall adverse event rate of 2.9% per PAVM 
lesion.

Follow-up DSA was conducted for 28 
(27.2%) of the 103 PAVMs at a mean interval 
of 436 days. Among these, occlusion was ob-
served in 26 PAVMs, whereas the remaining 
2 (7.1%) exhibited persistence due to reper-
fusion via adjacent pulmonary artery collat-
erals (Figure 3). When comparing outcomes 
between DSA and the 70% CT criteria, 25 
out of 26 angiographically occluded PAVMs 
showed venous sac reductions exceeding 
70% on CT, resulting in concordant findings. 
However, one PAVM demonstrated a reduc-
tion rate of 57.3%, leading to discordance 
between the two modalities. The two angi-
ographically reperfused PAVMs showed ve-
nous sac reductions of 34.7% and 49.2%, re-
spectively, aligning the findings across both 
modalities.

In both univariate and multivariate anal-
yses, the location of embolization relative 
to the last normal branch of the pulmonary 
artery was identified as the only significant 
factor affecting persistence (OR: 0.18; 95% CI: 
0.03–0.81; P < 0.05) (Table 3).

Discussion
The findings of this study affirm the effica-

cy and safety of AVP4 embolization for small- 
to medium-sized PAVMs with diameters of 
<6 mm, showing a persistence rate of 9.7% 
(10/103) based on the 70% CT criteria and 
an overall adverse event rate of 2.9% during 
an average follow-up period of 556 days. 
Follow-up DSA, conducted in 27.1% of this 
cohort, revealed persistence in 2 PAVMs, pre-
dominantly due to reperfusion via adjacent 
pulmonary artery collaterals. The location 
of embolization relative to the last normal 
branch of the pulmonary artery was identi-
fied as the only substantial factor affecting 
persistence according to the CT criteria.

Table 1. Patient demographics and characteristics of pulmonary arteriovenous malformation

Parameters Value

Patient factor (n = 51)

Sex (men/women) 3 (5.8)/48 (94.2)

Mean age (range) in years 50.8 (16–71)

Presence of HHT symptoms 9 (17.6)

Symptomatic patients 22 (43.1)

 Respiratory 11 (21.6)

 Stroke 8 (15.7)

 Brain abscess 4 (7.8)

Smoking history 8 (15.7)

Use of antithrombotic agents 9 (17.6)

Multiple PAVMs 16 (31.3)

 Mean number of PAVMs per patient (range) 2.26 (1–10)

PAVM factor (n = 103)

Simple/complex 97 (94.2)/6 (5.8)

Lobar location

 RUL/RML/RLL 16 (15.5)/27 (26.2)/20 (19.4)

 LUL/LLL 16 (15.5)/24 (23.3)

Mean feeding artery diameter (range) (mm) 3.00 (1.50–5.70)

 <2 mm 12 (11.7)

 <3 mm, ≥2 mm 54 (52.4)

 <6 mm, ≥3 mm 37 (35.9)

Mean venous sac diameter (range) (mm) 6.91 (2.40–22.25)

Origin of last normal branch

 Sac/junction/proximal feeding artery 27 (26.2)/41 (39.8)/35 (34)

Mean follow-up periods (range) (day) 556 (181–3542)

Data represent the number of patients or PAVMs, with percentages in parentheses unless specified otherwise. HHT, 
hereditary hemorrhagic telangiectasia; PAVMs, pulmonary arteriovenous malformations; RUL, right upper lobe; RML, 
right middle lobe; RLL, right lower lobe; LUL, left upper lobe; LLL, left lower lobe.

Table 2. Details of AVP4 embolization (59 sessions for 103 pulmonary arteriovenous 
malformations)

Embolization factor (n = 103) Value

Mean number of AVP4 per PAVM (range) 1.09 (1–2)

Mean size of AVP4 (range) (mm) 6.34 (4–8)

Mean plug oversizing ratio (range) (%) 122.4 (35–300)

Mean plug-to-sac distance (range) (mm) 3.90 (0–26.0)

 >10 mm 12 (11.7%)

 ≤10 mm 91 (88.3%)

Embolization location relative to the last normal branch

 Proximal 47 (45.6%)

 Distal 56 (54.4%)

Additional coil embolization 9 (8.7%)

Mean number of additional coils (range) 2.88 (1–5)

Data represent the number of PAVMs with percentages in parentheses unless specified otherwise. PAVM, pulmonary 
arteriovenous malformation; AVP4, Amplatzer Vascular Plug 4.
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Various generations of AVPs have been 
employed for PAVM embolization, with re-
ported persistence rates ranging from 0% to 
16%.9,10,15,18,23-25 Some studies have suggest-
ed superior outcomes with AVP compared 
with coils.26,27 Nonetheless, there remains a 
scarcity of studies specifically focusing on 
AVP4. Rabellino et al.18 defined a successful 
outcome as a venous sac reduction of ≥30% 
in their early experience with 7 patients, 
achieving success across all cases over an 
average follow-up of 20.1 months. A more 
recent study in 201910 involving 19 PAVMs 
reported a persistence rate of 16% using 
70% CT criteria over an average follow-up 
of 14 months. Ratnani et al.15 specifically an-
alyzed AVP4 and reported a persistence rate 
of 12.5% (1/8) over an average follow-up of 
1,239 days, defining persistence based on 
sustained sac perfusion observed in CT an-
giography (CTA) or pulmonary angiography. 

While the outcomes of these small case se-
ries generally align with those of the current 
study, varying assessment criteria make pre-
cise comparisons challenging.

Pulmonary angiography is considered 
the gold standard, but it poses difficulties for 
routine use due to its invasiveness.19 The use 
of sac perfusion on CTA to assess persistence 
raises concerns about retrograde venous fill-
ing from adjacent normal branches.13 Pres-
ently, the 70% CT criteria are the most widely 
adopted, yet recent discussions highlight 
concerns regarding their specificity.13,28,29 
Additional research and consensus are nec-
essary to refine and agree on criteria that ad-
dress these concerns effectively.

The recently introduced MVP has demon-
strated superior results compared with 
the AVP, boasting a low persistence rate of  
0%–6%.11,12,15,30 AVP, composed of a fine-

ly braided nitinol mesh, exhibits several 
structural challenges in comparison to MVP, 
which features a polytetrafluoroethylene 
(PTFE)-covered nitinol cage. Particularly, in-
troducing a 5-Fr catheter up to the juxta-sac 
feeding artery in cases of very small or tortu-
ous feeding arteries can be technically chal-
lenging compared with using a 2.4- or 2.8-Fr 
microcatheter, as utilized with MVP. In our 
practice, we often overcome this challenge 
by using a hydrophilic-coated 5-Fr catheter 
(Glidecath, Angled Taper; Terumo) with ap-
propriate angulation and advancing it over 
the microcatheter.

A concern exists that AVP4 may become 
lodged within this soft and flexible 5-Fr cath-
eter during delivery. To address this issue, 
we primarily employ smaller-sized AVP4s  
(4–6 mm) -adequate for most small-sized 
feeding arteries- and advance a 6-Fr guiding 

Figure 2. A 51-year-old woman with an incidentally detected simple pulmonary arteriovenous malformation (PAVM). (a, b) Pre-embolization computed tomography 
(CT) images show the distal feeding artery and venous sac of a simple PAVM located in the left lower lobe (LLL). The vessel diameters are as follows: feeding artery 
(arrow in a), 1.53 mm, and venous sac (dotted arrow in b), 3.63 mm. The last normal branch of the pulmonary artery (arrowhead in a) is identified within the junction 
between the feeding artery and the sac. (c) Angiography conducted after selecting the distal feeding artery shows a simple PAVM in the LLL. (d) Completion 
angiography following the deployment of a 6 mm Amplatzer Vascular Plug 4 (AVP4) in the juxta sac-feeding artery shows complete occlusion of the PAVM with no 
residual shunt flow. Notably, the embolization location is distal to the last normal branch of the pulmonary artery. (e) A CT scan performed at a 2-year follow-up 
shows the disappearance of the venous sac (dotted circle), with a venous sac reduction rate of 100%. Only AVP4 is visible.

a b c
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catheter as distally as possible to provide 
support while routinely performing contin-
uous saline flushing in the catheter to mini-
mize friction between the plug and catheter 
wall. Furthermore, unlike MVP, which induc-
es immediate flow cessation due to its PTFE 
cover, AVP4 relies on inducing thrombosis 
through its nitinol mesh, requiring patience 
and repeated monitoring for occlusion. The 
patient’s coagulation status may influence 
this process and raise concerns about the po-
tential migration of in-situ thrombus on the 
device surface, leading to paradoxical embo-
lism.16,17 To mitigate these risks, we employ a 
strategy of reinforcement with several addi-
tional coils if flow cessation is not achieved 
within 5–10 minutes or by confirming flow 
cessation collectively after completing treat-
ment for all PAVMs in cases of multiple PAVMs 
to save time. Consequently, we achieved a 
relatively short procedure time (mean: 39.62 

minutes), and no procedure-related para-
doxical embolisms were reported.

On the financial side, AVP4 offers a more 
cost-effective alternative than MVP. The 
mean number of AVP4 devices used in this 
study, 1.1 per PAVM, is comparable to the 
1.1–1.3 used in previous MVP studies11,12 de-
spite the substantially higher cost of the MVP 
device.15 Additionally, the routine use of a 
microcatheter for MVP delivery adds to over-
all expenses. While MVP has not yet received 
approval for use in many countries, including 
ours, AVP4 remains a favorable option in cen-
ters where it is available, offering both clini-
cal efficacy and cost-effectiveness.

In this cohort, the majority of PAVMs 
featured small-sized feeding arteries, with 
64.1% measuring less than 3 mm and 11.7% 
measuring less than 2 mm. Stein et al.6 re-
ported on coil embolization for 141 PAVMs 

with feeding arteries smaller than 3 mm; the 
persistence rate noted was 21%, which is 
higher than the 10% reported in other stud-
ies targeting PAVMs with feeding arteries of 
3 mm or larger. However, in our study, there 
was no substantial difference in persistence 
rates between PAVMs with feeding arteries 
of 3 mm or smaller (9.4%) and those larg-
er than 3 mm (10.3%). This outcome may 
highlight the advantage of AVP4 over coils, 
as AVP4 allows for sufficient oversizing and 
smooth delivery if the catheter reaches the 
target vessel, regardless of vessel size. In the 
case of the MVP, there are reports of success-
ful treatments for feeding arteries as small as 
1.3 mm;12 however, there is a lack of studies 
focusing on small PAVMs or evaluating long-
term outcomes. Under these circumstances, 
AVP4 emerges as a favorable treatment op-
tion for small PAVMs.

Figure 3. A 57-year-old woman with definite hereditary hemorrhagic telangiectasia and multiple pulmonary arteriovenous malformations (PAVM) (at least 6) in both 
lungs. (a) Pre-embolization computed tomography (CT) image shows a simple PAVM in the right lower lobe. The vessel diameters are as follows: feeding artery, 3.12 
mm, and venous sac (arrow), 4.75 mm. (b) Angiography conducted after superselecting the distal feeding artery shows a simple PAVM. The last normal branch of 
the pulmonary artery is identified within the venous sac (arrowhead). (c) A 5 mm Amplatzer Vascular Plug 4 is deployed in the juxta sac-feeding artery of the PAVM. 
Notably, the embolization location is proximal to the last normal branch of the pulmonary artery. (d) CT performed at the 3-year follow-up shows a reduction in the 
diameter of the venous sac (arrow) to 3.1 mm, representing a reduction rate of 34.7%. (e) Subsequent angiography shows successful occlusion of the previously 
treated feeding artery (arrowhead). However, contrast opacification of the venous sac (dotted arrow) is observed due to reperfusion via adjacent pulmonary artery 
collateral (arrow).
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After coil embolization, recanalization 
through a previously treated feeder is the 
predominant persistence pattern, reported 
to exceed 90%.7 Factors such as coil pack-
ing density, the use of oversized coils, and 
the distance between the coil and the ve-
nous sac have been identified as substan-
tial factors affecting persistence rates.6,31,32 
In a recent study by Shimohira et al.13, the 
location of embolization relative to the last 
normal branch of the pulmonary artery was 
determined to be a substantial factor in per-
sistence, as assessed by CT, time-resolved 
MR angiography, and DSA. However, similar 
detailed studies focusing on AVP are lacking.

In this study, reperfusion via adjacent 
pulmonary artery collaterals was observed 
in both cases where angiographically con-

firmed persistence occurred, specifically 
when proximal embolization was performed 
because the last normal branch was within 
the sac. This location was the only substan-
tial factor affecting persistence. In this reper-
fusion mechanism, the shunt or feeder size 
is usually very small, rendering additional 
treatment technically challenging and gen-
erally less successful than the recanalization 
pattern.7,8 Although this study highlighted 
the excellent cross-sectional occlusion capa-
bilities of AVP4, achieving complete preven-
tion of persistence in PAVMs where the last 
normal branch is located within the sac may 
ultimately require sac embolization.13,20,33 
There are documented cases in which suc-
cessful outcomes were achieved through 
venous sac coiling combined with feeding 
artery plug embolization in such scenari-

os.34 Nonetheless, further studies involving a 
larger cohort are necessary to validate these 
findings and refine treatment protocols.

Some limitations of this study should be 
acknowledged. First, it was a retrospective 
study with a relatively small sample size. 
Second, owing to the widespread availabili-
ty of chest CT scans and health screenings, 
most patients in the study presented with 
incidentally detected simple PAVMs. Given 
that treatment outcomes are less favorable 
for complex PAVMs, the persistence rate of 
these malformations may have been under-
estimated. Moreover, follow-up DSA was per-
formed only in patients with multiple PAVMs, 
which introduced potential bias. Addition-
ally, reperfusion via the systemic artery was 
not evaluated. Lastly, an important variable 

Table 3. Univariate and multivariate analyses of factors affecting persistence based on 70% CT criteria

Factors Univariate analysis Multivariate analysis

OR 95% CI P value OR 95% CI P value

Sex 0.025 0.120

Men 1.00 Reference 1.00 Reference

Women 0.15 0.03, 0.86 0.25 0.04, 1.56

Age 0.96 0.91, 1.00 0.069 Stepwise eliminated

Smoking history 0.773

Yes 1.00 Reference

No 1.23 0.32, 5.99

Antithrombotic agent 0.632

Yes 1.00 Reference

No 1.69 0.28, 32.61

Multiplicity 0.373

Single 1.00 Reference

Multiple 2.08 0.49, 14.31

Complexity 0.460

Simple 1.00 Reference

Complex 2.43 0.11, 21.23

Lobar location 0.163 Stepwise eliminated

Upper or middle lobe 1.00 Reference

Lower lobe 2.54 0.71, 10.40

Feeding artery diameter 1.30 0.58, 2.75 0.501

Venous sac diameter 0.99 0.80, 1.16 0.889

Sac to plug distance 1.10 0.99, 1.22 0.067 Stepwise eliminated

Plug oversizing ratio 1.00 0.98, 1.01 0.751

Additional embolization 0.903

Yes 1.00 Reference

No 1.11 0.25, 7.75

Location of embolization 0.018 0.041

Proximal to LNB 1.00 Reference 1.00 Reference

Distal to LNB 0.14 0.02, 0.61 0.18 0.03, 0.81

OR, odds ratio; CI, confidence interval; LNB, last normal branch of pulmonary artery.
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related to the use of AVP -occlusion time- 
was not measured.

In conclusion, AVP4 embolization proved 
to be safe and effective for treating small- to 
medium-sized PAVMs (<6 mm), demonstrat-
ing a low persistence rate based on the 70% 
CT criteria. The primary pattern observed in 
angiographically confirmed persistence was 
reperfusion via adjacent pulmonary artery 
collaterals. Concerning treatment outcomes 
based on CT criteria, the only factor affecting 
persistence was the location of the emboliza-
tion relative to the last normal branch of the 
pulmonary artery.
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