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Tumor-like conditions that mimic liver tumors

ABSTRACT
Non-neoplastic tumor-like conditions of the liver can appear similar to hepatic neoplasms. In many 
cases, a biopsy is required to confirm the pathology. However, several tumor-like conditions can be 
correctly diagnosed or suggested prospectively, thus saving patients from unnecessary anxiety and 
expense. In this image-focused review, we present the ultrasound, computed tomography, mag-
netic resonance imaging, and positron emission tomography scan features of eight such entities. 
Clues that indicate the correct pathology are discussed, and the usual clinical setting is described. 
Many of these lesions are treated differently from true neoplasms, and the current treatment plan is 
discussed in many of the cases presented. After reviewing this article, the reader will have a better 
understanding of these lesions and the situations in which they should be included in the differ-
ential diagnosis.

KEYWORDS
Benign hepatic lesion, hepatic amyloidosis, hepatic extramedullary hematopoiesis, hepatic 
pseudotumor, hepatic sarcoidosis, hepatic tumor mimics, hepatic tumor-like conditions, hepato-
biliary tuberculomas, liver imaging, mesenchymal hamartoma, myofibroblastoma, peliosis hepatis

You may cite this article as: Stanietzky N, Salem AE, Elsayes KM, et al. Tumor-like conditions that mimic liver tumors. Diagn Interv Radiol. 2025;31(4):285-294. 

Differentiating hepatic tumors from tumor-like conditions can be challenging because 
the imaging features may overlap. An understanding of several of the more common 
tumor-like lesions that can be misdiagnosed as tumors is vital so that the correct pa-

thology can be included in the differential diagnosis. In this article, we describe the clinical 
and imaging features of some of the more common tumor-like conditions to assist radiolo-
gists in determining the correct diagnosis.

Mesenchymal hamartoma

Mesenchymal hamartomas of the liver (MHL) represent only 5% of pediatric tumors. How-
ever, after infantile hemangiomas, they are the second most common benign liver tumors in 
children younger than 5 years. The lesions normally present as painless abdominal distention 
in a patient with a normal or slightly elevated alpha fetoprotein level.1 In some cases, the 
alpha fetoprotein level is substantially elevated, leading to diagnostic confusion. The tumors 
can be very large (up to 20–30 cm).1 Mesenchymal hamartomas are associated with Beck-
with–Wiedemann syndrome and multiple congenital fetal anomalies.2 Most cases (75%) arise 
from the right hepatic lobe, and up to 20% of tumors are pedunculated.1

On imaging, an MHL appears as a large, well-demarcated, multilocular cystic mass with 
septal and/or stromal enhancement (Figure 1). On magnetic resonance imaging (MRI), the 
cystic components demonstrate high signal intensity on T2-weighted images and variable 
signal intensity on T1-weighted images as a result of hemorrhagic or proteinaceous debris 
(Figure 2). The solid and stromal components are mildly enhanced by the administration of 
intravenous gadolinium.3

Histologically, MHLs are composed of hepatocytes, haphazardly arranged bland spindle 
cells, and benign bile ducts in a collagenous stroma.1,4 They have no malignant features and 
are usually cured through surgical resection. On rare occasions, MHLs have been theorized to 
progress to embryonal sarcoma, as the two entities have similar molecular alterations in chro-
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mosome 19.1 Additionally, there have been 
case reports of benign bile duct-like struc-
tures in the periphery of embryonal sarco-
mas with a similar histologic configuration to 
MHL, raising the possibility that the MHL was 
the precursor lesion.1 Therefore, complete 
surgical excision is crucial.2 Rarely, symptom-
atic unresectable disease has necessitated 
liver transplantation.2

Myofibroblastoma

Myofibroblastomas (inflammatory pseudo-
tumors), which represent less than 1% of liver 
tumors, are a heterogenous group of masses 
that form benign tumors composed of inflam-

matory cells and fibrous stroma. These tumors 
may be very slightly more prevalent in men. 
Patients are diagnosed at an average age of 
50 years, and there is no association with cir-
rhosis. The etiology of myofibroblastomas is 
unknown; however, it has been hypothesized 
that they result from hepatic infection, cholan-
gitis, or a vascular injury.4,5 In most cases, the in-
fectious agent is not identified. Some of these 
tumors occur in patients with immunoglobulin 
G4 sclerosing disease, and these patients may 
have a history of autoimmune pancreatitis or 
sclerosing cholangitis.2,5 Patients may present 
with fever, abdominal pain, and weight loss. 
Most tumors are 2–5 cm in diameter when de-
tected, but some patients have presented with 
tumors greater than 20 cm.5 Patients may have 
elevated erythrocyte sedimentation rates, neu-
trophil counts, and C-reactive protein levels.5 

The pathologic features can overlap with oth-
er disease entities, and a subset requires next 
generation sequencing to aid in diagnosis.2

On ultrasound, myofibroblastomas pres-
ent as well-circumscribed heterogeneous 
masses with solid and cystic components. 
On computed tomography (CT), they are 
commonly hypoattenuating compared with 
the liver on unenhanced images, and they 
usually demonstrate peripheral or septal en-

hancement on delayed images. At least part 
of the lesion may demonstrate delayed en-
hancement, presumed to be related to abun-
dant fibrous tissue (Figure 3). On MRI, they 
are hypointense in T1-weighted images and 
isointense or hyperintense on T2-weighted 
images, with a similar postcontrast enhance-
ment pattern to that seen on CT (Figure 4). 
Typically, no associated desmoplastic re-
action occurs. The differential diagnosis in-
cludes cholangiocarcinoma, which can also 
demonstrate delayed enhancement, abscess, 
metastasis, and hepatocellular carcinoma.6

Myofibroblastomas are often treated con-
servatively because they may resolve spon-
taneously or respond to antibiotic therapy or 
steroid therapy. Although surgical resection 
is curative, it is generally reserved for cases in 
which no biopsy was performed or in which 
the diagnosis remained unclear after biopsy. 
Surgery may also be performed in cases in 
which the lesion does not respond to con-
ventional therapy.

Extramedullary hematopoiesis

Extramedullary hematopoiesis (EMH) re-
fers to the production of blood cells outside 
the bone marrow, a phenomenon observed 

Main points

• Non-neoplastic lesions of the liver can ap-
pear similar to hepatic tumors. Although 
pathologic evidence is often necessary for a 
definitive diagnosis, including these entities 
in the differential diagnosis can aid the clini-
cian with the diagnostic workup.

• Multiple clinical clues might suggest that a 
liver lesion is benign. Although these may 
not be definitive, key factors include normal 
tumor markers, a history of infection, and a 
history of a systemic disease known to in-
volve the liver.

Figure 1. Grayscale ultrasound scan (a) showing a complex cystic mass with a solid component (white arrow). Non-enhanced computed tomography images (b, c) 
showing a mass in the right hepatic lobe (white arrows). The mass was predominantly cystic and had a central solid component. A mesenchymal hamartoma was 
identified through pathology.

Figure 2. Grayscale ultrasound scan (a) showing a mixed solid and cystic mesenchymal hamartoma (white arrow) arising from the inferior aspect of the liver (L). 
Coronal (b) and axial (c) T2-weighted images showing a complex cystic mass with internal septations (white arrows).
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in patients with defective marrow synthesis 
(e.g., chronic myelofibrosis) or with condi-
tions associated with peripheral red blood 
cell destruction (such as hemoglobinopa-
thies and hemolytic anemias).7 The liver and 
spleen are the most common sites for EMH. 
Organ enlargement, particularly hepato-
megaly, is more frequently observed than 
discrete lesions. When discrete lesions do 
occur, they may present as single or multi-
ple focal masses or as infiltrative periportal 
or peribiliary soft tissue lesions.8,9

On ultrasound, lesions associated with 
EMH can appear hypoechoic or hyperecho-
ic and typically present as heterogeneously 

attenuated nodules.10,11 CT generally reveals 
hypodense lesions with variable attenuation 
and may show no, mild, or heterogeneous 
enhancement (Figure 5).10,12,13 In rare cases, 
lesions may exhibit fat density without en-
hancement.14

On MRI, EMH lesions have variable signal 
characteristics, depending on whether the 
lesion is functional (actively hematopoietic) 
or inactive. Active lesions typically exhibit 
intermediate T1 and high T2 signal inten-
sities with mild to moderate enhancement  
(Figure 6). By contrast, inactive lesions, which 
are predominantly composed of fibrous tis-
sue, indicate low T1 and T2 signal intensity 

with minimal or no enhancement.12,15 Mac-
roscopic fat, which can occur in inactive le-
sions, produces a signal intensity that detects 
fat in all sequences. In patients with transfu-
sion-related hemochromatosis, decreased 
background hepatic signal intensity is seen 
on sequences most sensitive to magnetic 
susceptibility.15 Despite these imaging find-
ings, a definitive diagnosis usually requires 
pathologic evaluation, which often reveals 
erythroid or myeloid precursors along with 
fatty or fibrous tissue.16

Epstein–Barr virus-associated smooth mus-
cle tumor 

Epstein–Barr virus (EBV)-associated 
smooth muscle tumors are rare slow-grow-
ing mesenchymal tumors that primarily 
affect immunocompromised patients. The 
incidence is highest among individuals who 
are HIV positive, followed by patients with 
drug-induced immunosuppression after or-
gan transplantation, and, less commonly, 
patients with congenital immunodeficiency 
disorders.17-20

These tumors impact both adult and pe-
diatric patients and are slightly more prev-
alent among women.21 Abdominal pain is 
frequently reported as the main presenting 
symptom.17,21

In patients with AIDS, multicentric in-
volvement is common, either occurring si-
multaneously or sequentially.22 Molecular 
analyses of such multicentric presentations 
have revealed distinct clonal origins for the 
lesions at each site, suggesting that these 
lesions represent multiple primary tumors 
rather than metastases.20,23-25 The tumors can 
affect various organs, including the central 
nervous system, spleen, lungs, gastroin-
testinal tract, larynx, pharynx, skin, adrenal 
glands, and eyes. The liver is the most com-
monly involved organ in immunosuppressed 
organ transplant recipients, the second most 

Figure 3. Axial contrast-enhanced computed tomography scans of a myofibroblastoma taken during 
the arterial (a), portal venous (b), and delayed (c) phases with a mass in the left hepatic lobe (white 
arrows), demonstrating poor enhancement during the arterial and portal phases and heterogeneous 
internal delayed enhancement during the delayed phase. Color Doppler ultrasound images (d) showing 
a multilobulated mass with an echogenic center, hypoechoic periphery, and minimal internal blood flow. 

Figure 4. Additional case of a biopsy-verified myofibroblastoma. Axial T2-weighted image (a), pre-contrast T1-weighted image (b), and post-gadolinium T1-
weighted image with fat suppression (c) revealing a multiloculated solid and cystic mass (white arrows) with numerous small T2-bright peripheral components and 
a more solid central portion that is mildly hyperintense on the T2-weighted image and mildly hypointense on the T1-weighted images. With contrast administration, 
septal enhancement and progressive delayed enhancement of the central component of the mass were identified.

a

c

b

d

a b c
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common site in patients with AIDS, and the 
least common site in patients with congeni-
tal immunodeficiencies.21,25-31

The imaging characteristics of EBV-asso-
ciated smooth muscle tumors are general-
ly non-specific. On CT, the tumors present 
as hypodense lesions, often with rim en-
hancement22,32 and sometimes with central 
necrosis.21,27 Findings on MRI typically in-
clude isointensity on T1-weighted images 
and isointensity to mild hyperintensity on 
T2-weighted images, with substantial con-
trast enhancement (Figure 7).33 Diagnosis is 
confirmed through immunohistochemistry, 
which shows positivity for smooth muscle 
actin and EBV-encoded RNA.22

Differentiating EBV-associated smooth 
muscle tumors from non-EBV-related prima-
ry or metastatic smooth muscle tumors of 
the liver, such as leiomyosarcomas, is crucial 
because of the latter’s less favorable progno-
sis. Even without intervention, EBV-associat-
ed tumors tend to progress slowly.17,22

Hepatobiliary tuberculosis and tuberculo-
mas

Hepatobiliary tuberculosis and tubercu-
lomas of the liver most commonly occur in 
patients with disseminated disease. In an 
autopsy series, a hepatosplenic prevalence 
of 80% to 100% was seen in the setting of 
pulmonary miliary disease.34,35 There are 

three types of hepatobiliary tuberculosis: 
parenchymal (including the miliary, nodular, 
and mixed subtypes), biliary, and serohepat-
ic.36 Imaging plays a key role in the diagnosis 
and management of these patients because 
the symptoms of patients with these lesions 
are often vague and non-specific, potentially 
delaying appropriate treatment. Most cases 
ultimately require tissue sampling to confirm 
the diagnosis. 

In parenchymal hepatobiliary tu-
berculosis, imaging findings typically 
identify multiple (<2 cm) well-defined 
nodules throughout the liver that may 
contain calcifications (Figure 8). Larg-
er lesions (>2 cm) in the less commonly 
seen macronodular type of hepatobi-
liary tuberculosis tend to demonstrate 
peripheral rim enhancement and cen-
tral necrosis on CT, and they may contain 
chunky peripheral or central calcifications 
(Figure 9).37 However, their appearance 
is dependent on the degree of caseous 
necrosis and liquefaction. On CT imag-
ing, non-caseating granulomas appear 
hypoattenuating with no or mild periph-
eral rim enhancement.38 However, lesions 
with caseous necrosis and liquefaction 
can resemble pyogenic abscesses with a 
honeycomb appearance, multiple enhanc-
ing septations, and regions of scattered 
necrosis.38 On MRI , macronodular lesions 
typically appear as T1 hypointense. On 
T2-weighted images, they have varied in-
tensity (hypointense to hyperintense) with 
peripheral T2-hypointense rims, and on 
postcontrast sequences, they have heter-
ogenous enhancement.36,39 Larger macro-
nodular nodules may represent the fusion 
of miliary and/or micronodular nodules. 
Mixed parenchymal lesions have imaging 
findings of both the miliary and nodular 
types. Sonographically, these lesions usual-
ly appear uniformly hypoechoic or hetero-
geneous, with intermixed echogenic and 
hypoechoic regions.40 However, lesions 
with other patterns have been observed, 
including -rarely- hypoechoic to echogenic 
lesions with echogenic centers.40 The lesion 
borders tend to be poorly defined, but this 
too varies. The imaging characteristics of 
these lesions can be non-specific and can 
vary depending on the stage of the hepat-
ic granuloma. Therefore, tissue sampling is 
often required to confirm the diagnosis.

Tuberculous cholangitis is a rare pre-
sentation of hepatobiliary tuberculosis and 
primarily occurs in children.38 Imaging find-
ings consist of dilated irregular intrahepatic 

Figure 5. Contrast-enhanced computed tomography (CECT) images revealing extramedullary 
hematopoiesis in a 61-year-old woman with myelodysplastic syndrome. Axial CECT image (a) at the level 
of the lower chest showing paravertebral masses (red arrows). Axial CECT image (b) through the upper 
abdomen showing hepatic (green arrow) and splenic (white arrow) rounded hypoattenuating masses and 
periportal poorly enhancing tissue (red arrows).

Figure 6. Axial T1-weighted image (a), axial T2-weighted image with fat suppression (b), coronal T2-weighted 
image (c), and axial T1-weighted image with fat suppression in the late arterial phase (d) in a 56-year-old 
woman with extramedullary hematopoiesis and myelofibrosis showing periportal masses (white arrows), 
demonstrating low signal intensity on the T1-weighted images, high signal intensity in the T2-weighted 
images, and progressive enhancement after contrast administration. 
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ducts or diffuse miliary calcifications along 
the affected bile ducts.41 Involvement of the 
biliary tree may be caused by biliary tract 
contamination from enteric mycobacterium 
infection, hematogenous spread, or direct 
extension from adjacent infected structures 
(e.g., caseating granuloma or hilar lymph-
adenopathy).40

The serohepatic type of hepatobiliary 
tuberculosis is the rarest form. Imaging find-
ings consist of multiple hypoattenuating 
nodules in a subcapsular distribution with a 
thickened hepatic capsule.36 These findings 
give the liver a characteristic appearance 
of subcapsular nodularity, which has been 
characterized as having “sugar coating” or a 
“frosted liver” appearance.41

The diagnosis of serohepatic hepato-
biliary tuberculosis should be considered 
among high-risk patients or in those who 
have suspected tuberculous involvement of 
the lungs, spleen, or lymph nodes. A defini-
tive diagnosis is made with acid-fast staining 
and with histology revealing caseating gran-
ulomas.42

Figure 7. Images from a 26-year-old woman with stage IVb monomorphic posttransplant lymphoproliferative disorder involving the bones and lymph nodes. The 
patient presented with a slowly growing liver mass identified as an Epstein–Barr virus-associated smooth muscle tumor. Axial T2-weighted images (a) and three 
dynamic gadolinium-enhanced T1-weighted images with fat suppression (b) showing a small T2-hyperintense lesion in the left hepatic lobe (arrows). The lesion 
exhibits early peripheral enhancement and some delayed fill-in of contrast material with persistent peripheral enhancement. Axial (c) and coronal (d) contrast-
enhanced computed tomography images obtained 15 months later showing a mild increase in lesion size (arrows). Peripheral enhancement was observed, and 
the center of the lesion had an attenuation of approximately 15 HU. An axial positron emission tomography/computed tomography scan (e) showing the lesion’s 
increased metabolic activity (standardized uptake value: 3.87). HU, Hounsfield units

Figure 8. Transabdominal ultrasound scan (a) showing a heterogeneously echogenic lesion (arrow) with a peripheral rim of increased echogenicity. Axial 
unenhanced computed tomography images (b, c) showing multiple calcified lesions (arrows). Some of the lesions have a target-like appearance, with central and 
peripheral calcifications separated by a zone of soft-tissue attenuation. This was a biopsy-verified tuberculoma.
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Peliosis hepatis

Peliosis hepatitis is an uncommon lesion 
characterized by abnormal sinusoidal dilata-
tion and multiple blood-filled lacunar spac-
es.43 It is thought to be caused by hepatic 
flow obstruction at the sinusoidal level and 
is potentially caused by steroids, oral con-
traceptives, cytotoxic drugs, chronic lung 
disease, infections (e.g., HIV and tubercu-
losis), and various malignancies (especially 
hepatomas).44 In HIV-related peliosis hepatis, 
Bartonella henselae has been identified as a 
causative agent, with regression after appro-
priate antibiotic therapy.45 Peliosis hepatitis 
can also develop in patients with a renal or 
cardiac transplant. Hematologic disorders, 
diabetes, and necrotizing vasculitis also seem 
to be associated with peliosis hepatis. How-
ever, up to 50% of peliosis hepatis cases are 
idiopathic.44 These lesions are normally as-
ymptomatic, but they may cause symptoms 
if they rupture and hemorrhage. Additional 
complications include portal hypertension, 
cholestasis, liver enlargement, ascites, and 
even liver failure. 

Two different pathologic forms of peliosis 
hepatitis have been described: the phlebec-
tatic and parenchymal types. The phlebec-
tatic type is characterized by blood-filled 
cavities lined with endothelial cells and an 
aneurysmal dilatation of the central vein. By 
contrast, in the parenchymal type, the blood-
filled cavities are not lined by endothelial 
cells, and it occurs in the setting of hemor-
rhagic parenchymal necrosis.46,47

Lesions typically measure up to a few cen-
timeters and usually demonstrate no mass 
effect on transiting vessels. Imaging fea-
tures vary according to the age of the blood 

components and the presence or absence 
of hepatic steatosis. On ultrasound, these le-
sions tend to be hypoechoic in the setting of 
background steatosis and hyperechoic in the 
setting of normal liver tissue with increased 
perinodular or intranodular vascular flow on 
Doppler imaging. 

On multiphasic CT and MRI, peliosis hep-
atitis lesions exhibit intralesional hemor-
rhage and predominantly progressive cen-
trifugal enhancement, although centripetal 
enhancement is also possible (Figure 10). 
The appearance of these lesions can vary 
based on the age of the hemorrhagic com-
ponents.48 Cavities within these lesions that 
communicate with sinusoids demonstrate 
enhancement in line with that of blood ves-
sels, whereas thrombosed portions are not 
enhanced. These lesions usually demon-
strate early discontinuous (globular) arterial 
enhancement. In atypical cases where the 
enhancement is centripetal rather than clas-
sic centrifugal, the lesions may be mistaken 
for hemangiomas.48

Sarcoidosis  

Sarcoidosis is a multisystemic inflamma-
tory disease that is histologically defined by 
the formation of non-necrotic granulomas. 
The cause of sarcoidosis remains unclear, but 
currently accepted theories suggest that a 
genetic predisposition and exposure to envi-
ronmental or occupational antigens lead to 
a dysfunctional immune response.49 The dis-
ease mainly affects young and middle-aged 
adults, and there is a slight predominance in 
women compared with men.49 Although all 
populations worldwide are affected, some 
studies report increased rates among Afri-
can Americans and people from the Nordic 

countries.50

The lungs are the most common site of 
involvement; however, every organ system 
can be affected. Hepatic disease is reported 
in up to 80% of cases.50,51 The formation of 
hepatic granulomas can incite an inflam-
matory response leading to fibrosis and, 
eventually, cirrhosis.50 Most patients with 
hepatic sarcoidosis (50%–80%) are asymp-
tomatic.  Symptoms include fatigue, fever, 
weight loss, pruritus, jaundice, and abdomi-
nal pain.50 

Imaging findings in sarcoid-related liv-
er disease are often non-specific and vary 
substantially. In most patients with sarcoid-
osis, the liver appears normal on imaging. 
The most common finding, reported in up 
to 29% of cases, is hepatomegaly.51,52 Other 
abnormalities include portal hypertension, 
portal vein or hepatic vein thrombosis, and 
cirrhosis.51,53

Focal hepatic lesions are also a feature 
in a small percentage of patients with sar-
coidosis. They often appear as multiple 
small lesions, which can coalesce and form 
larger lesions.51,52 On non-contrast CT, these 
lesions are usually hypodense (Figure 11), 
whereas on MRI , the lesions are typically 
T1 isointense or slightly hypointense and T2 
hypointense.  However, increases in lesion 
size, the coalescence of larger granulomas, 
or active inflammation can result in hyperin-
tense T2-weighted signal intensity.54 On both 
imaging modalities, lesions are hypoenhanc-
ing relative to the surrounding parenchyma 
(Figure 12). Concomitant lesions can also be 
seen within the spleen, and portal lymph-
adenopathy may also be present. Both of 
these findings can aid in diagnosis.55 

Cholestasis is another feature of hepat-
ic sarcoidosis, and it can result in intrahe-
patic or extrahepatic biliary ductal dilata-
tion.52,53  The latter could also be secondary 
to disease involving the common hepatic 
duct or extrinsic compression from enlarged 
lymph nodes.  The appearance may mimic 
that of a primary biliary tumor, necessitating 
caution during imaging interpretation.52 

Amyloidosis   

Amyloidosis is a general term referring 
to a group of disorders characterized by the 
deposition of misfolded serum proteins -am-
yloid fibrils- in extracellular spaces.56 Amyloid 
fibrils result when precursor proteins that are 
usually soluble aggregate, forming insoluble 
fibers that are resistant to degradation.56-58 
In localized amyloidosis, the formation and 

Figure 9. Biopsy-verified tuberculoma with a history of AIDS and disseminated tuberculosis. Axial 
unenhanced (a) and contrast-enhanced (b) computed tomography images demonstrating a lesion in 
the right hepatic lobe (arrows). The unenhanced image shows central high attenuation, a peripheral rim 
of low attenuation, and an incomplete ring of calcification. No enhancement was identified after contrast 
administration.
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deposition of amyloid fibrils occurs in the 
same organ. In systemic amyloidosis, the for-
mation of the amyloid fibrils occurs in one or-
gan, and the deposition of the fibrils occurs 
in a distant location.58 Systemic amyloidosis 
can be classified into multiple types, depend-
ing on the precursor protein; over 15 types 
of precursor proteins have been described.58 
Common conditions associated with the sys-

temic form of the disease include plasma cell 
disorders, malignancy, and chronic infection 
or inflammation.56-58

Amyloidosis can affect all organ systems. 
In the abdomen, amyloid deposition occurs 
in the genitourinary and gastrointestinal 
tracts as well as in the liver, spleen, peritone-
um, and retroperitoneum.56

Within the liver, amyloid fibril deposition 
occurs in the perisinusoidal spaces and along 
the blood vessel walls.59,60 As with sarcoidosis, 
imaging findings in the liver can be non-spe-
cific, and amyloidosis most commonly man-
ifests as hepatomegaly.61 Some reported 
patterns that can mimic other infiltrative liv-
er diseases, such as steatosis and hepatic ve-
nous congestion, include diffusely decreased 
attenuation on CT, heterogeneity of liver 
parenchyma, and heterogeneous contrast 
enhancement.59,61 More well-defined masses, 
along with focal and diffuse calcifications, 
can also occur (Figure 13).61

On MRI, diffusely decreased signal inten-
sity on T2-weighted images has been ob-
served, possibly from amyloid deposition 
and/or increased iron deposition in the liver 
occurring secondary to amyloid-associat-
ed chronic renal disease.60,61 Increased liver 
stiffness has also been observed and can be 
evaluated using magnetic resonance elas-
tography.59,62 

In conclusion, a large variety of patholo-
gies can present within the liver, and this can 
make diagnosing liver lesions challenging. 
Although most lesions are common tumors, 

Figure 11. Contrast-enhanced computed tomography (CECT) images from a patient with a long history of 
pulmonary sarcoidosis. (a) Initial CECT image showing multiple subtle hypodense hepatic (red arrows) and 
splenic (green arrows) lesions. CECT image from the same patient obtained 5 years after the initial scan (b) 
showing extensive periportal and bridging non-enhancing fibrous septa throughout the liver (black arrows) 
with periportal predominance. Note the interval increase in the multiple hypoattenuating splenic lesions 
(green arrow). 

Figure 10. Axial T2-weighted images (a) and dynamic post-gadolinium T1-weighted images with fat suppression (b-e) showing a large hepatic mass (long arrows) 
spanning both lobes of the liver and demonstrating high T2 signal intensity, low T1 signal intensity, and progressive centripetal enhancement following contrast 
administration. The lesion represents a biopsy-verified peliosis hepatis that was not present 3 years earlier. Despite its large size, no appreciable mass effect was 
identified. Vessels are observed coursing through the lesion without significant attenuation.
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on rare occasions, radiologists may encoun-
ter one of the aforementioned rare lesions. By 
being familiar with these lesions and includ-
ing them in the differential diagnosis, radiol-
ogists and clinicians can ensure that patients 
receive the correct diagnosis and treatment.

Footnotes
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PURPOSE
To evaluate the diagnostic efficacy of apparent diffusion coefficient (ADC) measurements and semi-
quantitative dynamic contrast enhancement (DCE) parameters in predicting the differentiation be-
tween low- and high-grade tumors in non-muscle invasive bladder cancers (NMIBC).

METHODS
Patients with NMIBC, who were histopathologically confirmed between August 2020 and July 2023, 
were analyzed by 2 radiologists with different levels of experience. DCE semi-quantitative param-
eters such as wash-in rate (WiR), wash-out ratio (WoR), time to peak (TTP), and peak enhancement 
(PE) were calculated. ADC measurements were performed using the three-region-of-interest (ADCt) 
and whole volume (ADCw) methods; ADCt ratio (ADCtR) and ADCw ratio (ADCwR) were also calcu-
lated. Receiver operating characteristic curve analysis was performed to demonstrate the cut-off 
values of ADCt, ADCw, ADCtR, and ADCwR to differentiate low- and high-grade tumors. The intra-
class correlation coefficient was used to evaluate inter-reader agreement.

RESULTS
A total of 89 patients were included in this study. Of these patients, 48 had low-grade NMIBC, and 
41 had high-grade NMIBC. There was no significant difference in mean WoR, WiR, TTP, and PE values 
between low- and high-grade NMIBC (P > 0.05). The ADCt, ADCw, ADCtR, and ADCwR values of 
high-grade NMIBC were significantly lower than those of low-grade NMIBC (P < 0.001). With cut-off 
values of 0.449 and 0.435, ADCtR had the best diagnostic value for both readers, showing better ac-
curacy, sensitivity, specificity, and area under the curve (85.4%–83.1%, 87.5%–85.4%, 82.9%–80.4%, 
and 0.879–0.857, respectively, with confidence intervals). Additionally, ADCtR and ADCt showed 
acceptable diagnostic performance for both readers, with cut-off values of 0.439 and 0.431, respec-
tively, for differentiating Ta- and T1-stages. The inter-reader agreement was almost perfect for ADC 
measurements.

CONCLUSION
While DCE semiquantative parameters did not yield significant outcomes in distinguishing be-
tween low and high grades, ADCtR holds promise for enhancing patient management in NMIBC 
cases and stands as a potential preoperative radiological asset. 

CLINICAL SIGNIFICANCE
Individuals diagnosed with NMIBC may require different treatment approaches; therefore, it is very 
important to distinguish between low- and high-grade cases preoperatively. The differentiation be-
tween the Ta- and T1-stages is recognized as crucial in patient treatment strategies. Furthermore, 
ADCtR shows promise for improving patient management in NMIBC cases.
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Bladder cancer ranks as the second most 
prevalent genitourinary malignancy, 
following prostate cancer, and accounts 

for over 500,000 new cases and 200,000 fatal-
ities each year.1 The majority of bladder can-
cers are urothelial cell carcinomas and are 
tissue-based, categorized into low- or high-
grade tumors.2 While ultrasound and com-
puted tomography are commonly employed 
in the diagnosis of bladder cancer,3 magnetic 
resonance imaging (MRI) is regularly utilized 
in the local staging of bladder cancer due to 
its capability to evaluate muscle invasion.4 

The most critical factor that affects the 
prognosis of bladder cancer is muscle in-
vasion.5 Muscle-invasive bladder cancer 
(T2–T4) has a poor outcome and typically 
requires aggressive interventions such as 
cystectomy, systemic treatment, or a mix of 
both.2 Non-muscle invasive bladder cancer 
(NMIBC) (Ta–T1) typically exhibits low-grade 
characteristics and demonstrates a non-ag-
gressive demeanor.2 Roughly 70% of tumors 
constitute NMIBC, with over 50% being Ta-
stage tumors. Despite the majority of cases 
being identified at a non-muscle invasive 
stage, there is a substantial risk of disease 
progression and recurrence.6,7 Treatment 
approaches primarily concentrate on reduc-
ing local recurrence and impeding stage ad-
vancement, with the overarching objective 
of preserving and improving the patient’s 
quality of life.2

According to the treatment guidelines 
of the American Cancer Society, intravesical 
chemotherapy is recommended for Ta-stage 
tumors in the presence of low-grade tumors, 
whereas intravesical bacillus calmette-guer-
in is recommended in the presence of high-
grade tumors. For T1-stage tumors, cystecto-
my may be recommended in the presence 
of high-grade tumors if there are multiple 
tumors or if the tumor is large when first 
detected.8 Stöckle et al.9 highlighted the sig-

nificance of differentiating between Ta- and 
T1-stages in the distinction of treatment. 
According to this study, the prognosis of 
patients with T1-stage tumors who under-
went late cystectomy is worse than that 
of patients with T2 tumors.9 Transurethral 
resection (TUR) is ineffective in managing 
lymphogenic micrometastases that initiate 
during the pT1-stage. According to Jakse et 
al.10, 50% of all patients with T1 carcinomas 
developed a muscle-infiltrating recurrence 
within 40 months after TUR. The crucial point 
for therapeutic outcomes appears to be the 
onset of invasive growth (i.e., lamina pro-
pria invasion). This means that even tumor 
stage Tl is too advanced to consider TUR as 
a reliable curative treatment.9 Individuals di-
agnosed with NMIBC may require different 
treatment approaches; therefore, it is crucial 
to preoperatively differentiate between low- 
and high-grade cases.4

Dynamic contrast-enhanced (DCE) MRI, 
also known as functional MRI, has been 
shown to offer insights into the characteri-
zation of tissue microvasculature and distin-
guish the tumor from adjacent tissues.11 The 
efficacy of diffusion-weighted imaging (DWI) 
in predicting the histologic grade of bladder 
cancer has also been discussed in the liter-
ature. In these studies, apparent diffusion 
coefficient (ADC) values acquired from DWI 
have been proposed as being potentially 
valuable in facilitating differentiation.12 How-
ever, the related studies were not focused ex-
clusively on NMIBC and relied on very small 
sample sizes.

This study aims to examine the effec-
tiveness of ADC values from DWI and the 
semiquantitative parameters obtained from 
DCE-MRI in distinguishing between low- and 
high-grade tumors in patients with NMIBC, 
as well as to assess the consistency among 
readers with varying levels of experience.

Methods 
This retrospective investigation was ap-

proved by the institutional ethics board, 
and informed consent was relinquished 
(Giresun Training and Research Hospital/
KAEK-217/23.10.2023/25). The study proto-
col aligned with the ethical standards of the 
1975 Declaration of Helsinki.

Study group

Patients with NMIBC who were histo-
pathologically confirmed between August 
2020 and July 2023 were analyzed retrospec-
tively. 

Patients were incorporated into the study 
based on the following criteria:

1. MRI evaluation contained the required 
sequences.

2. MRI assessment was conducted within 
2 weeks before TUR bladder or cystectomy. 

3. Low- or high-grade urothelial carcino-
ma of the bladder was pathologically con-
firmed.

Patients were removed from the study 
based on the following criteria: 

1. Patients with ADC images of low or in-
visible quality.

2. Patients with tumors measuring less 
than 1 cm.

3. Patients with other histopathologically 
confirmed types of bladder cancer.

4. Patients with hyperintense urine in the 
bladder lumen on the T1 sequence.13

Figure 1 shows the patient selection.

Image acquisition

A 1.5-T MRI system (Magnetom Aera, Sie-
mens Medical Solutions, Erlangen, Germany) 
was used for MRI examinations. Ultrasonog-
raphy was performed before the procedure 
to ensure that the patients had adequate 
bladder distension. Images were acquired in 
a supine position with a pelvic phased-array 
coil. T1-weighted images (T1-WI), axial, cor-
onal, and sagittal fast spin-echo T2-WI, DCE 
images with three-dimensional high tem-
poral resolution, and DWI with b-values of 0, 
800, and 1200 s/mm2 were acquired. An ADC 
map was generated using a b-value of 1200 
s/mm2. Gadopentetate dimeglumine (Gado-
vist, 0.2 mL per kilogram of body weight; 
Bayer Healthcare, Berlin, Germany) was de-
livered via a power injector at a rate of 2 mL 
per second, followed by a further infusion of 
20 mL of normal saline. Following the injec-
tion of the intravenous contrast agent, axial 
DCE images were captured in post-contrast 
phases with no gap between them.

Image analysis

Each MRI scan was uploaded to the pic-
ture archiving communication system. Two 
radiologists with varying levels of expertise 
(reader 1: a board-certified radiologist with 
11 years of urogenital radiology experience; 
reader 2: a radiology resident with 3 years 
of training) assessed the images separately 
from histopathology. The readers maintained 
a blinded approach and had no access to the 
patients’ demographic or surgical data.

Main points

• It is crucial to preoperatively differenti-
ate between low- and high-grade cases 
in non-muscle invasive bladder cancer 
(NMIBC).

• Apparent diffusion coefficient (ADC) mea-
surements of high-grade NMIBC were sig-
nificantly lower than those of low-grade 
NMIBC.

• The ADC three region-of-interest ratio is a 
promising avenue for optimizing NMIBC 
treatment and a potential preoperative ra-
diological aid.
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Measurements were performed on the 
slice showing the largest diameter of the le-
sions and the most contrast enhancement, 
with minimal artifacts. In patients with mul-
tiple tumors, measurements were made for 
the tumor with the maximum diameter. To 
ensure the accuracy of the ADC values, le-
sions with a diameter of less than 1 cm and 

areas containing artifacts were excluded. 
The 3 regions of interest (ROIs), each 20 mm2, 
were drawn in distinct regions of the tumor. 
Next, the average ADC was calculated for the 
three-ROIs method (ADCt). Freehand ROIs 
along the low signal of the tumor’s border 
on ADC maps were applied in the whole-vol-
ume ROIs technique (ADCw).14 The ROIs were 

placed while avoiding blood vessels, necro-
sis, and tumor stalk. ADC measurements with 
different ROI methods are shown in Figure 2. 
The most appropriate ADC reference value 
for calculating the ADC ratio was obtained 
from the bladder lumen. The ROI was placed 
in the center of the bladder lumen urine 
while avoiding artifacts.13 Patients with hy-
perintense bladder contents on the T1 se-
quence were excluded. Three 20 mm2 ROIs 
were placed in the center of the bladder, and 
the average ADC was calculated for reference 
ADC. Additionally, ADCt ratio (ADCtR) was 
calculated as the ADC (three-ROIs method)/
ADC reference, and ADCw ratio (ADCwR) was 
calculated as the ADC (whole-volume ROIs 
method)/ADC reference.

The ROIs were positioned in regions of 
tumors displaying maximum enhancement 
within a homogeneous area. The time signal 
intensity (SI) curves of all tumors were docu-
mented. Furthermore, SI measurements from 
tumors were normalized using the formula 
(SI−S₀) / S₀ with reference to the pre-contrast 
SI (S₀). Subsequently, the following parame-
ters, which were initially outlined by Tsili et 
al.15, were computed based on the normal-
ized values. Peak enhancement (PE) was de-
scribed as the maximum Si of the tumor. Time 
to peak (TTP) was described as the duration 
required to reach the maximum Si of the tu-
mor. The wash-in rate (WiR) was defined as 
the greatest slope of tumor enhancement 
and computed using the following formula: 
WiR = max Si (PE) − Si-1/max ti − ti-1. Converse-
ly, the wash-out rate (WoR) was described as 
maxSi (PE) − S7, indicating the difference be-
tween the peak signal and the signal at the 
last time point.

Figure 1. Flowchart of patient selection. ADC, apparent diffusion coefficient; NMIBC, non-muscle invasive 
bladder cancer.

Figure 2. A 54-year-old patient with non-muscle-invasive bladder cancer performed different apparent diffusion coefficient (ADC) values and ADC ratios. (a) Three 
regions of interest (ROI) were drawn, and the average ADC three ROI (ADCt) was calculated as 0.934. (b) Freehand ROI along the low signal of the tumor’s border 
on ADC maps. The whole ADC (ADCw) was calculated as 1.245. (c) Three ROI were drawn in the center of the bladder, and the average ADC was calculated. The 
reference ADC was 2.393. Based on these findings, ADCw and ADCwR are consistent with low-grade tumors, whereas ADCtR and ADCt are compatible with high-
grade tumors. Histopathological examination revealed high-grade, non-muscle-invasive papillary urothelial carcinoma after transurethral resection of the bladder. 
ADCtR, three-ROIs method ADC ratio; ADCwR, whole-ROIs method ADC ratio.

b ca
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Statistical analysis

The data analysis was conducted using 
IBM SPSS Statistics software version 25.0 (IBM 
SPSS Corp.; Armonk, NY, USA). The normality 
of the data was assessed using the Kolmog-
orov–Smirnov test. For normally distributed 
data, mean values were presented with stan-
dard deviations (SD). The independent t-test 
was utilized to compare the mean values of 
ADC, PE, TTP, WiR, and WoR between low- 
and high-grade NMIBC. A receiver operating 
characteristic (ROC) curve analysis was per-
formed to determine the cut-off values for 
ADCt, ADCw, ADCtR, and ADCwR in distin-
guishing between low- and high-grade cas-
es. Sensitivity, specificity, positive predictive 
value, negative predictive value, and accu-
racy were calculated. The intraclass correla-
tion coefficient (ICC) was used to assess in-
ter-reader reliability for ADC measurements. 
Data were reported as mean ± SD and n (%), 
with P values below 0.05 considered statisti-
cally significant.

Results 
We identified 108 patients with patho-

logically confirmed NMIBC. Two patients had 
other histopathologically confirmed bladder 
carcinoma subtypes (one neuroendocrine 
tumor and one squamous cell carcinoma). 
Seven patients had a lesion that measured 
less than 1 cm. Eight patients had an ADC im-
age with low or invisible quality, and two pa-
tients had hyperintense urine in the bladder 
lumen on the T1 sequence. These individuals 
were removed from the study. Consequently, 
89 patients (85 men with a median age of 68 
years) were enrolled in this study. Within our 
study population, 48 had low-grade tumors, 
and 41 had high-grade tumors. The average 
maximum diameter of low-grade NMIBCs 
was 21.7 mm (range: 12–89 mm), where-
as that of high-grade NMIBCs was 27.6 mm 
(range: 11–63 mm). A total of 31 tumors were 
classified as T1-stages, and 58 tumors were 
classified as Ta-stages based on histopathol-
ogy.

There was no significant difference in the 
mean WoR, WiR, TTP, and PE values between 
low- and high-grade NMIBC for both read-
ers (P > 0.05). The ADCt, ADCw, ADCtR, and 
ADCwR values of high-grade NMIBC were 
significantly lower than those of low-grade 
NMIBC for both readers (P < 0.001). The mean 
values of the ADC measurements and semi-
quantative DCE parameters for both readers 
are shown in Table 1.

Moreover, there was no significant differ-
ence in the mean values of WoR, WiR, TTP, 
and PE between Ta- and T1-stages NMIBC 
for both readers (P > 0.05). The ADCt, ADCw, 
ADCtR, and ADCwR values of T1-stage NMIBC 
were significantly lower than those of Ta-
stage NMIBC for both readers (P < 0.001). 
Table 2 shows the mean values of ADC mea-
surements and semi-quantitative DCE pa-
rameters for both readers.

Receiver operating characteristic analysis 
of apparent diffusion coefficient measure-
ments for the differentiation of low- and 
high-grade non-muscle invasive bladder 
cancer

ROC curve analysis showed that ADCtR 
had the highest area under the curve (AUC) 
values for both readers (0.879–0.857) (Figure 
3). With cut-off values of 0.449 and 0.435, 
ADCtR had the best diagnostic performance 
for both readers, with 85.4%–83.1% accuracy, 
87.5%–85.4% sensitivity, and 82.9%–80.4% 
specificity. Table 3 shows the diagnostic per-
formance of ADC values and ADC ratios for 
each reader.

Additionally, ADCtR had valuable AUC 
values for both readers (0.827–0.806) for dif-
ferentiating the Ta- and T1-stages (Figure 4). 
With cut-off values of 0.439 and 0.431, ADC-
tR had acceptable diagnostic performance 
for both readers, with 76.4%–74.1% accura-
cy, 82%–80% sensitivity, and 69.2%–66.7% 
specificity. Table 4 shows the diagnostic 
performance of ADC values and ADC ratios 
for each reader for differentiating the Ta- and 
T1-stages.

Inter-reader agreement was almost per-
fect for ADC measurements (P < 0.001). In-
ter-reader ICCs between reader 1 and reader 
2 were as follows: ADCt = 0.939 [95% confi-
dence interval (CI): 0.908–0.959]; ADCw = 
0.968 (95% CI: 0.952–0.979); ADCtR = 0.958 
(95% CI: 0.936–0.972); ADCwR = 0.969 (95% 
CI: 0.953–0.979).

Table 1. Mean values of semiquantitative dynamic contrast-enhanced parameters and 
apparent diffusion coefficient measurements for low- and high-grade non-muscle invasive 
bladder cancers

Low-grade NMIBC High-grade NMIBC P value

ADCtR

Reader 1 0.54 ± 0.1 0.39 ± 0.1 P < 0.001

Reader 2 0.50 ± 0.16 0.42 ± 0.13 P < 0.001

ADCwR

Reader 1 0.58 ± 0.10 0.44 ± 0.08 P < 0.001

Reader 2 0.56 ± 0.11 0.43 ± 0.09 P < 0.001

ADCt

Reader 1 1.19 ± 0.24 0.93 ± 0.17 P < 0.001

Reader 2 1.17 ± 0.23 0.94 ± 0.16 P < 0.001

ADCw

Reader 1 1.27 ± 0.24 1.05 ± 0.18 P < 0.001

Reader 2 1.22 ± 0.23 1.12 ± 0.22 P < 0.001

TTP

Reader 1 110 ± 7 119 ± 10 P = 0.55

Reader 2 113 ± 31 125 ± 34 P = 0.61

PE

Reader 1 3.1 ± 0.14 3.6 ± 0.22 P = 0.06

Reader 2 3.4 ± 0.21 3.7 ± 0.26 P = 0.07

WoR

Reader 1 0.04 ± 0.01 0.07 ± 0.1 P = 0.07

Reader 2 0.03 ± 0.1 0.07 ± 0.2 P = 0.09

WiR

Reader 1 1.44 ± 0.35 2.03 ± 0.53 P = 0.34

Reader 2 1.28 ± 0.31 1.95 ± 0.67 P = 0.36

NMIBC, non-muscle invasive bladder cancer; ADCtR, three-ROIs method ADC ratio; ADCwR, whole-ROIs method ADC 
ratio; ADCt, three-ROIs method ADC; ADCw, whole-ROIs method ADC; TTP, time to peak; PE, peak enhancement; 
WoR, wash-out rate; WiR, wash-in rate; ADC, apparent diffusion coefficient.
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Discussion
Of the 89 patients with NMIBC in our study, 

48 had low-grade bladder cancer. There was 
no significant difference in DCE semi-quan-
titative parameters-WoR, WiR, TTP, and PE-in 
the differentiation of low- and high-grade 
NMIBCs. Four methods-ADCt, ADCw, ADCtR, 
and ADCwR-were compared to distinguish 
between low- and high-grade NMIBC. The 
AUC of the ROC for the ADCtR (0.879 ± 0.074) 
was significantly larger (P < 0.001) than that 
of the other methods for separating low- and 
high-grade NMIBC. With a cut-off ADCtR val-
ue of 0.449, the sensitivity and specificity 
were 87.5% and 82.9% for reader 1. With a 
cut-off ADCtR value of 0.435, the sensitivi-
ty and specificity were 85.4% and 80.4% for 
reader 2. Additionally, ADCtR demonstrat-
ed the best diagnostic performance in dis-
tinguishing between Ta- and T1-stages for 
both readers, with respective cut-off values 
of 0.439 and 0.431. In our study, the majori-
ty of low-grade tumors were in the Ta-stage, 
whereas the majority of high-grade tumors 
were in the T1-stage. This might explain the 
similar cut-off values and statistical perfor-
mance in distinguishing between Ta- and 
T1-stages, as seen in the discrimination be-
tween high- and low-grade cases. Thus, it is 
required to conduct extensive studies that 
have a more homogeneous distribution.

DWI, in combination with ADC measure-
ment, provides valuable information for 
quantifying structural tissue changes at a 
cellular level and aiding in tissue character-
ization.16,17 Low ADC values signify high cel-
lularity, whereas high ADC values signify low 
cellularity.16 The intralesional voxels with the 
lowest ADC values are likely to represent the 
most aggressive tumors, as they include the 
highest levels of cellularity.18,19 ADC values 
can be used in multiple myeloma, lympho-
ma, breast, lung, and testis malignancies and 
the treatment response of malignancies.20 
In previous studies, reference ADC has been 
useful in brain, liver, pancreas, prostate, and 
bone lesions, as well as lymph node evalua-
tion.21,22 In bladder cancers, ADC values for 
high- and low-grade tumors were highly 
variable among the four studies using 1.5T 
scanners.23-25 Due to variable ADC values, 
Wang et al.13 studied three reference ADC 
values and obtained the highest accuracy 
within the bladder lumen. To reduce variabil-
ity, we also used the bladder lumen as the 
reference ADC in this study.

Figure 3. Receiver operating characteristic curve analysis for the differentiation of high- and low-grade non-
muscle invasive bladder cancer for reader 1 (a) and reader 2 (b). ADC, apparent diffusion coefficient; ADCtR, 
three-ROIs method ADC ratio; ADCwR, whole-ROIs method ADC ratio.

a b

Table 2. Mean values of semiquantitative dynamic contrast-enhanced parameters and 
apparent diffusion coefficient measurements for Ta- and T1-stage non-muscle invasive 
bladder cancers

Ta NMIBC T1 NMIBC P value

ADCtR

Reader 1 0.52 ± 0.1 0.39 ± 0.09 P < 0.001

Reader 2 0.51 ± 0.1 0.40 ± 0.08 P < 0.001

ADCwR

Reader 1 0.56 ± 0.11 0.45 ± 0.08 P < 0.001

Reader 2 0.55 ± 0.12 0.45 ± 0.08 P < 0.001

ADCt

Reader 1 1.17 ± 0.24 0.93 ± 0.17 P < 0.001

Reader 2 1.17 ± 0.23 0.92 ± 0.18 P < 0.001

ADCw

Reader 1 1.25 ± 0.25 1.05 ± 0.17 P < 0.001

Reader 2 1.25 ± 0.24 1.06 ± 0.17 P < 0.001

TTP

Reader 1 115 ± 7 113 ± 11 P = 0.92

Reader 2 91 ± 5 80 ± 6 P = 0.15

PE

Reader 1 3.1 ± 0.13 3.7 ± 0.23 P = 0.16

Reader 2 3.1 ± 0.12 3.7 ± 0.21 P = 0.17

WoR

Reader 1 0.04 ± 0.01 0.07 ± 0.1 P = 0.35

Reader 2 0.07 ± 0.1 0.08 ± 0.2 P = 0.26

WiR

Reader 1 1.43 ± 0.32 2.09 ± 0.58 P = 0.29

Reader 2 2.26 ± 0.42 2.93 ± 0.64 P = 0.38

NMIBC, non-muscle invasive bladder cancer; ADCtR, three-ROIs method ADC ratio; ADCwR, whole-ROIs 
method ADC ratio; ADCt, three-ROIs method ADC; ADCw, whole-ROIs method ADC; TTP, time to peak; PE, peak 
enhancement; WoR, wash-out rate; WiR, wash-in rate; ADC, apparent diffusion coefficient.
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In our study, as each method was eval-
uated separately to differentiate between 
low- and high-grade NMIBC, the ADCtR 
with 87.5% sensitivity and 82.9% specificity 
was the best method. In comparing the di-
agnostic performance of ADC values for the 
differentiation of low- and high-grade blad-
der cancer in the literature, Wang et al.12 re-
ported higher sensitivity and specificity val-
ues (100% and 95%), with a cut-off of 0.899 
mm2/s. The lower specificity and sensitivity 
in our study can be related to the differences 
in the research population. The study con-
ducted by Wang et al.12 included both T1 
and T2 bladder cancers. However, we specif-
ically focused on bladder tumors that were 
non-muscle invasive and utilized a larger 
sample of patients.

Li et al.14 reported interobserver agree-
ment for three different methods of measur-
ing ADC values in bladder cancer: single sec-
tion ROI, three ROI, and whole volume ROI. 
The average ADC value did not vary signifi-
cantly in terms of inter-observer consistency 
across any of the ROI positioning methods in 
the assessment of tumor grade.14 Our results 
were similar to those of Li et al.14 in that there 
was excellent consistency between read-
ers with varying levels of experience across 
all four methods. The agreement between 
different readers may be attributed to the 
decreased fibrosis and necrosis in bladder 
cancer, which suggests that the degree of 
diffusion is almost homogeneous in bladder 
cancer.14 This nature of bladder tumors also 
aids in the high diagnostic performance of 
the ADC value in low- and high-grade differ-
entiation for all readers, regardless of expe-
rience. 

In our study, we found that DCE 
semi-quantitative parameters-WiR, TTP, and 
PE-were not efficient in differentiating low- 
and high-grade NMIBCs. Zhou et al.11 classi-
fied bladder tumors into three groups based 
on their pathological phenotype: low ag-
gressiveness, intermediate aggressiveness, 
and high aggressiveness, and they examined 
the effectiveness of semiquantitative param-
eters derived from DCE imaging in distin-
guishing between each of these groups. In 
contrast to our study, Zhou et al.11 obtained a 
high diagnostic performance in determining 
the aggressiveness of bladder cancer with a 
WoR. The difference in our results could be 
due to our exclusive focus on patients with 
non-muscle-invasive bladder cancer pa-
tients.

Our study has some limitations. First, we 
did not include lesions smaller than 1 cm. 

Table 3. Diagnostic performance of apparent diffusion coefficient values and ratios for each 
reader in differentiating patients with low- and high-grade non-muscle invasive bladder cancer

Reader 1 Reader 2

ADCtR

Cut-off 0.449 0.435

AUC 0.879 (0.805–0.952) 0.857 (0.778–0.936)

P <0.001 <0.001

Sensitivity (95% CI) 87.5 (74.7–95.2) 85.4 (72.2–93.9)

Specificity (95% CI) 82.9 (67.9–92.8) 80.4 (65.1–91.1)

PPV (95% CI) 85.7 (75.1–92.2) 83.6 (73.1–90.6)

NPV (95% CI) 85 (72.5–92.3) 82.5 (70.1–90.4)

Accuracy (95% CI) 85.4 (76.3–92) 83.1 (73.7–90.2)

ADCwR

Cut-off 0.494 0.490

AUC 0.857 (0.776–0.937) 0.833 (0.747–0.918)

P <0.001 <0.001

Sensitivity (95% CI) 83.3 (69.7–92.5) 81.2 (67.3–91)

Specificity (95% CI) 82.9 (67.9–92.8) 80.4 (65.13–91.1)

PPV (95% CI) 85.1 (74.2–91.9) 82.9 (72–90.2)

NPV (95% CI) 80.9 (68.9–89) 78.5 (66.6–87)

Accuracy (95% CI) 83.1 (73.7–90.2) 80.9 (71.1–88.4)

ADCt

Cut-off 1.030 0.998

AUC 0.829 (0.743–0.915) 0.811 (0.721–0.901)

P <0.001 <0.001

Sensitivity (95% CI) 79.1 (65–89.5) 77 (62.6–87.9)

Specificity (95% CI) 78 (62.3–89.4) 75.6 (59.7–87.64)

PPV (95% CI) 80.8 (69.9–88.4) 78.7 (67.8–86.6)

NPV (95% CI) 76.1 (64.3–85) 73.8 (61.9–82.9)

Accuracy (95% CI) 78.6 (68.6–86.6) 76.4 (66.2–84.7)

ADCw

Cut-off 1.101 1.093

AUC 0.748 (0.648–0.849) 0.745 (0.643–0.847)

P <0.001 <0.001

Sensitivity (95% CI) 70.8 (55.9–83) 72.9 (58.1–84.7)

Specificity (95% CI) 68.2 (51.9–81.9) 68.2 (51.9–81.9)

PPV (95% CI) 72.3 (61.7–80.9) 72.9 (62.4–81.3)

NPV (95% CI) 66.6 (55.1–76.5) 68.2 (56.4–78.1)

Accuracy (95% CI) 69.6 (59–78.9) 70.7 (60.1–79.9)
ADCtR, three-ROIs method ADC ratio; AUC, area under the curve; CI, confidence interval; PPV, positive predictive 
value; NPV, negative predictive value; ADCt, three-ROIs method ADC; ADCw, whole-ROIs method ADC; ADCwR, 
whole-ROIs method ADC ratio; ADC, apparent diffusion coefficient.

Figure 4. Receiver operating characteristic curve analysis for the differentiation of pTa- and pT1-stage  
non-muscle invasive bladder cancer for reader 1 (a) and reader 2 (b). ADC, apparent diffusion coefficient; 
ADCtR, three-ROIs method ADC ratio; ADCwR, whole-ROIs method ADC ratio.

a b
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However, this was effective in preventing 
the partial volume effect. Second, ADC mea-
surements are prone to errors. However, we 
aimed to minimize this potential by utilizing 
four different methods and two different 
readers. Third, this study was a single-institu-
tion retrospective study, but it had the larg-

est sample reported in the literature. Larger 
multicenter studies are required to validate 
our findings. Finally, the ADC maps were ob-
tained using a monoexponential algorithm; 
using a multiple exponential fit with addi-
tional b-values could potentially enhance 
accuracy and be a more favorable approach.

In conclusion, while DCE semiquantative 
parameters did not yield significant out-
comes in distinguishing between low- and 
high-grade tumors, ADCtR holds promise for 
enhancing patient management in NMIBC 
cases and stands as a potential preoperative 
radiological asset for NMIBC. The results of 
our study demonstrated consistency even 
between readers with different experience 
levels. 

Footnotes
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ABSTRACT
With the ongoing revolution of artificial intelligence (AI) in medicine, the impact of AI in radiology is 
more pronounced than ever. An increasing number of technical and clinical AI-focused studies are 
published each day. As these tools inevitably affect patient care and physician practices, it is crucial 
that radiologists become more familiar with the leading strategies and underlying principles of AI. 
Multimodal AI models can combine both imaging and clinical metadata and are quickly becom-
ing a popular approach that is being integrated into the medical ecosystem. This narrative review 
covers major concepts of multimodal AI through the lens of recent literature. We discuss emerging 
frameworks, including graph neural networks, which allow for explicit learning from non-Euclidean 
relationships, and transformers, which allow for parallel computation that scales, highlighting ex-
isting literature and advocating for a focus on emerging architectures. We also identify key pitfalls 
in current studies, including issues with taxonomy, data scarcity, and bias. By informing radiologists 
and biomedical AI experts about existing practices and challenges, we hope to guide the next wave 
of imaging-based multimodal AI research.
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Artificial Intelligence (AI) is revolutionizing everyday life with its advanced capabilities in 
image processing, textual analysis, and more. Though this technology has only recently 
gained widespread public attention, its origins are not new. Research into neural net-

works began in the early to mid-20th century,1 making it surprising that mainstream models, 
such as ChatGPT, which are now frequently cited in scientific literature, have only recently 
captured public interest.2 Comparable to the emergence of computers in the 1940s, modern 
AI possesses a long-standing mathematical foundation but is still in its infancy.

The field of radiology is data-heavy, signal-rich, and technology-focused, making it a prime 
target for building AI applications. Thus, it is crucial that radiologists stay informed about 
methodological and clinical trends in AI. Radiologists routinely review large amounts of sig-
nal-rich data in a multimodal manner, making them well-suited to leverage AI and medical 
data to enhance diagnostic accuracy. At its core, AI is an extremely thorough pattern-detec-
tion system, capable of recognizing patterns beyond human capability for certain tasks. In 
medical imaging, which is nowadays very commonly used and results in work overload for 
practicing radiologists, AI has the potential to be a robust support tool within the radiology 
medical ecosystem. However, the introduction of AI raises ethical dilemmas3 and security con-
cerns,4 including data leakage, automated medical decisions, biased data, and clinical impact.

While there is a growing body of literature on biomedical AI, much remains unexplored, 
particularly in the translation to medical applications. There has been a noticeable shift to-
wards multimodal algorithms that incorporate imaging data with at least one other modality. 
Nevertheless, literature leveraging multimodal imaging data and clinical co-variates remains 
relatively sparse. For this reason, existing reviews on the topic have generally focused on 1) 
unimodal AI for imaging alone5-7 or 2) general multimodal deep learning, which is becoming 
an increasingly heterogeneous field.8-10 This review aims to explore multimodal AI in radiolo-
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gy comprehensively by examining both im-
aging and clinical variables. Throughout, we 
assess the methodology and clinical transla-
tion to inform future directions and organize 
approaches within the field.

Modern frameworks and multi-modality 
fusion techniques

The first focus of this study is the cut-
ting-edge methodologies for multimodal 
AI. These frameworks are increasingly rec-
ognized as impactful approaches in advanc-
ing healthcare analytics due to their ability 
to interpret and integrate disparate forms 
of medical data, similar to the daily tasks of 
physicians. For detailed definitions and ex-
planations of key terminology, a glossary of 
key terms with definitions is provided (Table 
1). Central frameworks aim to model the re-
lationship between data and corresponding 
clinical outcomes. Transformer-based mod-
els and graph neural networks (GNNs) have 
demonstrated remarkable promise in com-
bining clinical notes,11-13 imaging data,14-16 
and genomic information,17-20 enhancing pa-
tient care through personalized and precise 
predictions and recommendations (Figure 1).

Transformers 

Initially conceived for natural language 
processing, transformers have been adapted 
for other unimodal input data, such as imag-
ing and genomics, and now, for multimodal 
tasks in healthcare. These models unique-
ly focus on different data components as 
needed and are adept at handling sequen-
tial data.21 They also employ self-attention 

mechanisms, allowing for the assignment 
of weighted importance to different parts 
of input data, regardless of order. This im-
plementation is especially beneficial for free 
text or genomic sequencing data, where the 
significance of a feature greatly depends on 
its context. These mechanisms have been ex-
tended to consider temporal dependencies 
in electronic health records (EHRs), enabling 
the model to discern which historical medi-

cal events are most predictive of future out-
comes.22

Transformers are particularly revolution-
ary, unlike typical recurrent neural networks, 
in that they employ a parallelized approach, 
which allows for scalable computation.23 Re-
current neural networks are a popular type of 
model that handle information sequentially 
and cannot do so in parallel.24 This founda-

Main points

• As multimodal artificial intelligence (AI) 
becomes increasingly integrated into the 
field of radiology, it is imperative that ra-
diologists become familiar with the existing 
frameworks, applications, and analyses of 
such tools.

• Conventional approaches to multimodal 
AI integration have shown improvement 
over unimodal approaches in their ability to 
translate accurately to the clinic.

• Cutting-edge approaches for multimodal 
biomedical AI applications, such as trans-
formers and graph neural networks, can 
integrate time series and non-Euclidean 
biomedical data. 

• Key pitfalls of the multimodal biomedical AI 
landscape include inconsistent taxonomy, 
a lack of foundational models using varied 
large-scale representative data sources, and 
a mismatch between the healthcare arena 
and the necessary curation of data for AI 
models.

Table 1. Glossary of key terminology

Term Our definition

Multimodal AI
AI models that integrate multiple types of data (e.g., imaging, clinical 
notes, genomic data) to improve diagnostic accuracy and patient 
outcomes.

Multichannel AI
AI models that integrate multiple inputs of the same type of data (e.g., 
multiple pathology images, multiple radiology images, multiple genomic 
sequences).

GNN
A type of neural network designed to capture dependencies in data that 
is structured as graphs, useful in settings where data interactions are non-
linear and complex.

Transformers

A model architecture initially developed for natural language processing 
that has been adapted for analyzing various types of data. Known for its 
self-attention mechanism, which helps in understanding the importance 
of different parts of the data.

Machine learning
A method and field in computer science where systems are able to learn 
without deliberate instructions through mathematical pattern recognition 
of data.

AI A broad field describing computer systems which are able to behave in 
ways that would normally require human intelligence.

Fusion techniques

Methods used to integrate multiple types of data in AI models. These can 
be early, joint, or late fusion, depending on when data types are combined 
during the model training process. There are many other statistical 
integration methods.

Parallel computation A strategy in computer science where multiple processes or calculations 
happen simultaneously rather than one at a time.

Non-euclidean
Data that does not fit into traditional Euclidean geometry frameworks, 
such as graph data, which is essential for certain types of medical analyses 
where relationships and connections define data structure.

Clinical metadata
Information accompanying medical data that provides context about the 
health status, treatment, or diagnostics of a patient, crucial for interpreting 
imaging data in AI models.

Data curation
The process of organizing, integrating, and managing data collected 
from various sources to ensure it is accurate, complete, and reliable for AI 
training and analysis.

Self-attention 
mechanism

A component of neural network architectures that allows the model to 
weigh the importance of different parts of the input data differently, 
improving its ability to understand complex patterns.

Sequential data 
processing

In AI, the handling of data that is organized in a sequence (such as time 
series data from patient records), which is critical for understanding 
temporal patterns and dependencies.

Bias mitigation
Strategies and methodologies aimed at reducing bias in AI models 
to ensure fairness and equity, particularly important in healthcare 
applications where biased decisions can have serious implications.

Transfer learning
A machine learning method where a model developed for one task is 
reused as the starting point for a model on a second task, facilitating rapid 
deployment and reducing the need for large amounts of data.

Model generalizability
The ability of an AI model to perform well across different settings or 
populations, not just the ones on which it was trained, which is crucial for 
applications in diverse clinical environments.

AI, artificial intelligence; GNN, graph neural network.
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tional difference has led to transformers be-
ing the basis for large language models, such 
as BERT25 and ChatGPT, but their application 
in medicine remains largely unexplored.25,26 
Literature using transformer-based multi-
modal predictions consistently finds that 
transformer models outperform typical re-
current or unimodal models.27-30 

Despite the success of transformers, most 
literature features single-case applications, 
where a particular transformer architecture 
is optimized for a single clinical outcome.31 A 
good example of an impactful application of 
transformers by Yu et al.32 presents a frame-
work to learn from imaging, clinical, and ge-
netic information to set a new benchmark for 
diagnosing Alzheimer’s disease (area under 
the receiver operator characteristic curve of 
0.993). This work shows how transformers 
may be able to aid in unifying information 
across modalities for comprehensive learn-
ing in a specific disease space.

The literature on their broader optimiza-
tion for various clinical or radiology tasks is 
limited. Khader et al.33 propose a transferra-
ble large-scale transformer approach, show-
ing that it outperforms existing multimodal 
approaches leveraging convolutional neural 
networks (CNNs). They attribute their im-
provement to a novel technical approach, 
which selectively limits interactions between 
data inputs. They demonstrate the general-
izability of their model by showing improve-
ment across various decisions, including 
heart failure and respiratory disease predic-
tion, and domains, including fundoscopy 

images and chest radiographs paired with 
non-imaging data.33 

With the increasing popularity of multi-
modal data and models, there is a need for 
technical approaches that are transferrable 
and widely applicable for clinical use.

Graph neural networks

Although transformer-based models ex-
cel at capturing dependencies in sequential 
data,34 their architecture does not inherently 
account for non-Euclidean structures pres-
ent in multimodal healthcare data.23 This gap 
has led to significant interest in GNNs, which 
model the data in a graph-structured format. 
This is particularly relevant to multimodal 
imaging data, where the relationships and 
dependencies between data points, such as 
between an anatomical structure in imaging 
and a genetic marker or clinical parameters, 
are not inherently grid-like and could be 
more accurately represented by graphical 
connections (Figure 2).

GNNs extend the concept of convolution 
from regular grids to graphs, with convo-
lutional operations that aggregate feature 
information from a node’s neighbors.35 This 
approach captures global structural infor-
mation. Unlike CNNs, where the same filter is 
applied uniformly across an image or matrix, 
GNNs adaptively learn how to weight the in-
fluence of neighboring nodes, making them 
adept at handling irregular data that does 
not conform to a fixed grid.36 

This novelty is rooted in the ability of GNNs 
to learn from non-Euclidean data, which is 

crucial for integrating different types of med-
ical information.37 They can explicitly model 
the complex relationships between modali-
ties, rather than attempting to map them in 
grid-like structures, such as CNNs, which may 
not fully take the structure into account38 
and could introduce biases related to artifi-
cial adjacency in grid formatting. Although 
exciting work has been taking place recent-
ly in medical imaging with GNNs, the bulk 
of multimodal literature continues to focus 
on CNNs, requiring tabular fusion in many 
cases.39 There are several methodologies 
for fusing modalities.40 However, without 
a graphical approach, there is potential for 
misinterpretation of the data’s relationship 
when arbitrarily fused in a tabular format. For 
example, appending an image with a clinical 
parameter could falsely imply that parame-
ters are adjacent to the imaging features. In 
contrast, with a GNN, this relationship can be 
modeled via nodes in a graphical representa-
tion, rather than being appended.

Despite the potential and applicability 
of GNNs, literature leveraging them in the 
medical space is scarce, likely due to their 
novelty and the varying custom methods for 
graphical construction posing a challenge. 
One study in the oncologic radiology space 
used a GNN to predict regional lymph node 
metastasis in esophageal squamous cell car-
cinoma patients.41 In their work, Ding et al.41 

constructed a graph by mapping learned 
embeddings across image features and clin-
ical parameters into a feature space, treat-
ing them each as nodes. They then used a 
graphical attention mechanism to learn the 
weights of the edges connecting the nodes. 
In another study, Gao et al.20 used a com-
pletely different method for construction to 
predict the survival of cancer patients using 
gene expression data. They constructed a 
graph by considering each patient’s primary 
modality encoding (which could be imaging, 
though they did not use imaging) as a node, 
with each gene also as a node. Edge weights 
were then determined by the level of gene 
expression for each patient and connected 
to the primary nodes. In a third study, Lyu et 
al.42 demonstrate a successful GNN for pre-
dicting drug interactions by building graphs 
drawing edges between drugs and drug-re-
lated entities (such as targets or transport-
ers). These three examples illustrate the com-
plexity of graph construction and the custom 
nature of GNN methodology, which may ex-
plain the scarcity of literature on the topic 
despite its promise for relating multimodal 
data and encodings.Figure 1. Multimodal medical artificial intelligence (AI) applications across disease spaces. Simplified 

schematic of the many applications of multimodal medical AI fusing imaging, omics, and clinical data for 
various tasks across disease spaces.
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Modality fusion techniques

Despite the emergence of architectures 
such as GNNs, which can more deliberately 
represent data interactions, almost all med-
ical data, whether imaging, molecular, or 
other signals, can be tabulated. Thus, various 
fusion techniques (methods for concatenat-
ing signals or information) are far more com-
monly used in multimodal literature.9 Fusion 
techniques can broadly be categorized as 
early, intermediate/joint, or late fusion. In 
simple terms, early fusion means that the 
information is combined before learning via 
AI occurs, joint fusion means some learning 
happens before and after combining the two 
modalities, and late fusion means no learn-
ing happens after combining information. 
Therefore, it can be considered that late fu-
sion aggregates learned information from 
the two modalities to make a prediction, 
whereas joint fusion allows for the modalities 
to interact, and for components of each to 
have complex relationships in making a pre-

diction. More technically, early fusion gener-
ally involves concatenating input modalities 
into a single vector before feeding them into 
a model for training. These input modalities 
can be extracted features or raw data. Joint 
or intermediate fusion involves concatenat-
ing independently learned features prior to 
further learning. Late fusion generally refers 
to complete or almost complete learning oc-
curring independently before concatenating 
vectors for a final activation and prediction. 
There has also been an emergence of “sketch” 
fusion, which is similar to early fusion, but 
rather than concatenation, modalities are 
translated to a common space. Schematics 
of early, joint, and late fusion pipelines are 
presented in Figure 3.

There is a rich and growing base of multi-
modal models using fusion to combine tab-
ulated free speech,43 genomic,44,45 or clinical 
covariate data with images for diagnostics. 
Kumar et al.43 combined X-ray images with 
audio data consisting of respiratory sounds 

and coughs for the diagnosis of coronavirus 
disease 2019. As a result, they showed that 
early detection is possible with 98.91% accu-
racy by fusing chest X-ray and cough models. 
There is limited consensus on the optimal 
fusion technique, perhaps due to variations 
in dataset quality, interactions between data 
sources, or the learning architectures. With 
many variables at play, developing a com-
prehensive approach to machine learning 
fusion, even for a single data type or disease 
case, becomes challenging. Each fusion mo-
dality may have advantages or disadvan-
tages depending on the application, data 
set, and model architecture. Often, the best 
approach is to try all three and compare re-
sults. Conceptually, however, the pros and 
cons primarily depend on the concept of 
confounding variables. Consider the exam-
ple of a hypothetical model for lung cancer 
outcome prediction where there are two 
modalities, one being clinical risk factors, 
such as cigarette consumption and obesity, 
and the second being genomic data. If these 
two modalities are believed to be additive 
and independent (non-confounding), the 
requirement may be for the AI to learn from 
them separately. In this case, late fusion may 
be appropriate. If it is believed there is sig-
nificant crosstalk between the variables (the 
relationship between them is confounding), 
early or joint fusion may be more appropri-
ate. Early fusion may be more appropriate 
when using smaller-scale genomic variant 
data that checks for a set of known variants 
that increase risk. Conversely, joint fusion 
may be more appropriate if the model is ex-
pected to learn variants of risk from a large 
amount of genomic sequencing data. Re-
gardless, it is difficult to determine the opti-
mal fusion strategy from the data alone and 
often worth exploring multiple approaches.

Although early fusion appears to be the 
most common fusion type across a variety 
of fields using imaging or imaging features 
combined with other modalities,9,46-51 there 
are also numerous studies using joint52-54 and 
late fusion.55 The optimal fusion technique 
likely depends on the data source, architec-
ture, and other specifics, making consensus 
challenging. It is important that researchers 
explore multiple fusion options when de-
signing a multimodal model because, unfor-
tunately, there are no guidelines for multi-
modal data fusion at this point in the field’s 
development.

In addition to these common concatena-
tion techniques, there are many other exam-
ples of statistical integration methods. When 
it comes to GNNs, these integration methods 

Figure 2. Biomedical data for graph neural networks (GNNs). Example of a hypothetical application of a GNN 
in the prostate cancer space. Here, typical non-graph neural networks (labeled AI) learn features. Spatial 
relationships between these features of histopathology data and magnetic resonance images have the 
potential to be used in graph construction (using distance as the weights of edges and nodes corresponding 
to structures and features of pathology). AI, artificial intelligence.
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can be customized to the relationship be-
tween specific modalities and datasets, as 
previously discussed. There are also many 
more methods outside the scope of this re-
view, particularly pertaining to other omics 
data types. For example, mixOmics is a pop-
ular package for the integration and analysis 
of multi-omics data.56 Other cutting-edge ex-
amples of multi-omics statistical integration 
frameworks include Data Integration Anal-
ysis for Biomarker discovery using Latent 
cOmponents (DIABLO) and xMWAS.57,58 

Current status of multimodal imaging work

The existing literature on multimodal AI 
contains numerous examples of successful 
multimodal integrations boasting impres-
sive degrees of accuracy and proposed clin-
ical translations.59-69 These publications are 
promising and show the potential for multi-

modal AI implementation to improve patient 
outcomes. As the field progresses, there is an 
increase in highly curated large-scale data 
sets, paving the way for foundational mod-
els.29,70 Nevertheless, much of the work in this 
space and its ability to translate to the clinic 
is limited by its siloed application, inconsis-
tent taxonomy, and data scarcity.

Multimodal taxonomy

In the broad field of oncology, it is com-
mon for physicians to utilize multiple imag-
ing channels to visualize abnormalities and 
make decisions. It follows that AI models 
leveraging multiple imaging sequences may 
be useful for tasks such as detection or seg-
mentation. This raises the question: should 
combining two images be considered mul-
timodal? Here, attention is drawn to the 
terms multimodal and multichannel. These 

terms are used in different and overlapping 
contexts across multiple disease spaces. In 
prostate cancer imaging literature, for ex-
ample, the detection and segmentation 
of clinically significant prostate cancer are 
common goals often labeled as “multimodal” 
when merely integrating multiple magnetic 
resonance imaging (MRI) sequences, with-
out incorporating fundamentally different 
data types.71-75 Similar inconsistencies stand 
across the larger oncology field including, 
but not limited to, brain cancer,76 lung can-
cer,77,78 and breast cancer.79 

The authors suggest that a multimodal 
model should combine conceptually different 
modes of information, whereas multichannel 
may be more appropriate for technically dif-
ferent (but categorically equivalent or similar) 
modes, as would be the case in fusing two 
radiologic images, such as multiple MRI se-
quences or computed tomography (CT) and 
MRI. Using this loose idea of “conceptually dif-
ferent images”, one may consider combining 
digital histopathology images with radiomics 
as multimodal,80 but the examples above (of 
fusing two radiologic images) would likely be 
considered multichannel and unimodal. In the 
authors’ work with deep learning in the pros-
tate cancer space, these image fusion models 
have been referred to as multichannel rather 
than multimodal.81,82 With this pattern being 
evident across disease spaces, there is a need 
to clarify the taxonomy as the term “multimod-
al” becomes increasingly imprecise. 

Generalizable models with transferrable 
application

The multimodal AI space is rapidly ex-
panding but remains ultra-specific, hinder-
ing the transition of findings into general 
practices. Building models that translate 
across regions and hospitals without bias 
may be better explored through foundation-
al models that 1) apply to multiple disease 
spaces, 2) inform future methodological de-
cision-making by outlining the evidence for 
engineering decisions or by demonstrating 
that a method is effective beyond a single 
isolated case, and 3) prove multicenter vali-
dation for clinical use with resistance to bias.

This trend is becoming apparent as the 
unimodal clinical AI space becomes increas-
ingly saturated, and the most impactful 
publications focus on foundational models 
through novel technical innovations, such 
as with DINO,83 DINOv2,84 and iBOT,85 increas-
ingly large datasets, and self-supervised 
learning to leverage unannotated data.86 

This generalizability has yet to become com-
monplace in multimodal AI, except for some 

Figure 3. Fusion approaches for multimodal artificial intelligence (AI). Different approaches to training and 
fusion order are shown with examples in biomedical AI. In early fusion, a lung magnetic resonance image 
and tabulated electronic health record data are fused before learning. In joint fusion, one or both modalities 
undergo some learning prior to further learning and prediction. Finally, in late fusion, both modalities 
undergo all or almost all learning prior to fusion, activation, and prediction. There are many statistical 
integration methods beyond concatenation not shown.
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key examples. For instance, Khader et al.29 
provide a compelling case for multimodal 
transformers by analyzing 25 conditions us-
ing imaging and non-imaging patient data 
from the Medical Information Mart for In-
tensive Care (MIMIC), instead of evaluating a 
single disease case. This publication is an im-
pressive example of using up-to-date meth-
odologies (namely, transformers), baseline 
comparison to alternate approaches for the 
same dataset, and analysis of various condi-
tions. They observed improvement through 
multimodal use across all disease cases and 
reported appropriate statistical evaluation. 
Unfortunately, it is not common practice 
for multimodal papers to present statistics 
compared with a baseline unimodal mod-
el or present evidence of value in including 
both modalities. Rather, such papers often 
present a means to an end. Instead, Khader 
et al.29 provided a case for a specific method, 
informing how future researchers should 
proceed while highlighting multiple transla-
tional impacts.

Another example study pushing towards 
generalizable multimodal approaches is 
proposed by Soenksen et al.70 They propose 
and assess a model for Holistic AI in Medi-
cine (HAIM) to support the general develop-
ment and testing of a variety of multimodal 
AI systems. Leveraging the MIMIC database, 
they demonstrate improvement in predict-
ing various healthcare operations including 
lung lesion detection, 48-hour mortality, and 
edema. They find that all multimodal inputs 
improve performance across all predictions. 
However, there is no statistical analysis pre-
sented to inform us which of these tasks 
shows a statistically significant difference. 
This work pushes the medical field towards 
cutting-edge and generalizable multimodal 
work and emphasizes the need to develop a 
standard of comparison in the field.70 

It is noteworthy, but not coincidental, that 
both models discussed above leverage the 
same MIMIC database. The MIMIC database 
is a publicly available repository of EHRs from 
the Beth Israel Deaconess Medical Center.87,88 
Though each publication attempts to draw 
data from multiple sources, this highlights 
the issue of database bias in designing multi-
modal algorithms.

Dataset curation

Database bias can manifest in various 
ways. Based on an analysis of the existing 
terrain, several examples of bias where the 
field may be at risk are discussed. As other 
reviews8,89 and even the original MIMIC-IV 
publication88 have stated, data in hospitals 

today is typically stored in systems not con-
ducive to or able to support research, espe-
cially data science research. Built for security 
and far behind modern standards for user 
interface design, storage, and ease of access, 
it is not uncommon to find scanned versions 
of electronic medical records as PDF-format 
files, equivalent information stored in various 
locations at different hospitals, and logging 
methods varying between physicians. In 
other words, there is a significant mismatch 
between the data format resulting from ex-
isting data collection practices across health-
care facilities and the data format necessary 
for appropriate AI development. These mis-
matches make it quite challenging to curate 
datasets such as MIMIC, which require care-
ful planning, financial investment, and an 
industry-wide shift in how medical data is 
collected and stored. As a result, models are 
at risk of being overtrained on the limited ex-
isting AI-friendly data.

By using a single center or focusing on 
training with the handful of carefully curat-
ed datasets available, models can “learn” to 
treat all patients as they would in those spe-
cific settings and time periods, regardless of 
the quality of care one receives at their own 
institution and the clinical environment of 
which they are a part. Clinical outcomes can 
vary significantly depending on the surgeon, 
environmental exposures, or technology 
available. For example, patients at the best 
hospitals in the country may have different 
outcomes from average hospitals and there-
fore should be treated differently. Beyond 
social determinants of health, from a tech-
nical perspective, considering that MRI or 
CT scanners may differ across the country, 
a model may inadvertently learn that image 
quality is associated with outcomes or be 
unable to accurately assess certain images. 
As with comparing baseline unimodal mod-
els, there is a need for guidelines to assess 
and mitigate bias in AI as it becomes more 
widespread. Although there are examples of 
papers identifying or discussing bias,90-93 few 
propose analytical frameworks to address 
or measure bias in AI.94 Such publications 
are varied, and none have become stan-
dard practice in the field. Few clinical papers 
assess bias in clinically specific AI models. 
Though not multimodal, a machine learning 
approach was proposed by Chandran et al.95 

to predict lung cancer risk using the cross-ar-
ea under the receiver operator characteristic 
curve to measure disparities in performance 
by race and ethnicity. They identify key fail-
ures in the model’s ability to determine risk 
for Asian and Hispanic individuals compared 

with White and non-Hispanic individuals. The 
mismatch between the clinical environment 
and AI-friendly data storage requirements 
results not only in bias but also makes bias 
reduction challenging, as curating “represen-
tative” data from centers across the entire 
country is a huge undertaking. The more 
representative the training data is of the set-
ting in which it is applied, the lower the risk 
of biased decisions. With evidence that mul-
timodal AI may be more accurate for some 
AI applications27,59-69,80,93 and that multimodal 
work is more challenging to curate consis-
tently across institutions, researchers and 
physicians face the decision of how to build 
and employ AI tools when smaller multimod-
al sample sizes promise improved overall ac-
curacy, but smaller sample size may increase 
risk of bias.

This concern is currently pressing and 
needs to be addressed. One systematic re-
view on GNNs based on EHRs reported that 
out of 50 papers reviewed, 23 used MIMIC-III 
and 6 MIMIC-IV.96 With the increasing prev-
alence of AI research and rapid translation 
of tools to the clinic, there is a need for a 
change in how data is stored and collected 
by healthcare providers across the coun-
try. Continuing to develop AI tools on the 
available pool of high-quality curated data-
sets, such as MIMIC,87,88 the UK Biobank,97 
EMBED,98 and the Scottish Medical Imaging 
Archive,99 is risky as tools may be carelessly 
applied to populations with differing clinical 
environments or health outcomes. Further, 
with the medical field being a rapidly chang-
ing ecosystem, models and datasets can 
quickly become less relevant to the current 
medical system.

Considering the dynamic medical envi-
ronment and its quickly changing technolo-
gy and guidelines, AI and the data on which 
it is trained will have to change as quickly as 
the clinic. One must be incredibly mindful of 
the dynamic nature of data when training 
an AI algorithm. Here, “dynamic” can take 
on a double meaning. Data can be dynamic 
in that its surrounding clinical environment 
changes as knowledge and technology 
develop. It can also be dynamic in that the 
information itself changes as a product of 
aging or biological changes. For example, 
considering genomics are stable over time, 
it is unclear what the significance is of their 
integration with dynamic data, such as an 
imaging phenotype or proteomics, which 
can change over a person’s life. Imaging data 
or radiomics data have been integrated both 
with stable omics100 and dynamic omics for 
multimodal AI.101 Regardless of the biomedi-
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cal data and if it is dynamic, a change in how 
the data is collected from, and impacts, the 
clinic may be just as impactful on the cre-
ation of impactful AI as the data itself. 

AI tools have the potential to both com-
bat and exacerbate biases by providing ev-
idence-based recommendations. Radiolo-
gists and other physicians must understand 
emerging and existing methods in the field, 
as well as the importance of data set cura-
tion, as they are often the ones making fi-
nal decisions about how these tools will be 
used and how they will impact the patient. 
By being aware of the potential for AI to ex-
acerbate biases, radiologists are relied upon 
to view these tools as exactly what they are: 
physician support tools. Even if a tool has a 
proven record of being more accurate than 
the average physician at, for example, de-
tecting lesions on a certain type of scan, 
there will still be mistakes, and physicians will 
need to be able to use these AI tools without 
catering to their biases. It is difficult to pre-
dict exactly what the role of radiologists will 
be in the future of using and developing AI, 
but the reality is that it will play a role. The 
greater the degree to which these tools are 
understood is, the easier it will be for phy-
sicians to interact with them in a way that 
improves health. On the flip side, a greater 
understanding among physicians will allow 
them to conduct their clinic in a way that is 
conducive to storing data for training strong 
bias-mitigated models.

Future directions

Multimodal AI will inevitably continue 
to develop and be explored through the 
methodologies, foundational models, and 
translational integrations discussed in this 
review and beyond. Despite exploring highly 
developed architectures, methods, and tech-
niques in image processing AI, such as fusion 
models, transformers, and GNNs, the medical 
field lags in using up-to-date AI innovations 
and struggles with consistency in taxonomy, 
evaluation metrics, and methodology, even 
within the same disease spaces.

The lack of common practices, which will 
develop and change as the field matures, 
severely limits progress and translation. It 
becomes difficult to generalize conclusions 
from one publication to the next and across 
methodologies. Standout publications in 
the multimodal AI space are characterized 
by their ability to generalize as foundational 
models with transferrable applications, in-
corporate physician perspectives with clear 
and broad clinical utility, and carefully eval-

uate baseline models using thorough and 
appropriate evaluation and statistics. 

An even more pressing limitation in de-
veloping multimodal AI tools with biomed-
ical applications is the lack of comprehen-
sive, high-quality data. As discussed, most 
reviewed works rely on either a very small 
set of carefully curated data, which requires 
extensive time, resources, and funding for 
AI development, or they draw from a select 
set of high-quality, open-access datasets. By 
repeatedly using these same high-quality cu-
rated datasets, a suite of AI-based translation-
al tools heavily biased toward the included 
locations, periods, and patient populations 
is being developed. With the clinical setting 
and its outcomes being a constantly chang-
ing ecosystem, it is risky to rely on the same 
datasets. Equitable, bias-free AI will require 
these systems to be dynamic, constantly up-
dated with new data, and capable of adapt-
ing over time with fine-tuning. Technologists 
and clinicians may have to meet somewhere 
in the middle, such that technologists will 
have to build models using less-than-optimal 
data, and clinicians may have to incorporate 
certain practices into their data ecosystem to 
ensure AI models are up to date.

Our narrative review of multimodal AI, 
combining imaging and other clinical meta-
data, aims to propose clarifications for what 
constitutes “multimodal” AI in imaging, iden-
tify up-to-date frameworks with potential for 
enhanced results in future model research, 
comment on a shift toward generalizable 
foundational models, and identify trends and 
concerns in database curation. As the field 
progresses from theory to clinic, it is essen-
tial for radiologists to stay informed about 
the latest developments, methodologies, 
and ethical implications.

The current radiologic landscape is char-
acterized by a transition toward multimod-
al fusion models, with increasing focus on 
transformers and GNNs. However, there is a 
considerable amount of work to be done in 
terms of scientific due diligence regarding 
gaps in methodology and model training 
bias. Moreover, the reliance on the few exist-
ing high-quality curated datasets highlights 
a major risk as AI tools become more com-
mon in the clinical setting. There is an urgent 
need to align the format of data required for 
training AI with that logged by physicians to 
curate comprehensive training databases.

In conclusion, while AI in radiology 
promises significant advancements in the 

field, successful and unbiased integration 
demands a multidisciplinary approach in-
volving continuous education of physicians 
and AI developers alike. By informing radiol-
ogists, we hope to begin bridging the gap 
between technology and the clinic, guiding 
future methodologies, practices for dataset 
curation, and the field as a whole. By harness-
ing the power of AI, appropriate evaluation, 
and physician expertise, we hope to save 
more lives and improve the quality of care 
for patients worldwide.
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Machine learning models for discriminating clinically significant from 
clinically insignificant prostate cancer using bi-parametric magnetic 
resonance imaging

PURPOSE
 

This study aims to demonstrate the performance of machine learning algorithms to distinguish 
clinically significant prostate cancer (csPCa) from clinically insignificant prostate cancer (ciPCa) in 
prostate bi-parametric magnetic resonance imaging (MRI) using radiomics features.

METHODS
MRI images of patients who were diagnosed with cancer with histopathological confirmation fol-
lowing prostate MRI were collected retrospectively. Patients with a Gleason score of 3+3 were con-
sidered to have clinically ciPCa, and patients with a Gleason score of 3+4 and above were consid-
ered to have csPCa. Radiomics features were extracted from T2-weighted (T2W) images, apparent 
diffusion coefficient (ADC) images, and their corresponding Laplacian of Gaussian (LoG) filtered 
versions. Additionally, a third feature subset was created by combining the T2W and ADC images, 
enhancing the analysis with an integrated approach. Once the features were extracted, Pearson’s 
correlation coefficient and selection were performed using wrapper-based sequential algorithms. 
The models were then built using support vector machine (SVM) and logistic regression (LR) ma-
chine learning algorithms. The models were validated using a five-fold cross-validation technique.

RESULTS
This study included 77 patients, 30 with ciPCA and 47 with csPCA. From each image, four images 
were extracted with LoG filtering, and 111 features were obtained from each image. After feature 
selection, 5 features were obtained from T2W images, 5 from ADC images, and 15 from the com-
bined dataset. In the SVM model, area under the curve (AUC) values of 0.64 for T2W, 0.86 for ADC, 
and 0.86 for the combined dataset were obtained in the test set. In the LR model, AUC values of 0.79 
for T2W, 0.86 for ADC, and 0.85 for the combined dataset were obtained.

CONCLUSION
 

Machine learning models developed with radiomics can provide a decision support system to com-
plement pathology results and help avoid invasive procedures such as re-biopsies or follow-up bi-
opsies that are sometimes necessary today.

CLINICAL SIGNIFICANCE
This study demonstrates that machine learning models using radiomics features derived from 
bi-parametric MRI can discriminate csPCa from clinically insignificant PCa. These findings suggest 
that radiomics-based machine learning models have the potential to reduce the need for re-biopsy 
in cases of indeterminate pathology, assist in diagnosing pathology–radiology discordance, and 
support treatment decision-making in the management of PCa.

KEYWORDS
Prostate, magnetic resonance imaging, prostate cancer, radiomics, machine learning, bi-parametric 
magnetic resonance imaging
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Prostate cancer (PCa) is the second most 
common cancer in men, with a rising in-
cidence.1 The prostate-specific antigen 

(PSA) test remains a commonly used screen-
ing method, although recent studies sug-
gest it has a limited impact on survival out-
comes.2,3 In the modern medical landscape, 
the significance of prostate imaging, particu-
larly with magnetic resonance imaging (MRI), 
has grown. Imaging plays an important role 
in the diagnosis of PCa, and multiparametric 
prostate magnetic resonance imaging (mp-
MRI) is the most commonly used imaging 
modality for diagnosis. Different versions of 
Prostate Imaging–Reporting and Data Sys-
tem (PI-RADS®) have been published to stan-
dardize mpMRI radiology reports.4 In cases 
where the Gleason score is 6, the Gleason 
grade group (GGG) is 1, and in cases where 
the Gleason score is 3+4 or higher, the GGG 
is 2 or above. In PCa, the prognosis is expect-
ed to be better if GGG = 1.5 However, active 
surveillance can be applied to patients with 
GGG <2.6 Treatment management varies with 
the GGG. Although dynamic contrast-en-
hanced imaging is considered a “safety zone,” 
bi-parametric magnetic resonance imag-
ing (bpMRI) is increasingly favored due to 
its speed and, in some studies, comparable 
diagnostic performance to mpMRI.7,8 PI-
RADS® version 2.1 indicates that bpMRI may 
be a viable option for decreasing the use of 
ga-dolinium contrast media, associated ad-
verse reactions, and examination time.4 This 

can lead to greater accessibility to prostate 
MRI for patients. Nevertheless, the PI-RADS® 
version 2.1 suggests mpMRI for patients with 
a high likelihood of cancer based on factors 
such as PSA levels, family history, or genetic 
predisposition. It also recommends mpMRI in 
cases where image quality may be compro-
mised, such as in patients with hip prostheses.

In PI-RADS® version 2.1, for clinically sig-
nificant prostate cancer (csPCa), at least one 
of the following must be present: GGG >2, 
volume >0.5 cc, or extra-prostatic extension. 
As a result, frequent distinction between 
clinically significant and clinically insignif-
icant prostate cancer (ciPCa) is achieved by 
histopathological verification as a result of 
prostate biopsy, which is an invasive method. 
Gleason score may need to be re-evaluated 
by pathology in some cases.9 In our study, we 
aimed to show the role of machine learning 
algorithms created from radiomics features 
obtained from T2-weighted (T2W) and ap-
parent diffusion coefficient (ADC) sequenc-
es in MRI. A review of the literature reveals 
numerous machine learning-based studies 
on PCa detection, particularly csPCa detec-
tion.10,11 Our study aims to make a significant 
contribution to the existing literature by pro-
viding an easily applicable, reproducible, and 
more accurate model that facilitates the dis-
tinction between csPCa and ciPCa. This mod-
el is particularly focused on improving the 
management of patient populations who 
may require multiple biopsies over time. In 
daily practice, this could impact a consider-
able number of patients.

Methods

Ethics and data source

This study was approved by the İstanbul 
University, İstanbul Faculty of Medicine Eth-
ics Committee (decision number: 2021/676, 

date: 28/05/2021). Since it was a retrospec-
tive study, informed consent was waived. The 
dataset was obtained by retrospectively scan-
ning the images of patients >18 years of age, 
whose lesions detected after mpMRI were 
confirmed histopathologically by systematic 
core and targeted biopsy at the department 
of radiology of the institution between 2016 
and 2022. Fusion biopsy, which combines MR 
and ultrasound imaging, was used as the bi-
opsy technique in all patients. The data were 
obtained on a lesion-by-lesion basis to avoid 
possible bias during the data collection. The 
exclusion criteria encompassed the follow-
ing conditions: 1) elimination of cases with 
imaging artifacts that hindered the accurate 
segmentation of cancer lesions and 2) exclu-
sion of instances with incomplete MRI data, 
including scenar-ios where essential images 
were missing. 

Magnetic resonance imaging 

The primary MRI sequences chosen for 
radiomic input in prostate imaging included 
axial T2W images and ADC images. In this 
study, two distinct MR technologies were 
employed: the Magnetom Aera 1.5 Tesla (Sie-
mens Healthcare, Germany) and the Achieva 
3.0 Tesla (Philips Medical Systems, the Neth-
erlands). ADC images were acquired from dif-
fusion-weighted imaging (DWI) with a b-val-
ue of 0 and 1400 sec/mm2 on both devices. 
For the axial T2W images and DWI protocols, 
the repetition time/echo time parameters 
were set at 7500/100 and 5000/70 ms for the 
1.5 Tesla system and 4200/100 and 3600/70 
ms for the 3.0 Tesla system. The field of view 
(FOV) differed between the devices, with an 
18 mm x 18 mm FOV for the 3.0 Tesla system 
and a 20 mm x 20 mm FOV for the 1.5 Tesla 
system. A slice thickness of 3.0 mm was main-
tained consistently on both devices, with no 
slice gap, to ensure homogeneity in imaging 
parameters throughout the study. Table 1 
provides detailed parameters related to MRI.

Main points

• This study employed machine learning al-
gorithms [support vector machine (SVM) 
and logistic regression (LR)] to differentiate 
between clinically significant prostate can-
cer (csPCa) and clinically insignificant pros-
tate cancer (ciPCa) using radiomics features 
from bi-parametric magnetic resonance im-
aging images.

• Feature selection yielded 5 key features 
from T2-weighted (T2W) images, 5 from ap-
parent diffusion coefficient (ADC) images, 
and 15 from the combined dataset, which 
was critical for model accuracy.

• A total of 77 patients were analyzed, with 
the SVM model achieving area under the 
curve (AUC) values of 0.64 for T2W, 0.86 for 
ADC, and 0.86 for combined images, where-
as the LR model achieved AUC values of 
0.79 for T2W, 0.86 for ADC, and 0.85 for com-
bined images.

• The findings suggest that machine learning 
models using radiomics can significantly aid 
in distinguishing csPCa from ciPCa, poten-
tially reducing the need for invasive biopsy 
procedures.

Table 1. Parameters of the magnetic resonance imaging

T2W (1.5 Tesla 
system)

DWI (1.5 Tesla 
system)

T2W (3.0 Tesla 
system)

DWI (3.0 Tesla 
system)

TR 7500 5000 4200 3600

TE 100 70 100 70

FOV area 20 mm x 20 mm 20 mm x 20 mm 18 mm x 18 mm 18 mm x 18 mm

Matrix 320 x 320 256 x 256 230 x 180 64 x 64

Voxel size (x, y, z; 
mm) 0.6 x 0.6 x 3 (mm) 0.8 x 0.8 x 3 (mm) 0.8 x 1 x 3 (mm) 3 x 3 x 3 (mm)

Slice thickness 3 mm 3 mm 3 mm 3 mm

Slice gap - - - -

Sequence Turbo spin echo Echo planar 
imaging Turbo spin echo Echo planar 

imaging

T2W, T2-weighted; DWI, diffusion-weighted imaging; TR, repetition time; TE, echo time; FOV, field of view.
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Image preprocessing and feature ex-
traction

The acquired images underwent normal-
ization through the proprietary algorithm 
embedded in Olea Sphere® software (Olea 
Medical, La Ciotat, France). Despite ADC be-
ing a computationally derived sequence, 
it underwent normalization in a manner 
consistent with the axial T2W series, align-
ing with the recommendations in radiomics 
studies.12 Subsequently, outlier pixels were 
systematically eliminated using the ±3 sig-
ma technique.13 Following normalization and 
the removal of outlier pixels, pixel sizes were 
standardized to a 1 × 1 mm2 scale using cubic 
B-spline interpolation. The gray levels were 
then discretized uniformly for both series 
with a bin width of 0.05.14 Utilizing PyRadiom-
ics, Laplacian of Gaussian (LoG) filter images 
were extracted from the original images with 
logarithmic values of 2, 4, and 6. Consequent-
ly, four images were derived from a single 
original image, where one of them represent-
ed the original unaltered image. 

Segmentations were performed manu-
ally by two radiologists using the freehand 
method, prior to the steps described in the 
previous paragraph. Each radiologist had 5 
and 4 years of experience, respectively, and 
performed the segmentations independent-
ly using axial T2W and ADC images (Figure 1). 
When necessary for improved tumor orienta-
tion, DWI with b-values of 0 and 1400, as well 
as sagittal T2W images, were incorporated. 
However, for objective bi-parametric mod-
eling, contrast-enhanced series were inten-
tionally omitted and not reviewed during 
the segmentation process. During segmen-
tation, the lesion area with high suspicion of 
tumor was included, whereas areas of uncer-
tainty were excluded. The suspicious lesion 
underwent volumetric 3D segmentation 
using Olea Sphere® software. Subsequently, 
feature extraction was performed from the 
original image, as well as from three LoG-fil-
tered series within each set, following the 
steps described in the previous paragraph. 
The radiomics workflow is summarized in 
Figure 2.

Data preprocessing and feature selection

To ensure consistency and dependability 
of machine learning models, meticulous data 
pre-processing steps were performed.15 After 
standardization and discretization were ap-
plied uniformly to all data using a consistent 
bin width, the data were divided into 20 bins. 
The dataset was randomly split into training 
and test sets with a 70/30 ratio. To prevent 

contamination of the test dataset with the 
training dataset, data splitting was con-
ducted before any data augmentation. This 
approach ensured the integrity and inde-
pendence of the training and test datasets, 
and T2W and ADC series were combined to 
construct a unified dataset.

Pearson’s correlation coefficient was em-
ployed to identify and remove redundant 
features. Pairs of features with a correlation 
coefficient exceeding a threshold of 0.80 
were identified and subsequently removed.16 
The remaining features, which met these 
criteria, served as input for the next stage. 

Figure 2. The figure illustrates the radiomics workflow. GLDM, gray-level dependence matrix; GLCM, 
gray-level co-occurrence matrix; GLRLM, gray-level run length matrix; GLSZM, gray-level size zone matrix; 
NGTDM, neighboring gray-tone difference matrix.

Figure 1. The figure shows examples of the segmentation of the original (a) T2-weighted images with 
Laplacian of Gaussian (LoG) filters using sigma values of 2 (b), 4 (c), and 6 (d), as well as the original (e) 
apparent diffusion coefficient images with LoG filters using sigma values of 2 (f), 4 (g), and 6 (h).

a

e
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g

b
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d
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A wrapper-based feature selection algo-
rithm was then developed using backward 
elimination and five-fold cross-validation. 
Logistic regression (LR) was chosen as the 
estimator for feature selection. This wrap-
per method evaluates different models by 
iteratively including or excluding features to 
determine the optimal feature combination. 
Each model was analyzed by iteratively re-
moving one feature at a time. Through mul-
tiple evaluations, the most relevant features 
were identified. Crucial features were select-
ed exclusively from the training folds using 
cross-validation, thereby avoiding the “dou-
ble-dipping” phenomenon.17 As previously 
indicated, the test set remained untouched 
throughout the feature selection process 
due to the prior data division into training 
and test sets.

Machine learning algorithms

T2W, ADC, and the combined dataset 
were incorporated into the machine learning 
modeling. The finalized set of features was 
used for implementing machine learning 
algorithms, which were executed using Py-
thon (version 3). The first model employed 
was a support vector machine (SVM) with hy-
perparameters set to C: 1.0 and kernel: linear. 
Another model, LR, was used with hyperpa-
rameters configured as C: 25, solver: liblinear, 
and regularization penalty: L2 (Ridge). The 
performance of the models was evaluated 
using five-fold cross-validation. Metrics in-
cluding accuracy, sensitivity, specificity, pre-
cision, recall, F1 score, and the area under the 
curve (AUC) were calculated.

Results

Patients 

The study involved a total of 108 patients. 
However, 14 patients were excluded due to 
incomplete pathology results, 3 patients 
had incomplete images, and 14 patients 
had artifacts in their images (Figure 3). Of 
the remaining patients, 61% (47 patients) 
were diagnosed with csPCa, whereas 39% 
(30 patients) were classified as having ciPCa. 
Table 2 provides a summary of the patients’ 
characteristics.

Feature extraction and selection

A total of 444 features were extracted 
from each sequence. These features were 
categorized as follows: 17 (15.32%) shape, 19 
(17.12%) first-order, 24 (21.62%) gray-level 
co-occurrence matrix, 16 (14.41%) gray-lev-
el run-length matrix, 16 (14.41%) gray-level 

size-zone matrix, 14 (12.61%) gray-level de-
pendence matrix, and 5 (4.50%) neighboring 
gray-tone difference matrix features. Subse-
quently, a combined dataset was generated 
by concatenating features from both T2W 
and ADC sequences.

Pearson’s correlation coefficient identified 
28, 31, and 50 features as non-overlapping in 
T2W, ADC, and the combined group, respec-
tively. Following the wrapper-based sequen-
tial feature selection step, the final feature 
subsets consisted of 5 features in T2W, 5 in 
ADC, and 15 in the combined group, details 
of which are shown in Table 3 and Figure 4.

Models performance

The SVM models demonstrated accuracy 
scores of 75%, 85%, and 91% in the train-
ing group and 64%, 76%, and 72% in the 
test group for the T2W, ADC, and combined 
groups, respectively. The corresponding AUC 

values with 95% confidence intervals (CI) 
were 0.75 (0.74–0.76), 0.89 (0.88–0.89), and 
0.95 (0.95–0.96) in the training group, and 
0.64 (0.62–0.65), 0.86 (0.85–0.88), and 0.86 
(0.85–0.88) in the test group for the T2W, 
ADC, and combined groups, respectively.

The LR models in the T2W, ADC, and com-
bined groups had accuracy scores of 74%, 
84%, and 86% in the training group, and 70%, 
79%, and 77% in the test group, respectively. 
The AUC values with 95% CI were as follows: 
for the T2W, ADC, and combined groups in 
the training group, 0.83 (0.82–0.83), 0.89 
(0.88–0.89), and 0.95 (0.94–0.95); and in the 
test group, 0.79 (0.78–0.80), 0.86 (0.84–0.88), 
and 0.85 (0.83–0.87), respectively. Detailed 
performance analyses for the training group 
and the test group are presented in Table 4, 
and Figure 5 shows the receiver operating 
characteristic curves for all models.

Figure 3. The figure demonstrates the patient selection algorithm. (F, feature; as listed in Table 2).

Table 2. Demographic and patient characteristics for both groups

csPCa ciPCa P value

Age (mean ± SD) (95% CI) 65.22 ± 8.85 (62.59–67.84) 61.61 ± 6.8 (58.97–64.24) 0.086

PSA level (median) (min–max) 7.46 (1.22–38.67) 5.95 (2.0–45.0)  0.044*

Localization (n)
Peripheric zone
Transitional zone

40
7

24
6

0.560

MRI technology
1.5 T scanner
3.0 T scanner

31
16

19
11

0.009†

Gleason score (n)
Gleason 3+3
Gleason 3+4
Gleason 4+3
Gleason 4+4
Gleason 4+5
Gleason 5+4
Gleason 5+5

NA
24
9
9
3
1
1

30
NA
NA
NA
NA
NA
NA

*A significant difference was found between both groups by Mann–Whitney U test revealing a higher value in the 
CsPCa group. †1.5 Tesla scanners have a higher number of patients and a significant difference was found in the 
Pearson’s chi-square test. csPCa, clinically significant prostate cancer; ciPCa, clinically insignificant prostate cancer; 
SD, standard deviation; CI, confidence interval; PSA, prostate-specific antigen; min–max, minimum–maximum; MRI, 
magnetic resonance imaging; NA, not available.
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Discussion
In our investigation, the efficacy of ma-

chine learning models employing prostate 
bpMRI radiomics analysis for predicting 
csPCa was explored, revealing promising 
predictive capabilities. As the two different 
algorithms work on different principles, an 
attempt was made to minimize the possibil-
ity of overfitting by using them in the algo-
rithms created and to evaluate the usability 
of the different models. The reasonable and 
comparable accuracy rates of these algo-
rithms in this study demonstrate the feasibil-
ity of using machine learning algorithms to 
identify csPCa.

In the literature, radiomics studies con-
ducted using ultrasonography and com-
puted tomography in prostate imaging are 

available.18,19 Nevertheless, the popularity of 
radiomics studies in prostate MRI is notably 
increasing. The field of radiomics studies 
conducted in MR is expansive, encompass-
ing endeavors to differentiate extraprostatic 
extension, discern normal tissue from cancer, 
identify recurrence post-radical prostatecto-
my, and distinguish recurrence after treat-
ment.20 Notably, the treatment approaches 
for csPCa and ciPCa can vary significantly.21-23 
Hence, there is a growing significance in 
conducting studies aimed at differentiat-
ing csPCa and ciPCa. Some of these studies 
have been performed with mpMRI and some 
with bpMRI. Our study was conducted with 
bpMRI, which is more accessible, has a short-
er duration, and is considered suitable for 
acquisition with certain criteria in PI-RADS® 
version 2.1, and studies are being conducted 
to disseminate it.4 

Zhang et al.24 used GGG 1 and GGG >1 
groups in their nomogram study of 159 pa-
tients with radiomics, similar to our study. 
Similar to our study, only bpMRI images were 
used, and segmentation was performed on 
DWI, ADC, and T2W. Although the use of in-
ternal validation was the advantage of the 
study, this study was performed with a single 
3.0T MR technology. In addition, this study 
was performed with a radiomic nomogram, 
and machine learning modeling was not 
applied. In a retrospective radiomics study 
of 489 patients, Gong et al.25 derived mod-
els from bpMRI data (T2W and DWI). They 
incorporated clinical modeling by including 
PSA data in the study. Performed on a single 
3.0T MRI machine, they reported an AUC of 
0.811 in the training group and 0.788 in the 
test group for the combined model, which 
was created without integrating clinical 

Table 3. Selected features and their classifications for T2W, ADC, and combined datasets

Selected features

T2W ADC Combined dataset

Image type Feature name (feature 
class) Image type Feature name (feature 

class) Image type Feature name (feature class)

Original
Original shape surface 

area to volume ratio 
(shape)

Original Original shape mesh 
volume (shape) T2W - original Original shape surface area to volume ratio 

(shape)

Original Original shape 
sphericity (shape) Original

Original shape surface 
area to volume ratio 

(shape)
T2W - original Original shape sphericity (shape)

Original
Original first order root 

mean squared (first 
order)

Original Original first order 
entropy (shape) T2W - original Original shape elongation (shape)

Original Original GLCM 
correlation (GLCM) Original Original first order 

skewness (first order) T2W - original Original shape flatness (shape)

LoG (Sigma: 4)
Original GLCM informal 
measure of correlation 1 

(GLCM)
LoG (Sigma: 4) Original first order 

kurtosis (first order) T2W - original Original GLCM correlation (GLCM)

T2W - laplacian of 
gaussian (Sigma: 2) Original first order 90th percentile (first order)

ADC - original Original first order entropy (first order)

ADC - original Original first order minimum (first order)

ADC - original Original GLCM inverse variance (GLCM)

ADC - original Original GLSZM small area emphasis 
(GLSZM)

ADC - original Original GLDM large dependence low gray 
level emphasis (GLDM)

ADC - LoG (Sigma: 4) Original GLCM inverse variance (GLCM)

ADC - LoG (Sigma: 6) Original GLCM informal measure of 
correlation 1 (GLCM)

ADC - LoG (Sigma: 6) Original GLCM maximal correlation 
coefficient (GLCM)

ADC - LoG (Sigma: 6) Original GLSZM variance (GLSZM)

The same features included in the combined group and T2W are shown in bold; the combined group and ADC are shown in italic. T2W, T2-weighted; ADC, apparent diffusion 
coefficient; GLCM, gray-level co-occurrence matrix; LoG, Laplacian of Gaussian; GLSZM, gray-level size-zone matrix; GLDM, gray-level dependence matrix.
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modeling. However, in this study, PCa was 
separated into low-grade and high-grade, 
and patients with a Gleason score <8 were 
considered low-grade. Li et al.26 used T2W 
and ADC series in their retrospective study 
of 381 patients to differentiate csPCa, but 
199 patients were selected from the benign 
patient group. Clinical modeling was also 
included in the study, and they reported the 
AUC value obtained without clinical model-
ing as 0.99 in the training group and 0.98 in 
the test group. However, this study used a 
single MR scanner, and lesion segmentation 
was supported by pathological data and dy-
namic contrast-enhanced images.26 

In current clinical practice, almost all pa-
tients with suspected PCa require a biopsy. 
The advantage of conducting our study only 
with patients who have a Gleason score of 
6 or higher is to avoid the possibility that 
these patients, diagnosed with cancer, might 
require re-biopsies during follow-up under 
current conditions or even immediately after 
the initial biopsy. Thus, the aim is to create a 
decision support system to aid the pathol-
ogy result or to identify patients who need 
re-biopsy. The use of two MR scanners, 3.0T 
and 1.5T, and the modeling of both periph-
eral and transitional zone lesions are advan-
tageous in our study. In addition to its rap-
id applicability, another advantage of our 
model for bpMRI over other studies is that it 
relies solely on ADC series and does not use 
contrast-enhanced sequences. Furthermore, 
the significance of our study lies in the high 
reproducibility of the technique, along with 
its favorable accuracy rates and AUC values, 
which are relatively high compared to other 
studies.27 Other studies in the literature used 
more images than T2 and ADC and achieved 
similar accuracy rates to those in our study.11 
Additionally, some studies with high accu-
racy rates focused only on the peripheral or 
transitional zones. For instance, Fehr et al.28 
reported high accuracy rates but performed 
segmentation in conjunction with pathologi-
cal results. Chen et al.29 also reported high ac-
curacy rates, but their study did not perform 
an interobserver analysis.

Our study has several limitations. First, 
as a retrospective study sourcing data from 
past registries, it may introduce selection 
bias. Second, although segmentation was 
performed independently by two radiolo-
gists, the manual nature of this process can 
introduce subjectivity. Third, the patient 
population was relatively small, raising con-
cerns about a potential imbalance between 
groups. Class imbalance can challenge many 
machine learning algorithms, which typically 

assume that all classes are equally distribut-
ed.15 In cases of imbalanced classes, models 
tend to favor predictions for the majority 
class. To address class imbalance and reduce 
the risk of overfitting, especially with a limited 
number of samples, data augmentation is a 

validated technique. The use of different syn-
thetic over-sampling methods can provide 
a more efficient and effective approach.30,31 
However, this would result in a substantial 
portion of the data being synthetic. Further-
more, despite employing a systematic and 

Figure 4. The selected features for T2-weighted images (a), apparent diffusion coefficient images (b), and 
the combined dataset (c) are shown.

a

b

c

Table 4. Detailed performance statistics for machine learning algorithms on T2W, ADC, and 
combined dataset

Group Accuracy Sensitivity Specificity Recall F1 AUC (95% CI)

LR-T2W Train
Test

74%
70%

77%
76%

57%
56%

84%
79%

0.80
0.76

0.83 (0.82–0.83)
0.79 (0.78–0.80)

SVM-T2W Train
Test

75%
64%

77%
69%

52%
46%

85%
75%

0.81
0.71

0.75 (0.74–0.76)
0.64 (0.62–0.65)

LR-ADC Train
Test

84%
79%

85%
82%

69%
67%

90%
87%

0.87
0.84

0.89 (0.88–0.89)
0.86 (0.84–0.88)

SVM-ADC Train
Test

85%
76%

85%
80%

65%
63%

90%
85%

0.88
0.82

0.89 (0.88–0.89)
0.86 (0.85–0.88)

LR-combined Train
Test

86%
77%

89%
85%

73%
70%

95%
81%

0.92
0.80

0.95 (0.94–0.95)
0.85 (0.83–0.87)

SVM-combined Train
Test

91%
72%

90%
75%

68%
66%

95%
75%

0.93
0.75

0.95 (0.95–0.96)
0.86 (0.85–0.88)

T2W, T2-weighted image; ADC, apparent diffusion coefficient; F1 score, the harmonic mean of precision and recall; 
AUC, area under the curve; CI, confidence interval; LR, logistic regression; SVM, support vector machine.
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targeted biopsy approach, the accuracy of 
the PCa score may be underestimated due to 
potential limitations in puncture pathology, 
which might not accurately reflect the true 
pathological status. Additionally, in PI-RADS® 
version 2.1, the criteria for csPCa include ex-
traprostatic extension and volume criteria, in 
addition to the Gleason score. Although pa-
tients were selected retrospectively, care was 
taken to exclude those meeting this criterion 
from the ciPCa group.

In conclusion, machine learning models 
utilizing radiomics extracted from prostate 
bpMRI show promising results in distinguish-
ing between csPCa and ciPCa. However, 
additional studies with larger datasets are 
needed to validate these models across ex-
ternal centers before considering their clin-
ical implementation. Incorporating clinical 
data, such as PSA levels, into these models 
could lead to the development of more ro-
bust tools for clinical practice. The integra-
tion of radiomics with artificial intelligence 

methodologies, including machine learning, 
holds significant potential for future ad-
vancements in prostate imaging.
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A R T I F I C I A L  I N T E L L I G E N C E  A N D  I N F O R M AT I C S
I N V I T E D  R E V I E W

Radiomics is a recent field that uses “an automated high-throughput extraction of large 
amounts of quantitative features of medical images.”1-3 The method “converts imaging 
data into a high dimensional mineable feature space using a large number of automati-

cally extracted data-characterization algorithms.”4

The above definition may seem complex, but it can be succinctly summarized. Similar to 
how clinical routine involves characterizing a patient using parameters such as age, weight, 
and hemoglobin levels, radiological images can be analyzed to extract analogous parameters 
(also called features) that ideally describe the pathology of interest. For example, in the case 
of a tumor lesion, features such as its volume and diameter can be measured. A critical aspect 
of radiomics is the extraction of not only morphological features but also the distribution of 
intensity and texture. This includes, for instance, assessing whether the lesion has high bright-
ness and a homogeneous or coarse texture, and identifying the presence of bright spots. 
Radiomics involves the extraction of hundreds to thousands of such features to accurately 
represent the lesion. These features are subsequently used to train a classifier, that, based on 
the characteristics of a new lesion, can determine, for example, whether the lesion is benign. 

The main expectation of radiomics is that these features can serve as surrogates for bio-
markers, and thus aid clinical decision making. Radiological imaging could reflect the under-
lying biological processes, allowing for indirect conclusions. For example, while necrotic cells 
are not directly observable in computed tomography (CT) scans, their presence may result in 
the appearance of a hypodense lesion (Figure 1). Thus, measuring the overall intensity of a 
lesion could be used as an indicator of cell necrosis.

Although radiomics as a field only emerged in the 2010s,1,5 the idea can be traced back 
much further. In a seminal paper published in 1978, Harlow et al.6 introduced concepts that 
are strikingly similar. Later, specifically in the 1990s, similar techniques were introduced as 
texture analysis.7 This is no coincidence, since the underlying idea of applying machine learn-
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ing to imaging is the same and dates back to 
the 1960s.

The primary purpose of radiomics is to 
support clinical decisions. Ideally, the ex-
tracted features provide insights that hu-
mans cannot see or systematically process, 
allowing clinicians to answer questions using 
this hidden information. Radiomics has also 
been used to non-invasively identify genetic 
alterations or gene expression patterns that 
can be used to predict the outcome or sur-
vival risk of patients with cancer.8-10

In this review, the basic concepts of radio-
mics are first introduced, followed by a de-
tailed discussion of the two major reproduc-
ibility issues that persist in the current field. 
Subsequently, radiomics based on deep 
neural networks is briefly outlined and the is-
sues involved in their application examined. 
Finally, strategies for avoiding these issues 
are discussed.

The radiomics pipeline

As with any study, the first step in a ra-
diomics model is to define patient cohorts, 
applying reasonable inclusion and exclusion 
criteria that reflect the target population, 
and defining an outcome of clinical interest.

The application of radiomics to data is 
technical but relatively straightforward (Fig-
ure 2).11 Images are first acquired and the re-
gion of interest (ROI) is segmented. This can 
be a tumor lesion or an entire organ, such 
as the whole prostate. The ROI plays a criti-
cal role in directing the analysis to relevant 
areas, thereby preventing other unrelated 
regions from potentially confounding the 
analysis.

The images are then pre-processed de-
pending on the use case. For example, mag-
netic resonance imaging may require a nor-
malization step, and CT may be thresholded 
to a Hounsfield units range of interest. In ad-

dition, preprocessing filters are applied. For 
instance, smoothing filters can reduce noise 
that may adversely affect features, whereas 
wavelet filters can decompose the image 
into high-frequency and low-frequency 
components that may carry different infor-
mation, aiding subsequent analysis. 

Next, features are extracted from the ROI. 
This is a central step, and there are three 
main types of generic features that are ex-
tracted: morphological features, such as vol-
ume or sphericity; intensity features, which 
measure the distribution of values, such as 
mean brightness; and texture features that 
reflect the co-occurrence of intensity values.

However, feature extraction will often 
generate large numbers of features, and 

many of them will be irrelevant (i.e., they will 
not help to solve the problem). Many will 
also be redundant, that is, their information 
is already present in other features. There-
fore, a feature selection step is applied that 
retains only the relevant features; for exam-
ple, a t-test can be used to filter out those 
that are not significant.

These features are then fed into a clas-
sifier, which functions in terms of making a 
prediction after receiving a set of features. 
This classifier is trained on the data using ma-
chine learning techniques. In other words, 
following the input of data, the algorithm 
identifies relevant patterns to make accu-
rate predictions on new data. This model can 
then be tested and applied to new data, such 
as routine clinical data.

Main points

• Radiomics is impeded by imaging and sta-
tistical reproducibility issues.

• Machine and deep learning modeling are 
complicated and require extensive valida-
tion.

• Radiomic features found to be predictive in 
modeling often do not correspond to bio-
markers due to high correlation, limiting 
their interpretability.

• Standardization practices and larger, more 
diverse datasets are important to improve 
reproducibility.

Figure 1. Radiomics aims to identify biomarkers by measuring them indirectly through radiological imaging. 
Much of the information in the pathological scan (top) is lost in the radiological image (bottom). Features 
are extracted from the segmented region-of-interest to recover the information of interest (the pathology 
image is part of the PROSTATE-MRI dataset).75 MRI, magnetic resonance imaging.
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The radiomics pipeline appears pretty 
straightforward, but in each step, good prac-
tices must be maintained to avoid biased or 
false-positive results.12 

Reproducibility issues

Although the pipeline may seem fairly rig-
id, the key issue is reproducibility. This term 
describes the requirement that similar find-
ings should be observed when conditions do 
not change significantly. For example, scan-
ning the same patient twice within a very 
short time frame should yield similar radio-
mic features and lead to similar predictions. 
Non-reproducible studies are essentially ran-
dom and erratic and cannot be trusted. They 
may also lead to false positives, which would 
prevent clinical use.

Reproducibility in radiomics can be divid-
ed into two areas: imaging reproducibility 
and statistical reproducibility. The term “im-
aging reproducibility” refers to the acquisi-
tion of scans and the extraction of features, 
whereas “statistical reproducibility” refers to 
modeling using machine learning. Of course, 
if the imaging is not reproducible, no model-
ing can correct it (following the well-known 
“garbage in, garbage out” rule).13,14 Nonethe-
less, the focus will be mainly on statistical re-
producibility.

Imaging reproducibility

Imaging reproducibility refers to issues 
in the acquisition process resulting from 
variations in imaging parameters and tech-
niques, vendor differences, and similar fac-
tors.15 Since radiomic features are extracted 
from the acquired images, parameters such 
as voxel size and reconstruction techniques 

can have a significant impact on these fea-
tures.16,17 The effect is also non-linear, which 
can render images highly non-reproduc-
ible.18 Post-hoc harmonization can mitigate 
the problem, but only to a limited extent.19,20

Even if the imaging were reproducible, 
the segmentations are usually sensitive to in-
tra- and inter-rater variability, and these dif-
ferences can also have a large impact on the 
extracted features,21 making them partially 
non-reproducible. The same is true for the 
definition of the features themselves. Even 
simple features, such as sphericity, can show 
variations depending on the formulas used 
to calculate them. Accordingly, the Image 
Biomarker Standardisation Initiative (IBSI) 
was launched to standardize these features 
and assess their reproducibility.22 However, 
not all software programs are IBSI-compliant, 
and even the standardized features may still 
exhibit some differences.23

Another source of variability is the use 
of preprocessing filters. Although standard-
ization has recently been considered by the 
IBSI,24 it is unknown whether preprocessing 
helps at all, and if so, which filters should 
be applied. Therefore, these preprocessing 
filters are applied in parallel to increase the 
predictive power of the resulting features.25 
However, this leads to statistical problems.

Statistical reproducibility

The data generated will often have two 
characteristics that distinguish it from many 
other datasets: it will be high-dimensional, 
meaning that there are more features than 
samples, and it will be highly correlated. In 
radiomics, there are two main reasons for 
this. First, the total sample size is often limit-

ed due to the time and resources required for 
annotation, the rarity of the disease in ques-
tion, or privacy concerns. Second, the numer-
ous preprocessing filters extract information 
that is highly similar. For example, two levels 
of smoothing will produce features that are 
very alike. This results in the generation of 
highly correlated features.

The presence of such data presents signif-
icant challenges, as the search for predictive 
features and patterns becomes exponen-
tially more difficult and resembles “finding a 
needle in a haystack.”26 Therefore, the risk of 
identifying spurious patterns and producing 
false-positive results is significantly increased 
in such data. While methods such as regular-
ization can help overcome this problem, the 
issue remains unresolved.

 Therefore, radiomics often employs a 
feature selection step, where the goal is to 
retain only the relevant features and remove 
all others, thereby reducing the dimensional-
ity of the data. However, several methods of 
varying complexity are currently in use.11,27,28 
Simpler methods, such as Spearman correla-
tion or t-tests, typically operate by consid-
ering each variable on its own. These meth-
ods are computationally efficient but may 
overlook dependencies between variables, 
potentially leading to suboptimal feature 
selection. More complex methods, such as 
the least absolute shrinkage and selection 
operator method,29 the minimum redun-
dance maximum relevancy method,30 or the 
Boruta method,31 are able to account for such 
dependencies but are more computationally 
demanding. While it may be intuitive to as-
sume that more complex methods perform 
better, it has been shown that for many data-

Figure 2. Brief overview of the radiomics pipeline. MR, magnetic resonance; CT, computed tomography.
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sets, the differences may not be significant. 
However, simpler methods tend to be more 
robust, and therefore more reproducible.27 
In addition, many of the feature selection 
methods do not select relevant features 
but merely score them, leaving open the 
decision regarding how many of the high-
est-scoring features to retain, which reduces 
their reproducibility.

Accordingly, feature selection is not a 
complete solution to the problem since the 
task of dealing with the high-dimensional 
space is merely transferred from the classifi-
er. Feature selection is also subject to failure 
and may even underperform, especially giv-
en the inherent instability of selection meth-
ods and their dependence on the specific 
data sample.27 For example, the removal of a 
few samples can have a significant impact on 
the set of features considered relevant.

Subsequent classifiers are also affected 
by high dimensionality, either directly or in-
directly, if irrelevant features have been se-
lected. Furthermore, many classifiers make 
assumptions about the data that may not 
be true, regardless of whether feature selec-
tion has been applied. These assumptions 
are often controlled by hyperparameters; for 
example, a regularization variable may re-
flect the amount of noise present in the data. 
Therefore, the only option is to test many dif-
ferent parameters, which is extremely expen-
sive in terms of computational resources. As 
a result, studies only test a limited number of 
parameters, and it remains unclear whether 
a significantly more effective model could 
have been obtained by optimizing the hy-
perparameters.

Validation issues

Any model requires extensive testing, 
the main reason for this being that models 
could either memorize the data or find spu-
rious instead of predictive patterns. Such a 
model would perform well during training, 
but worse on test data and would not gen-
eralize. This problem is called overfitting, and 
the risk is higher for high-dimensional data, 
where more patterns can fit the given data.

To avoid this problem, validation is per-
formed first. Unlike testing, validation is 
mainly used for model selection, specifically 
to determine good values for the hyperpa-
rameters, or to identify which feature selec-
tion or classifier method performs better on 
the given data. Ideally, validation should be 
performed on a second independent data-
set, but alternatively, a portion of the data 
can be set aside. Certain common schemes 

are often employed in radiomics, includ-
ing simple splitting, cross-validation, and 
bootstrapping. In simple splitting, a portion 
of the data (e.g., 70%) is used for training, 
whereas the remainder is used exclusively 
for validation. While this method is concep-
tually simple and computationally fast, it 
does not utilize all available data for train-
ing. Additionally, the results can be highly 
dependent on the specific split, leading to 
potential variability; that is, there is a risk 
that results may be good, or bad, by chance. 
To mitigate this, the method can be repeat-
ed several times and the results averaged. 
Cross-validation provides a more systematic 
approach by splitting the data into k subsets 
and iteratively training on k-1 subsets while 
using the remaining subset for validation. 
Although computationally more expensive, 
this method ensures that all data is used for 
both training and validation, providing a 
more reliable estimate of the performance. 
Nested cross-validation further refines this 
by applying cross-validation twice: once to 
the entire data for performance estimation 
and once on the training data for hyperpa-
rameter tuning. This scheme provides an un-
biased evaluation and is considered a gold 
standard. Bootstrapping, on the other hand, 
uses resampling with replacement to create 
training and validation sets. Since samples 
can occur multiple times in the training set, 
this approach simulates different weights for 
each sample and can thus lead to better es-
timates. However, to obtain these estimates, 
a large number of repetitions (e.g., 1,000) is 
generally required, making it computational-
ly highly expensive.

However, in all cases, the golden rule of 
machine learning must be followed: training 
and test sets must be kept strictly separate. 
Failure to follow this rule will lead to data 
leakage, meaning that the classifier has al-
ready seen some aspects of the test data 
and could adapt to it, leading to false posi-
tives.32,33

Another issue is the variability of the data. 
Choosing a homogeneous cohort (e.g., from 
a single scanner) increases the likelihood of 
obtaining a working model since the predic-
tive patterns seen during training are likely to 
be present in the test data. At the same time, 
however, the model will be highly specific 
and may not generalize beyond the collect-
ed data. The opposite, collecting heteroge-
neous data, is also critical, because the classi-
fier may not be able to identify any predictive 
patterns at all, especially with small sample 
sizes, and there will be no relevant model to 

test. However, if such a model is successful, 
its clinical applicability will be much higher, 
which is the ultimate goal.34

Deep radiomics

Deep learning has recently shown great 
success in other fields,35 and it is natural 
to apply deep learning to radiomics. Deep 
learning is based on artificial neural net-
works, which, in a simplistic way, try to mimic 
the human brain, and date back to the early 
days of machine learning in the 1950s. Con-
ceptually, in the simplest case, a network 
consists of multiple layers, each of which can 
be understood as a feature generation step. 
Layer by layer, the input is transformed into 
the desired output, and the training data is 
used to determine the parameters of the lay-
ers (Figure 3).

Applying deep learning to radiomics, 
which is termed deep radiomics, can, in 
contrast to the generic radiomics discussed 
above, mitigate two major drawbacks. First, 
it can potentially reduce the need for seg-
mentation because the network can, at least 
potentially, determine the ROI itself. Equally 
important, the network can extract optimal 
features that are specific to the problem at 
hand. It can also consider more global fea-
tures of the data, whereas most generic fea-
tures are based on local textures. Both can 
lead to models that perform much better 
than generic models. While deep learning 
has only recently gained importance, neural 
networks have been applied to radiological 
data since the 1990s.36,37

Issues with deep radiomics

Deep radiomics does not magically by-
pass the reproducibility problems. For ex-
ample, changes in acquisition parameters 
have been shown to have a strong effect 
on predictive performance, thus affecting 
generalizability.38 Much is unknown about 
the stability of deep radiomics models, such 
as whether a different training sample will 
yield different features, or whether features 
from different networks are highly correlat-
ed. Robustness to image noise and slightly 
different segmentations has also not been 
systematically investigated, which is compli-
cated by the fact that many different archi-
tectures exist.

Sample size is an even bigger issue in 
deep radiomics. Learning directly from data 
usually requires many more samples to be 
successful.39 As a result, deep radiomics is 
currently not as successful as it could be. 
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Consequently, several mitigation strate-
gies have been developed.40,41 However, they 
all have their own drawbacks. For example, 
studies often resort to using image slices for 
training, which not only increases the sam-
ple size but also allows for the use of small-
er networks.42,43 Nonetheless, this approach 
partially loses the spatial information, which 
reduces the potential benefit. 

A more common strategy is transfer 
learning. Here, the network is first trained 
on a dataset from another domain, most 
commonly ImageNet, a collection of pho-
tographs.44 This pre-trained network is then 
fine-tuned (i.e., it is trained on the radiomic 
data, often at lower learning rates) to slightly 
adjust the network. This approach can work 
because there is a remarkable similarity be-
tween the low-level features of the human 
eye and the network; at lower levels, both 
appear to operate with filters comparable 
to Gabor filters.39 Thus, fine-tuning can focus 
on training the higher layers and perform-

ing better with fewer samples. However, the 
use of non-medical data for pre-training is 
again suboptimal, and larger medical data 
corpora have been introduced only recently, 
although the extent to which these can help 
in radiomics remains unclear, as they are usu-
ally far smaller than ImageNet.45

Since training a deep network involves 
many hyperparameters (e.g., learning rate, 
learning schedule, choice of loss function) 
and can be relatively complicated, anoth-
er alternative is to bypass any training and 
instead use only pre-trained networks as 
feature extractors (Figure 3),46 which allows 
more versatile classifiers, such as boosting, to 
perform better, especially with smaller sam-
ple sizes.47 However, since no training is per-
formed in this approach, the disadvantage is 
again that the features may be less optimal, 
although fusing them with generic radiomics 
can still prove helpful.48,49

Finally, the hope that deep radiomics can 
dispense with segmentation may be in vain 

due to the small sample size. In addition, 
without a proper validation method, deep ra-
diomics is also prone to bias due to over-en-
gineering. In fact, a recent review found no 
clear advantage of deep radiomics.50

Interpretability issues

A key point in radiomics is to identify fea-
tures that can potentially serve as biomark-
ers, just as the volume of a lesion indicates its 
malignancy. However, radiomics attempts to 
establish such a correspondence “in reverse,” 
using the coarser and noisier radiological 
images, where much information is already 
lost during acquisition. Radiomics seeks to 
capture the underlying information by mak-
ing multiple measurements (in the form of 
different features). These are often correlat-
ed, as they can be understood as noisy and 
incomplete versions of the inaccessible infor-
mation. There is no guarantee that the infor-
mation can be recovered from the extracted 
features, nor that the observed predictivity 
of a feature actually corresponds to a bio-
marker. 

Given a set of features, radiomics can only 
identify those that are statistically associated 
with the outcome. Such an association is not 
causal and could only be the basis of a sub-
sequent statistically sound test. This problem 
is exacerbated by the high-dimensionality of 
the data, where the intuition from the low-di-
mensional setting that features have a clear 
meaning and their importance can be easily 
measured fails.51 In fact, the very concept of 
distance becomes somewhat incomprehen-
sible in higher dimensions, often termed the 
curse of dimensions, and is demonstrated 
by the fact that in higher dimensions, most 
of the volume of a unit sphere is near its sur-
face.52

In fact, the use of feature importance as 
a surrogate has been shown to be question-
able because essentially every step in the 
radiomics pipeline affects the importance of 
features in the resulting model. Even seem-
ingly unimportant preprocessing steps, such 
as the choice of discretization method23 
and data normalization, which is performed 
to obtain the data on a uniform scale, can 
strongly influence the set of features and 
thus the interpretability.53 This influence is 
more evident in the feature selection step, 
where different methods will emphasize dif-
ferent aspects and thus gain different impor-
tance.27 Not only does the subsequent classi-
fier affect interpretation but the selection of 
the final model can also have a great impact, 
as often several models will perform very 

Figure 3. In simple terms, the network can be thought of as a set of layers that transform an input image into 
a set of output images. Each layer of the network has many parameters that are optimized using the training 
data. Networks usually do not use segmentation, but can be modified to use it. The network can be used as a 
feature generator by extracting features from the output of an appropriate layer. For example, in the figure, 
each of the 64 small images output by the second-to-last layer at the top could be averaged, resulting in 64 
numerical features for the given input.
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closely but will select different sets of fea-
tures as important.51,54 In a systematic review, 
Tohidinezhad et al.55 identified 23 models 
that predict the effect of radiation on brain 
health. None of these models used exactly 
the same features, and the models differed 
widely in the factors that were significantly 
associated with outcome.

Moreover, even if such an identification 
were possible, most radiomic features are 
not interpretable by themselves. For exam-
ple, it is unclear what semantic meaning a 
feature such as wavelet-LHL_glrlm_GrayLev-
elNonUniformityNormalized carries, and 
how to see the difference from a highly cor-
related feature that is slightly less predictive. 
It is unlikely that a radiologist would be able 
to relate the measured values of such a fea-
ture to the scan. Feature maps may be help-
ful for visualization,56 but they are currently 
only a tool and cannot be used to base an 
interpretation on. In addition, radiomic mod-
els are rarely based on a single feature, and a 
meaningful interpretation of a model using 
multiple features is barely possible. Para-
doxically, radiomics was invented precisely 
because humans cannot describe textural 
patterns well.

The potential for highly correlated fea-
tures to cause interpretation problems is il-
lustrated by a recent study by Welch et al.,57 
who reexamined the model that Aerts et 
al.4 used in their seminal work on patients 
with non-small cell lung cancer. The authors 
showed that volume alone is as predictive 
as the radiomic model, and moreover, that 
three of the four texture features found by 
Aerts et al.4 are highly correlated with vol-
ume. 

Recently, post-hoc interpretations, such as 
Explainable AI (XAI) methods, have been ap-
plied.58 However, these are also problematic. 
Since there are several different XAI meth-
ods, it is likely that the resulting meanings 
will also differ.59 Alternatively, explainable 
classifiers could be used, which generally 
involves a trade-off between the complexi-
ty (and thus interpretability) of the classifier 
and its predictive performance.60 However, 
even if these methods are successful, they 
only address the classifier and do not miti-
gate the problems in the overall pipeline. 

The situation is similar for deep radiom-
ics. While the pipeline itself is less complex, 
training is more difficult, and there are many 
more choices regarding the architecture. It is 
highly likely that different choices will lead 
to vastly different features. In addition, the 
deep features do not have a mathematical 

formula, making any direct interpretation 
difficult. To remedy this situation, Cho et al.61 
correlated deep features with radiomic fea-
tures. However, since radiomic features are 
not fully interpretable by themselves, this 
approach is limited in scope. 

Discussion
Currently, radiomics suffers from both im-

aging and statistical reproducibility issues, 
both of which affect the interpretability and 
applicability of the models. This affects the 
entire radiomics pipeline, and even feature 
normalization can lead to reproducibility is-
sues.

Neither of these problems can be easily 
avoided. Image reproducibility could possi-
bly be mitigated by strict standardization of 
imaging protocols, but this is all but impossi-
ble to implement in practice across multiple 
centers. Statistical reproducibility is also not 
easily mitigated. Methodological differenc-
es aside, different research groups will often 
reach different conclusions given the same 
data.62 Although such studies have not been 
conducted in radiomics, the impact is ex-
pected to be even greater, as there is gener-
ally less code and data sharing in the health 
domain.63

One major problem is small sample siz-
es. Radiomics studies need to include larger 
and more diverse datasets to have a chance 
of success. This is illustrated by current mod-
els that use deep learning to diagnose chest 
X-rays, or mammograms that have been 
shown to perform especially well.64,65 These 
models are often trained on datasets that 
reach tens of thousands of scans. Howev-
er, they are not radiomic in the sense that 
they do not require segmentations. The 
abundance of data makes segmentations 
unnecessary, as the network can identify 
the relevant regions on its own. Although it 
is virtually impossible to obtain such large 
sample sizes for rare cancers, more data 
would potentially reduce the dimensionality 
of the data and thus increase reproducibility. 
Nonetheless, radiomics seems to have made 
no progress since the seminal work of Harlow 
et al.6 in 1976, where sample sizes of around 
300 are reported. Small sample sizes are gen-
erally unable to reflect heterogeneity. This is 
even true for within-patient heterogeneity. 
For example, suppose two features are mea-
sured in a single patient at two time points, 
as in a test-retest scenario, and their sum is 
predictive. Then, the two features may vary 
greatly between the two time points such 
that neither is reproducible; but provided 

their sum remains the same, this would not 
pose any problem for their predictive value. 
However, if the model was not trained on 
such data, it would not find that pattern and 
would fail on new data. Nevertheless, large 
sample sizes are useless if the images do not 
carry the necessary information and such 
predictive patterns do not exist. Hence more 
data is not always helpful.

Non-reproducible studies may also result 
from a failure to follow best practices, which 
can be ensured by adhering to proper guide-
lines.66,67 For example, the study must be de-
scribed in full detail in a manner that enables 
replication by others. Code should always be 
shared, and data should be shared if possi-
ble. Best practices encompass every step of 
the study; for example, it must be ensured 
that the data selection is appropriate and 
unbiased relative to the study’s objective.12,68 
The outcome should also be compared with 
current standards where applicable, for ex-
ample, if a clinical scoring system is in current 
use (e.g., the Prostate Imaging Reporting and 
Data System), the radiomics model should be 
compared against it.69 Statistical tests (e.g., 
permutation tests) can be used to ensure 
that the resulting model is different from a 
random guess, which is crucial when sample 
sizes are small. While statistical significance 
should be computed, the clinical signifi-
cance should also be considered to evaluate 
the impact of the model. Furthermore, the 
overall study design must be methodologi-
cally sound to avoid reporting false-positive 
results. In addition, reporting must be clear 
and complete to ensure reproducibility.70 

In a seminal paper, Ioannidis argued that 
around 60% of all medical studies contain 
false-positive results.71 Studies with such 
obvious false positives should therefore be 
retracted, but this almost never happens in 
radiomics. On the contrary, such studies are 
frequently cited.72 In addition, methodologi-
cally correct studies will fare relatively worse 
and may appear as “negative” studies that 
may not be considered for publication.73 To 
mitigate this, a far more rigorous review pro-
cess with mandatory code or data sharing 
would be required, as it could help in iden-
tifying potentially biased results before their 
publication. Currently, such studies are often 
only identified following publication, mak-
ing it difficult to address the issue. Ensuring 
that publications rigorously follow reporting 
guidelines could be another way to reduce 
the problem.66,67,70

It is easy to overlook the fact that image 
processing has gone through a similar evo-
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lution in the past. The field started with the 
manual extraction of many features (which is 
the origin of the texture features used today), 
progressed to the extraction of more compli-
cated features such as Fisher vectors,74 be-
fore the advent of deep learning made these 
steps obsolete. In fact, the interpretability of 
deep networks is at the semantic level of im-
ages, not features, for example, to answer the 
question of whether the network takes the 
tail of a dog into account when predicting its 
race. This is not easily possible in radiomics, 
where a visualization of the important areas 
of a tumor lesion would not help a radiolo-
gist understand what the network is doing. 
Furthermore, in current machine learning, a 
model is accepted if it generalizes well, not 
necessarily if the model is interpretable. A 
similar strategy may be viable for radiomics, 
where the applicability of models is validated 
on large datasets.

In conclusion, radiomics currently faces 
substantial challenges related to imaging 
and statistical reproducibility that severely 
impact interpretability and clinical applica-
bility. These problems are difficult to mitigate 
because imaging standardization is largely 
impractical and statistical variability is inher-
ent in high-dimensional datasets. As a result, 
the potential for clinical integration remains 
uncertain and questionable. A shift toward 
rigorous data and code sharing practices and 
the development of large, representative 
datasets would be required to partially ad-
dress these challenges.
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Dear Editor, 

The study titled “Evaluating Microsoft Bing with ChatGPT-4 for the assessment of abdom-
inal computed tomography and magnetic resonance imaging” presents a novel approach to 
medical image analysis.1 This research aims to evaluate the effectiveness of Microsoft Bing, 
enhanced with ChatGPT-4 technology, in interpreting abdominal computed tomography (CT) 
and magnetic resonance imaging (MRI) data. Eighty abdominal images, including 44 CT and 
36 MRI scans, were examined, and Bing’s assessment was compared with that of a profes-
sional radiologist. The results showed that Bing could correctly identify CT scans with 95.4% 
accuracy and MRIs with 86.1% accuracy. However, Bing experienced some problems: wrongly 
identifying some images and poorly detecting anatomical regions, imaging planes, MRI se-
quences, and contrast agents. Bing discovered anomalies in only 35% of the images, with a 
10.7% accuracy rate.

Bing’s analysis suffers from inaccuracies in detecting imaging types, as evidenced by 
wrongly labeled CT and MRIs. The identification of MRI sequences and contrast agents was 
also poor, with success rates of 68.75% and 64.2%, respectively. Furthermore, Bing’s low cor-
rect interpretation rates for anomalies underscore the difficulties of obtaining therapeutically 
useful information. Such limitations highlight its reliance on massive datasets and complex 
algorithms, which may not detect the tiny diagnostic signals found in medical imaging.

The study’s comparative and descriptive design may limit its ability to address modest 
changes in image context or patient pathology. The sample size, although large, may be in-
sufficient to draw broad conclusions. Bing’s performance is context-dependent, and using 
only 80 photos may limit insights into its suitability for a wide range of clinical circumstances. 
Furthermore, the absence of real-time adaptive learning from feedback may impede the tool’s 
progress, reducing its long-term relevance in radiology.

While Microsoft Bing incorporates ChatGPT-4 technology, there is evidence to suggest that 
its performance may not be as accurate or contextually aware as the standalone ChatGPT 
platform. This variation could be due to variances in how each system is taught and optimized 
for specific tasks. The standalone ChatGPT platform benefits from tailored training on vari-
ous datasets, which improves performance in delivering nuanced and contextually relevant 
responses. OpenAI recently added memory features to its ChatGPT platform, allowing it to 
remember information between sessions for specific users.2 As a result, when examining each 
system’s usefulness in medical image analysis and other complicated domains, it is critical to 
consider its distinct strengths and limits.

To enhance Bing’s diagnostic capabilities, future initiatives should focus on integrating 
more comprehensive datasets, encompassing a wider array of diseases, imaging modal-
ities, and patient demographics. Language disparities in patient demographics dependent 
on the study location may have a major impact on the interpretation of the results.3 Con-
tinuous training with advanced deep learning techniques could further improve its ability 
to distinguish between various types of images and detect subtle anomalies. Investing in a 
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real-time feedback loop in which Bing learns 
from radiologists’ accurate diagnoses can 
help improve diagnostic accuracy. As Elek4 
points out, the way a question is phrased 
to models like ChatGPT is critical to improv-
ing answer accuracy. Enabling web access 
in ChatGPT or seeking references from the 
PubMed database after asking queries may 
improve the model’s accuracy.3 Finally, col-
laboration with medical practitioners might 
lead to improvements that address specific 
clinical needs. This will eventually make ar-
tificial intelligence systems like Bing more 

reliable as a supplement to medical image 
analysis.
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Dear Editor,

We would like to express our gratitude to Daungsupawong and Wiwanitkit1 for their in-
sightful comments on our manuscript, “Evaluating Microsoft Bing with ChatGPT-4 for the as-
sessment of abdominal computed tomography and magnetic resonance images”.2 Their feed-
back is invaluable, and we appreciate the opportunity to engage in this discussion.

Our original study2 demonstrated that as tasks become more complex, the model’s perfor-
mance significantly declines, particularly in predicting pathology. Although we acknowledge 
the current limitations of Bing in distinguishing imaging modalities and detecting contrast 
agents, we believe these challenges are inherent in the early stages of integrating artificial 
intelligence (AI) into medical imaging. Expecting AI technologies such as Bing with ChatGPT-4 
to match the accuracy of radiologists from the outset may be overly ambitious. Nevertheless, 
it is worth considering that the fine-tuning or development of models specifically designed 
for diagnostic purposes might lead to improved results. Furthermore, enabling the upload of 
DICOM-format files, rather than single slices, could enhance performance.

Regarding the study’s sample size, although we agree that a larger dataset would provide 
more robust insights, it is also important to recognize the value of small-scale, targeted stud-
ies in shaping future research directions. Preliminary evaluations can identify key areas for 
improvement and refine methodologies for larger trials, potentially leading to more focused 
and impactful studies.

The noted differences between Bing’s integrated ChatGPT-4 and the standalone version 
further highlight the complexity of deploying AI models across various platforms. This vari-
ation reflects not only differences in implementation but also the broader challenge of en-
suring consistent performance in diverse clinical environments. Addressing these nuances is 
critical to the safe and effective integration of AI into medical practice.

In conclusion, although our study explores the potential applications of Bing with 
ChatGPT-4, we stress the importance of using such tools as supplementary aids under expert 
supervision. They are far from replacing radiologists or being independently reliable for com-
plex medical tasks. We hope this reply contributes to the ongoing discourse on the role of AI 
in diagnostic radiology and encourages the development of more robust, domain-specific 
solutions.
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Diagnostic value of the flare sign in predicting extracapsular extension 
in metastatic axillary lymph nodes and nodal status on breast 
magnetic resonance imaging

PURPOSE
This study aimed to evaluate the diagnostic performance of breast magnetic resonance imaging 
(MRI) in predicting extracapsular extension (ECE) and axillary nodal status in the axillary metastatic 
lymph nodes of patients with breast cancer.

METHODS
The preoperative MRI scans of 92 patients with breast cancer and axillary metastases who did not 
receive neoadjuvant treatment between January 2018 and January 2024 were retrospectively ex-
amined. The presence of an increased signal in the axillary fatty tissue surrounding the lymph node 
(flare sign) on T2-weighted images, irregular nodal contour (shaggy margin), axillary asymmetry 
(difference in the number and size of lymph nodes compared with the unaffected axilla), loss of the 
fatty hilum in the most suspicious lymph node, and morphological features on T1-weighted images 
were assessed. Each dissected axillary lymph node was examined for ECE, and the histopathological 
results were recorded.

RESULTS
Axillary flare sign was significantly associated with the presence of ECE (P < 0.001), number of lymph 
nodes with ECE (P < 0.001), the presence of ≥4 axillary metastatic lymph nodes (P < 0.001), size of 
the primary tumor (P = 0.033), lymphovascular invasion in the primary tumor (P < 0.001), and pres-
ence of perineural invasion (P = 0.001). The flare sign exhibited 65.7% sensitivity, 96% specificity, 
97.8% positive predictive value, 51.1% negative predictive value, and 73.9% accuracy in predicting 
ECE. Additionally, the receiver operating characteristic curve analysis revealed an area under the 
curve of 0.808 (95% confidence interval: 0.719–0.898).

CONCLUSION
The flare sign has high performance in predicting ECE and axillary nodal status and is associated 
with primary tumor aggressiveness, indicating its potential utility in preoperative evaluation.

CLINICAL SIGNIFICANCE
The flare sign on breast MRI may play a crucial role in preoperative planning, surgical decision-mak-
ing, and axillary status assessment by accurately predicting ECE.

KEYWORDS
Axilla, breast neoplasms, extranodal extension, lymphadenopathy, lymph node, magnetic reso-
nance imaging
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The clinical evaluation of patients with breast cancer involves determining the presence 
of axillary node metastases as a prognostic indicator, in addition to tumor size.1 Assessing 
the axilla using radiology is essential for managing breast cancer, as it provides crucial 

insights into locoregional staging for surgical procedures. The Breast Imaging Reporting and 
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Data System lexicon for preoperative breast 
magnetic resonance imaging (MRI) assess-
ment evaluates axillary lymph nodes within 
the field of view as “associated features,” even 
though ultrasound remains essential for de-
termining axillary status.2 Extracapsular ex-
tension (ECE) occurs when malignant cells 
invade the surrounding tissue by breaching 
the capsule of a lymph node.3 There is still a 
lack of understanding regarding the specific 
biological mechanisms responsible for ECE. 
Increased vessel permeability, inflammation 
around the lymph nodes, and the obstruc-
tion of lymphatic channels may indicate that 
the tumor is aggressive in lymph nodes and 
lymphatic vessels.4 Unlike the previous tu-
mor–node–metastasis classification, the cur-
rent classification excludes the evaluation of 
ECE. The most recent reporting protocol from 
the College of American Pathologists recom-
mends documenting the presence of ECE in 
metastatic axillary lymph nodes.5 Yang et al.6 
linked the presence of ECE in sentinel lymph 
nodes (SLNs) to advanced tumor stage, pro-
gesterone receptor (PR) status, lymphovas-
cular invasion, increased metastasis rates 
in non-SLNs, nodal burden, the number of 
affected non-SLNs, and the total number of 
positive lymph nodes. Patients with ECE ex-
hibit a significantly higher incidence of pN2 
disease. In SLNs, ECE significantly decreases 
disease-free and overall survival.6 Further-
more, ECE in metastatic SLNs is a strong in-
dicator of residual axillary disease.7,8 Based 
on these results, it may be more beneficial to 
forgo SLN biopsy and opt for axillary lymph 
node dissection (ALND) if ECE is detected.

An irregular shape, unclear margins, and 
infiltration into nearby tissues observed on 

sonography are indicative of ECE. Only a few 
studies have reported MRI findings, defined 
as increased T2 signal intensity surrounding 
the lymph nodes.4,9 Researchers have also 
used these findings to predict lymph node 
malignancy.10 Baltzer et al.10 proposed the 
term ‘perifocal edema’ to describe this find-
ing, and researchers have reported that it 
has a sensitivity of 29.4% and a specificity of 
100% in accurately discriminating between 
malignant and benign lymph nodes.

Given the challenges of directly detecting 
metastatic spread beyond the lymph node 
capsule with current imaging techniques, 
this study aimed to determine the utility of 
breast MRI in correlating changes in fat sig-
nals around the axillary lymph nodes with 
ECE.

Methods

Patients

This retrospective study was approved 
by the Non-Interventional Clinical Research 
Ethics Committee of Tekirdağ Namık Kemal 
University (protocol number: 2024.36.02.20, 
date: 27.02.2024). The requirement for in-
formed consent was waived because of the 
retrospective nature of the study. The study 
initially included 352 patients with patho-
logically confirmed axillary metastases from 
breast cancer who underwent axillary dis-
section (SLN biopsy and/or ALND) between 
January 2018 and January 2024. Patients 
without a preoperative MRI examination (n 
= 52), those with low image resolution or 
artifacts (n = 30), and those receiving neo-
adjuvant chemotherapy (NAC) or hormone 
therapy (n = 178) were excluded. A total of 
92 women who underwent breast MRI with-
in 3 months preoperatively were included in 
the study (Figure 1).

The evaluation of cases also considered 
age; postoperative tumor and node stages; 
maximum tumor size; tumor histology; hor-
mone status; Ki67 index; human epidermal 
growth factor receptor 2 (HER2) positivity; 
lymphovascular invasion in the primary tu-
mor; the presence of perineural invasion; the 
number of total, metastatic, and non-meta-
static lymph nodes detected in the axilla; 
and the number of metastatic lymph nodes 
with ECE.

Histopathological assessment

A pathologist with 16 years of experi-
ence in breast pathology conducted the 
histopathological evaluation of the sur-
gical specimens. The tumor, histological, 
and molecular subtypes were determined. 
Hormone (estrogen and progesterone) 
receptor status, HER2 status, histology 
(modified Richardson–Bloom score), and 
nuclear grade were recorded. Patients with 
estrogen receptor and PR levels >1% were 
considered positive for hormone receptors. 
In cases where the HER2 receptor level was 
+2 (equivocal), the receptor level was veri-
fied using fluorescence in situ hybridization 
analysis. Cases in which both receptors 
were detected as level 0 and +1 were con-
sidered negative, and cases in which level 
+3 was detected were considered positive. 
The tumor and node stages were evaluated 
according to the 8th edition of the American 
Joint Committee on Cancer staging manu-
al.11

In addition, SLNs were identified using 
1% isosulfan blue dye solution on biopsies 
of dye-retaining nodes. During surgery, im-
print cytology and the sequential sectioning 
of SLNs were performed. Tissue blocks were 
examined for metastatic cells, and positive 
cases underwent additional ALND. The final 
diagnosis was determined using paraffin-em-

Main points

• The flare sign is characterized by in-
creased signal intensity surrounding the 
lymph nodes observed on fat-suppressed 
T2-weighted images.

• Breast magnetic resonance imaging, par-
ticularly when assessing the presence of 
the flare sign, demonstrated a sensitivity of 
65.7%, specificity of 96%, positive predictive 
value of 97.8%, negative predictive value of 
51.1%, and accuracy of 73.9% in detecting 
extracapsular extension during preopera-
tive evaluation.

• The presence of the axillary flare sign was 
associated with several factors indicating 
the aggressiveness of the primary tumor, 
including the presence of ≥4 axillary met-
astatic lymph nodes (P < 0.001), larger pri-
mary tumor size (P = 0.033), lymphovascular 
invasion in the primary tumor (P < 0.001), 
and perineural invasion (P = 0.001).

Figure 1. Study participant flow diagram. MRI, magnetic resonance imaging.
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bedded tissues stained with hematoxylin 
and eosin, and metastasis was classified as 
isolated tumor cells, micrometastasis, and 
macrometastasis.6 Patients with macrome-
tastases in paraffin sections but negative im-
print cytology underwent further ALND. His-
topathology helped estimate the number of 
excised benign and metastatic lymph nodes. 
ECE was defined as positive if a metastatic 
tumor had spread to the extranodal fat, with 
or without a desmoplastic stromal response 
(Figure 2).6 The number of metastatic lymph 
nodes on ECE was also recorded. The length 
of the ECE, presence of extranodal blood 
vessel tumor emboli, and extranodal tumor 
deposits in the metastatic lymph nodes were 
not evaluated.

Magnetic resonance examination and im-
age acquisition

MRI examinations were performed in 
the prone position using a 1.5T MRI device 
(Ingenia; Philips Healthcare, Amsterdam, 
Netherlands) with a seven-channel dedi-
cated breast coil. The MRI protocol was as 
follows: axial T2-weighted fat-suppressed 
sequence [repetition time (TR): 4,317 ms, 
echo time (TE): 70 ms, slice thickness 3.5 mm, 
matrix 300 × 258] and T1-weighted turbo 
spin echo sequence (TR: 490 ms; TE: 8 ms; 
slice thickness 3.5 mm, matrix 300 × 364); for 
contrast-enhanced MRI, the gadobutrol dose 
was 0.1 mmol/kg, and images were obtained 
six times after saline was injected at a rate 
of 20 mL/s and then at 2 mL/s. The first im-
aging was performed 60 s after the contrast 
injection. Post-contrast sagittal reformatted 
images were obtained. Images were evaluat-
ed using a Picture Archiving Communication 
System (ISD7, Sectra, Linköping, Sweden). 
The presence of an increased signal in the 
axillary fatty tissue surrounding the lymph 
node (flare sign) on the T2-weighted imag-
es, irregular nodal contour (shaggy margin), 
axillary asymmetry (diagnosed when lymph 
nodes in the affected axilla differed in num-
ber or size compared with the opposite side), 
loss of the fatty hilum in the most suspicious 
lymph node, and morphological features 
(long- and short-axis diameters) were exam-
ined on T1-weighted images (Figure 3). Two 
radiologists with 7- and 6-years’ experience 
in breast radiology retrospectively evaluated 
the results. The radiologists were blinded to 
patients’ ECE status. Images were reassessed, 
and a consensus was obtained if the results 
varied. In case of discrepancies, the two ra-
diologists reached a final decision through 
discussion.

Statistical analysis

Descriptive analysis was used to deter-
mine the frequency and distribution of pa-
tient age; postoperative tumor and node 
stages; maximum tumor size; tumor histolo-
gy; hormone status; Ki67 index; Cerb2 posi-
tivity; lymphovascular invasion in the prima-
ry tumor; presence of perineural invasion; 
number of total, metastatic, and non-meta-
static lymph nodes detected in the axilla; and 
number of metastatic lymph nodes with ECE.

Data analysis was performed using the 
Statistical Package for Social Sciences (v.25.0, 
IBM, Armonk, NY, USA). The suitability of 
continuous variables for a normal distribu-
tion was examined using the Shapiro–Wilk 
test. Receiver operating characteristic (ROC) 

curve analysis was performed for parameters 
that had a significant effect on ECE, and re-
sults are presented as area under the curve 
(AUC), sensitivity and specificity, and 95% 
confidence intervals (CIs). Sensitivity and 
specificity were calculated using the Youd-
en index. A logistic regression analysis was 
performed to determine the effects of vari-
ous parameters on ECE. Pearson’s chi-square 
test, Fisher’s exact test, the Fisher–Freeman–
Halton exact test, and Yates correction were 
used to analyze independent categorical 
variables. The Mann–Whitney U test was 
used in two independent group analyses 
because the data did not exhibit a normal 
distribution. The statistical significance level 
was accepted at 0.05.

Figure 2. Photomicrograph of a lymph node revealing metastatic cells spreading into extranodal fat (arrows).

Figure 3. Axial fat-suppressed T2-weighted magnetic resonance image of the axilla in a 65-year-old female 
patient with invasive ductal carcinoma revealing an increased signal around the metastatic lymph nodes 
(flare sign) (arrows). Extracapsular extension was detected in five out of eight metastatic lymph nodes as a 
result of axillary lymph node dissection.
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Results

Patient, clinical, and histopathological data

The average age of the 92 women was 
55.9 (range: 32–75) years. The most common 
histological subtype was invasive ductal car-
cinoma (68.5%). Of the 92 patients, 67 exhib-
ited ECE, whereas the remaining 25 did not 
exhibit any signs of ECE. The clinical and his-
topathological data are presented in Table 1.

The mean interval between MRI and sur-
gery was 48 days, with a range of 4–92 days 
(±25.5 days). Overall, 35 patients (38%) un-
derwent SLN biopsy, 24 (26.1%) underwent 
both SLN biopsy and ALND, and 33 (35.9%) 
underwent ALND. The median number of 
harvested SLNs was 9 (range: 3–25). Table 2 
summarizes the axillary lymph node data.

Statistical analysis

The flare sign, shaggy margin, and pres-
ence of at least one of these (flare sign or 
shaggy margin) were identified as distin-
guishing variables for ECE in the ROC analy-
sis. The flare sign had an AUC of 0.808 (95% 
CI: 0.719–0.898; P < 0.001); shaggy margin, 
0.731 (95% CI: 0.623–0.840; P < 0.001); and 
presence of at least one of these findings, 
0.823 (95% CI: 0.723–0.923; P < 0.001). The 
sensitivity of the flare sign was 65.7%, with 
a specificity of 96.0%, whereas the sensitiv-
ity of the shaggy margin was 58.2%, with a 
specificity of 88.0%. We calculated the sen-
sitivity and specificity for the presence of at 
least one of the findings (flare sign or shaggy 
margin) to be 80.6% and 84.0%, respectively 
(Table 3).

Logistic regression analysis revealed that 
the existence of a flare sign was associated 
with an odds ratio (OR) of 45.913 for ECE, 
whereas a shaggy margin was associated 
with an OR of 10.214 (P < 0.001). The OR was 
21.808 when there was either a flare sign or 
a shaggy margin (P < 0.001). The presence of 
flare signs and/or shaggy margins in cases 
with ECE was much more frequent than in 
cases without ECE (Supplementary Table 1).

Patients with flare signs had a greater 
number of lymph nodes with ECE (P < 0.001) 
and a larger maximal tumor diameter (P = 
0.004) than those without flare signs. Pa-
tients exhibiting flare signs had increased 
rates of lymphovascular invasion, perineural 
invasion, and the presence of ≥4 metastatic 
lymph nodes in the axilla. The presence of a 
flair sign was not associated with the Ki67 in-
dex or histological grade (Table 4).

Discussion
Multiple studies have examined the 

edema surrounding breast masses, while 
research on the axilla remains limited. This 
finding is associated with malignancy12 and 
is a key indicator of breast cancer aggressive-
ness, recurrence, and prognosis.13,14

Prediction of the presence of ECE has 
been frequently studied in head and neck 
malignancies in the radiology literature. 
Kimura et al.15 defined the characteristics 
that they investigated for the existence of 

ECE as flare sign and shaggy margin. Re-
searchers determined that the flare sign has 
the following diagnostic performance met-
rics for detecting ECE: sensitivity, 77%; speci-
ficity, 93%; accuracy, 88%; positive predictive 
value, 83%; and negative predictive value, 
90%. We determined that some diagnostic 
metrics, specifically the positive predictive 
value, sensitivity, and specificity, were similar 
in our study, despite focusing on completely 
different anatomical locations.

The literature contains only a limited num-
ber of publications aimed at detecting ECE 

Table 1. Clinical and histopathological features of the patients

Patients (n = 92) 

Median age (years) (range) 55.9 (32–75)

Median tumor size (mm) (range) 28.6 (7–160)

Receptor status

HR+/HER2- 77 (83.7%)

HR+/HER2+ 7 (7.6%)

HR-/HER2+ 3 (3.3%)

HR-/HER2- 5 (5.4%)

Histologic subtype

      Ductal 63 (68.5%)

      Lobular/mixed 15 (16.3%)

      Other 14 (15.2%)

Lymphovascular invasion

      Absent 39 (42.4%)

      Present 53 (57.6%)

Perineural invasion

      Absent 34 (37%)

      Present 58 (63%)

Necrosis

      Absent 79 (85.9%)

      Present 13 (14.1%)

Calcification

      Absent 62 (67.4%)

      Present 30 (32.6%)

Ki67 (%)

      <14 7 (7.6%)

      ≥14 85 (92.4%)

Clinical T stage

      T1 (≤2 cm) 40 (43.5%)

      T2 (>2–5 cm) 42 (45.7%)

      T3 (>5 cm) 8 (8.7%)

      T4 2 (2.2%)

Tumor grade (Scarff–Bloom–Richardson)

      1 4 (4.3%)

      2 57 (62%)

      3 20 (21.7%)

HER2, human epidermal growth factor receptor 2; HR, hormone receptor.
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using breast MRI. In a review by Gupta et al.16, 
perinodal edema was identified as a specific 
ECE indicator. It manifests as a hyperechoic 
halo surrounding the lymph nodes on ultra-
sound, blurring of the lymph node margins 
on computed tomography, and areas of T2 
hyperintensity in the perinodal fat on MRI.16 
However, these findings are not support-
ed by specific studies. In the study by Kim 
et al.4, ECE was defined as “the presence of 
strand-like or circumferential T2 high-signal 
intensities surrounding the nodes.” A similar 
methodology was used in the present study. 
The study reported strong agreement in the 
assessment of perinodal infiltration (k: 0.74; 
95% CI: 0.64–0.85), emphasizing that cases 
with perinodal infiltration were associated 
with sentinel node identification. However, 
that study did not conduct a histopatholog-
ical examination of the axillary lymph nodes 
in the presence of ECE, and it included pa-
tients with a history of NAC. The perinodal 
infiltration area also has the potential to re-
spond to NAC. By contrast, our study did not 
include patients who received NAC, and we 
assessed the presence of ECE individually in 
each dissected lymph node. The study by 
Loiselle et al.17, which involved small patient 
groups, reported the sensitivity of the peak 
enhancement level on MRI for detecting ECE 
as 60% and specificity as 100%. However, this 
study included only five patients with ECE. 
Misselt et al.18  discovered on ultrasonogra-
phy that unclear margins, node matting, and 
perinodal edema had high specificity (87%, 
84%, and 75%, respectively) but low sensitiv-
ity (34%, 52%, and 64%, respectively) in de-
tecting ECE. In our study, we considered the 
presence of perinodal edema to be equiv-
alent to a flare sign. Notably, MRI has com-
parable sensitivity but greater specificity. 
When the presence of a shaggy margin was 
evaluated alongside a flare sign, sensitivity 
increased considerably, although this was 
accompanied by a decrease in specificity.

Our findings suggest that the flare sign is 
useful in nodal staging, as we found a signif-
icant association between its presence and 
N2 or higher axillary involvement. These re-
sults are consistent with those of other stud-
ies that have reported the utility of breast 
MRI in predicting advanced axillary involve-
ment.19-21 The American College of Surgeons 
Oncology Group Z0011 study revealed that 
ALND may not be necessary in early-stage 
breast cancer with metastases detected in 
one or two SLNs.22 However, the study did 
not establish specific exclusion criteria for 
patients with ECE. Our findings indicate that 
ECE may influence axillary management. The 

high number of metastatic axillary lymph 
nodes observed in patients with ECE may 
support the consideration of ALND without 

prior SLN biopsy. Supporting this, a study 
involving 655 patients demonstrated that 
ECE detected in SLNs was associated with 

Table 2. Features of axillary lymph nodes

All patients     
(n = 92)

Patients with 
ECE         

(n = 67)

Patients 
without ECE   

(n = 25)

Axillary surgery

      Sentinel lymph node biopsy 35 17 18

      Axillary lymph node dissection 33 27 6

      Conversion to axillary lymph node dissection 24 23 1

Number of lymph nodes removed (median, 
range) 9 (3–25) 10 (3–25) 5 (3–20)

Number of positive lymph nodes removed

      0 0 0 0

      1–3 56 32 24

      ≥4 36 35 1

N stage

      N0i+ 1 0 1

      N1mi 3 0 3

      N1 (1–3) 54 34 20

      N2 (4–9) 24 24 0

      N3 (≥10) 10 9 1

Number of examined lymph nodes (mean) 9.6 10.5 6.9

Number of metastatic lymph nodes (mean, range) 4.1 (1–22) 5 (1–22) 1.6 (1–11)

ECE in metastatic lymph nodes

      Number of patients 67 67 0

      Number of lymph nodes (mean, range) 3.13 (1–12) 0

Asymmetry 55/92 (63%) 46 9

Loss of fatty hilum 20/92 (21.7%) 16 4

Long-axis diameter (mm) (range) 18.3 (6–44) 18.7 (6–44) 17.3 (8–35)

Short-axis diameter (mm) (range) 9,9 (4–23) 10.4 (4–23) 8.4 (5–22)

Long/short axis ratio 1.9 (1.1–3.8) 1.8 (1.1–3.3) 2.1 (1.3–3.4)

Cortical thickness (mm) (range) 4.4 (1.9–11) 
(72/92)

4.7 (2.1–11) 
(51/67)

3.6 (1.9–6.3) 
(21/25)

Cortical thickness type

      Homogeneous 26/92 (28.2%) 17 9

      Non-homogeneous 58/92 (63%) 44 14

      Nodular 8/92 (8.7%) 6 2

Flare sign 45/92 (48.9%) 44/67 (65.7%) 1/25 (4%)

Shaggy margin 42/92 (45.7%) 39/67 (58.2%) 3/25 (12%)

ECE, extracapsular extension.

Table 3. Receiver operating characteristic analysis results for parameters that have a 
significant effect on extracapsular extension

Variables AUC (95% CI) P* Sensitivity 
(%)

Specificity 
(%)

PPV NPV Accuracy

Flare sign 0.808 (0.719–0,898) <0.001 65.7 96 97.8 51.1 73.9

Shaggy margin 0.731 (0.623–0.840) 0.001 58.2 88 92.9 44 66.3

Flare sign and/or 
shaggy margin 0.823 (0.723–0.923) <0.001 80.6 84 93.1 61.8 81.5

*Receiver operating characteristic analysis, AUC, area under the receiver operating characteristic curve; CI, confidence 
interval; PPV, positive predictive value; NPV, negative predictive value.
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increased axillary nodal burden, disease re-
currence, and overall mortality.23 Additional-
ly, we noted a significantly higher number of 
non-SLN-positive metastatic axillary lymph 
nodes in these cases. Another study involv-
ing 221 patients indicated that the presence 
of ECE was directly proportional to the num-
ber of involved axillary lymph nodes and dis-
ease stage,24 highlighting its potential impli-
cations in clinical decision-making.

Our study demonstrated that the flare 
sign was significantly associated with peri-
neural and lymphovascular invasion in the 
primary tumor. Reports suggest that peri-
neural and lymphovascular invasion play a 
significant role in predicting survival out-
comes.25,26 Therefore, the flare sign, which in-
dicates tumor aggressiveness, has the poten-
tial to serve as a prognostic biomarker.

This study has some limitations. Owing 
to the prolonged interval between MRI and 
surgery, the findings may change, potential-
ly affecting the results of the study. Further-
more, the length of ECE was not assessed in 
our study. The length of the ECE may be valu-
able in certain cases in which false negativity 
is reported. In their study of 11,730 patients, 
Gooch et al.27 identified ECE in 2.8% of cases.
The study revealed a higher rate of detection 
of ≥4 metastatic lymph nodes in cases with 
ECE measuring >2 mm than in cases with ECE 
measuring <2 mm. Extranodal tumor blood 
vessel embolisms (ENBTVE) and deposits can 
occur concurrently or independently in the 
axilla, but ENBTVE was not assessed during 
pathological examinations conducted in 
our study. Some cases in which the axillary 
flare sign is observed may be attributed to 
these factors. Further studies are required to 
address this issue. We performed only SLN 
surgery in some cases. The literature reports 
a false negative rate of 8.3% for SLN biopsy, 
and pathological sampling may not have in-
cluded all cases with possible ECE.28 Similarly, 
the pathology specimens did not reveal any 
extranodal tumor deposits. The increased 

signal intensity in the axillary fatty tissue may 
also be caused by isolated tumor deposits. 
We excluded certain cases from the evalua-
tion due to MRI artifacts and inadequate ax-
illary inclusion in the field of view. This may 
have also affected our results.

In conclusion, this study demonstrates 
that the flare sign on breast MRI is a highly 
valuable diagnostic marker for predicting 
ECE and axillary nodal status in patients with 
breast cancer. It exhibits high specificity and 
positive predictive value. Furthermore, its as-
sociation with tumor aggressiveness, includ-
ing lymphovascular and perineural invasion, 
highlights its prognostic value. Incorporat-
ing flare sign into preoperative assessment 
shows promise in determining the status 
of metastatic axillary lymph nodes. Further 
studies with larger patient cohorts are war-
ranted to validate these findings.
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Photon-counting computed tomography (PCCT) represents a groundbreaking advance-
ment in medical imaging, offering unprecedented improvements in spatial resolution, 
contrast enhancement, and artifact reduction compared with conventional energy-in-

tegrating detector (EID) CT scanners.1 Unlike traditional EID CT, which integrates energy from 
multiple X-ray photons, PCCT detects and classifies individual photons based on their ener-
gy levels.2 This capability enables superior tissue differentiation, reduced image noise, and 
substantially enhanced image clarity—critical advantages in cardiovascular imaging, where 
precise visualization of coronary arteries and stents is essential for accurate diagnosis and 
treatment planning.1,2

Coronary artery disease remains a leading global cause of morbidity and mortality. Accu-
rate assessment of coronary anatomy, particularly in patients with percutaneous coronary 
interventions and stent placement, is crucial for evaluating treatment efficacy and disease 
progression.1-3 While coronary CT angiography (CCTA) is a widely adopted non-invasive im-
aging technique for this purpose, its accuracy is often compromised by artifacts, most nota-
bly, blooming effects that obscure stent lumens, particularly in small-diameter stents.3 PCCT 
overcomes these limitations by offering ultra-high-resolution (UHR) imaging, which sharpens 
stent visualization and enhances the precision of non-invasive assessments.3,4

Recent research by Stein et al.5 highlights the transformative potential of PCCT in stent 
evaluation. Their study, which assessed the performance of dual-source PCCT in imaging 
small coronary stents using different acquisition modes in a controlled phantom model, re-
vealed striking results. The UHR mode, featuring an ultra-thin 0.2 mm collimation, achieved a 
median image quality score of 4.0 [interquartile range (IQR): 3.67–4.00], with 37.5% of cases 
rated as “excellent.” In contrast, the high-pitch mode performed substantially worse, yielding 
a median score of 2.0 (IQR: 1–3) and proving non-diagnostic in 6.3% of cases.5 These find-
ings underscore the unparalleled ability of UHR PCCT to delineate stent boundaries, minimize 
blooming artifacts, and provide diagnostic confidence comparable to invasive angiography.

Current CCTA guidelines limit its application to stents ≥3 mm due to the resolution con-
straints of conventional CT.6 Metallic struts in smaller stents often produce pronounced 
blooming artifacts, obscuring the lumen and reducing diagnostic reliability.3,4,6 However, re-
cent studies suggest that PCCT may redefine these standards.5,7,8 In a study by Hagar et al.7, 
UHR PCCT demonstrated high diagnostic performance in 44 coronary stents, achieving a sen-
sitivity of 100%, specificity above 87%, and an inter-reader agreement of 90.1%. Similarly, Qin 
et al.8 assessed 131 stents and found that UHR images substantially improved in-stent lumen 
visualization compared with standard-resolution images, with UHR achieving an accuracy of 
88.0% compared with 78.3% for standard resolution. Moreover, future advancements in PCCT 
hardware, including next-generation detectors with <0.1 mm spatial resolution, are expected 
to further refine its ability to visualize stent strut thickness and detect microcalcifications with 
unmatched precision.

Despite these promising developments, challenges remain. Motion artifacts in patients 
with arrhythmias can affect image quality, and global access to PCCT technology is limited, 
with fewer than 5% of imaging centers currently equipped with this advanced modality.9
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In conclusion, PCCT is poised to revolu-
tionize cardiac imaging by surpassing the 
3 mm imaging barrier, enhancing tissue 
characterization, and integrating AI-driven 
automation into diagnostic workflows. As 
imaging guidelines evolve and costs de-
cline, PCCT has the potential to democra-
tize high-precision cardiovascular imaging, 
making state-of-the-art diagnostics more 
widely accessible. The future of cardiology is 
becoming less invasive—driven by insight, 
innovation, and the transformative potential 
of photon-counting technology.
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ABSTRACT
Teleconferencing can facilitate a multidisciplinary approach to teaching radiology to medical stu-
dents. This study aimed to determine whether an online learning approach enables students to ap-
preciate the interrelated roles of radiology and other specialties during the management of differ-
ent medical cases. Turkish medical students attended five 60–90-minute online lectures delivered 
by radiologists and other specialists from the United States and Canada through Zoom meetings 
between November 2020 and January 2021. Student ambassadors from their respective Turkish 
medical schools recruited their classmates with guidance from the course director. Students took 
a pretest and posttest to assess the knowledge imparted from each session and a final course sur-
vey to assess their confidence in radiology and the value of the course. A paired t-test was used to 
assess pretest and posttest score differences. A 4-point Likert-type scale was used to assess con-
fidence rating differences before and after attending the course sessions. A total of 1,458 Turkish 
medical students registered for the course. An average of 437 completed both pre- and posttests 
when accounting for all five sessions. Posttest scores were significantly higher than pretest scores 
for each session (P < 0.001). A total of 546 medical students completed the final course survey eval-
uation. Students’ rating of their confidence in their radiology knowledge increased after taking the 
course (P < 0.001). Students who took our course gained an appreciation for the interrelated roles of 
different specialties in approaching medical diagnoses and interpreting radiological findings. These 
students also reported an increased confidence in radiology topics and rated the course highly 
relevant and insightful. Overall, our findings indicated that multidisciplinary online education can 
be feasibly implemented for medical students by video teleconferencing.

KEYWORDS
Educational intervention, online teaching, radiology education, radiology teaching, remote learn-
ing, Turkish medical students

You may cite this article as: Patel P, Altınmakas E, Ayas G, et al. Multidisciplinary approach to diagnostic radiology education: a novel educational intervention 
for Turkish medical students. Diagn Interv Radiol. 2025;31(4):342-346.

Online education can be effective in augmenting the educational experience of stu-
dents.1 This study uses high-impact practice principles of online higher education to 
conduct online education through a video teleconferencing platform. In Türkiye, as 

elsewhere, the coronavirus disease-2019 (COVID-19) pandemic interrupted medical students’ 
education, as many in-person classes were canceled or moved online, and clinical clerkships 
were modified to accommodate social distancing measures.2 To help address the limitations 
in radiology education caused by the pandemic and to provide an opportunity to learn about 
clinical cases from radiologists and other specialists, we created and implemented an online 
radiology course for a large cohort of medical students in Türkiye.

At the onset of the COVID-19 pandemic, Bao3 published a case study regarding online ed-
ucation at Peking University that provided insight into five high-impact principles of online 
teaching: relevance, delivery, support, participation, and contingency plans. To help address 
the limitations in radiology education caused by the pandemic and to provide an opportu-
nity to learn about clinical cases from radiologists and other specialists, we created and im-
plemented an online radiology course for a large cohort of Turkish medical students. In this 
study, we seek to determine whether our course enabled students to appreciate the interre-
lated roles of radiology and other specialties in the management of medical cases. Students 
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completed pretests, posttests, and a course 
evaluation survey to assess their knowledge 
of session topics, confidence about radiolo-
gy, and the effectiveness of the course. Over-
all, the data suggests that a multispecialty 
integrated approach to providing radiology 
education via teleconferencing was well re-
ceived by medical students. 

Methods

Course structure and development

The course director designed an online 
multidisciplinary radiology lecture series 
comprising five sessions (liver disease, neck 
infections, pediatric headaches, shoulder in-
juries, and first-trimester pregnancy). Distin-
guished faculties from teaching institutions 
were invited to participate, and the topics 
were selected based on the expertise and 
availability of the faculty volunteers. Ses-
sions occurred biweekly between November 
2020 and January 2021 and were conducted 
over Zoom (Zoom Video Communications, 
Inc., San Jose, California). Session lecturers 
were radiologists and non-radiology spe-
cialists from different academic institutions 
throughout the United States and Canada. 
Each 60–90-minute session focused on the 
pathology of a given medical case and the 
role of imaging in making the diagnosis. The 
interplay between the presiding radiologist 
and other specialists demonstrated to the 
students how different healthcare profes-
sionals view and approach a given medical 
presentation. 

At the onset of the COVID-19 pandemic, 
Bao3 published a case study regarding online 
education at Peking University that provided 
insight into five high-impact principles of 
online teaching. The first principle is that the 
teaching material be relevant to students. 
This was incorporated by relating radiolo-
gy topics to pertinent anatomy, physiology, 
and pathology for each case to increase stu-
dents’ understanding of the role of radiolo-
gy amongst other specialties. The second 

principle of effective delivery of educational 
material and the fourth principle of audience 
participation were achieved via video con-
ferencing involving question-and-answer 
sessions through audio and chat features. 
The third principle of sufficient support was 
achieved by having student ambassadors 
serve as liaisons between the course direc-
tor and medical students to help coordinate 
feedback and share notes. The last principle 
of contingency planning was effectively 
implemented, as the course was organized 
amidst the COVID-19 pandemic to address 
limitations posed upon medical education at 
the time.

Participants

Student ambassadors from 10 medical 
schools in Türkiye were recruited by the 
course director through social media to help 
recruit participants and coordinate commu-
nication with participants during and after 
the sessions. Each ambassador recruited 
participants by sending a message to their 
schools’ group chats and personal emails 
asking all medical students whether they 
were interested in participating. The ambas-
sadors sent out the registration form using 
Google Forms. 

Because initial registrants exceeded the 
participant limit of the available Zoom plan 
(500 participants), ambassadors helped to di-
vide the students randomly into two groups. 
Each group attended sessions held on a fixed 
day of the week; half of the students attend-
ed sessions on Saturdays and the other half 
attended sessions on Sundays. The Saturday 
sessions were live and recorded and then 
replayed during the Sunday session. Stu-
dents from the pre-recorded session could 
have their questions answered by lecturers, 
with email coordination from student am-
bassadors. Student ambassadors shared the 
course information with the students. In 
addition to helping recruit participants and 
transmit announcements from the course 
director to the participants, ambassadors 
helped prepare pretests and posttests with 
the session speakers. They also created ses-
sion handouts that summarized the main 
points from each session and emailed these 
handouts to all participants.

Session structure

At the beginning of each live session, 
students received a link to the pretest, a 
Qualtrics survey (Qualtrics, Provo, UT), in the 
Zoom chat. Students were given 10 minutes 
to complete the pretest. Next, the lecturers 

-usually a radiologist and an accompanying 
specialist- were introduced to the students. 
The lecturers discussed the case presenta-
tion and possible diagnoses. The radiologist 
explained the imaging modality of choice 
and interpreted the relevant radiologic find-
ings. Relevant imaging studies in the form of 
both static images and videos from differ-
ent modalities were presented. The clinical 
interpretation of the case was discussed by 
the specialists and presented alongside the 
pertinent normal anatomy and imaging find-
ings. 

After the lecture, students were given 
10 minutes to complete the posttest. The 
posttest was a Qualtrics survey that was iden-
tical to the pretest and provided via a link in 
the Zoom chat. Following the completion of 
the posttest, students from the live sessions 
participated in a question-and-answer ses-
sion with the speakers. Students from the 
pre-recorded sessions could email questions 
and coordinate a discussion through the stu-
dent ambassadors. Participants submitted 
their questions using the question-and-an-
swer feature of Zoom. The lecturers were thus 
able to interact with the medical students in 
the live audience and provide valuable in-
sights by directly answering their questions.

Course evaluation

The course evaluation consisted of ques-
tions asking students about the effectiveness 
of course sessions and the multidisciplinary 
approach. Students were also asked to 
self-identify their gender and year of study in 
medical school. Students rated each session 
and provided feedback on the course meet-
ing their expectations and on the education-
al value of the session topics. In addition, stu-
dents rated their confidence in the practice 
of radiology before and after attending the 
sessions. This was carried out using a scale of 
four points: not confident, somewhat confi-
dent, moderately confident, and very confi-
dent. Students answered questions on the 
best use of radiology practices, interpreting 
radiographs, safety in radiology, identifying 
gross abnormalities on imaging, use of im-
aging as a diagnostic tool, and choosing be-
tween different diagnostic tools.

Statistical analysis

A paired t-test was used to compare 
students’ pretest and posttest scores, 
which were paired using the IP address as 
the unique identifier. Only data from stu-
dents who completed both the pretest and 

Main points

• Multidisciplinary online education can be 
feasibly implemented for medical students 
by video teleconferencing.

• Educational limitations from measures 
such as social distancing can be addressed 
through the implementation of effective 
online teaching.

• Medical students appreciate the role of ra-
diology integrated alongside other medical 
specialties.
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posttest were used in this analysis; students 
who completed only one test or whose pre-
tests and posttests could not be paired were 
excluded. This analysis was conducted using 
Excel (Microsoft, Redmond, Washington). A P 
value of <0.05 was considered significant.

In the course evaluation survey, students 
were asked to assess their confidence re-
garding basic radiology skills before and 
after completion of the course. A 4-point 
Likert-type scale that ranged from “not confi-
dent at all” to “very confident” was used. The 
difference in the confidence ratings before 
and after the course completion was evalu-
ated from the course evaluation survey using 
the Wilcoxon signed-rank test with a one-
tailed hypothesis and an alpha value of 0.05. 
This analysis was performed using R software 
(R Core Team, Vienna, Austria). Students were 

also asked on the course evaluation survey to 
rate each session, rate the program meeting 
their expectations, and rate the clinical im-
portance of presented topics. 

Results

Participants

The course had 1,438 registrants across 29 
Turkish medical schools. Registrants attend-
ed sessions voluntarily with an upper limit of 
500 for each session. Of those, 1,256 students 
(86.1%) attended state universities and 202 
(13.9%) attended private universities (Table 
1). Students who attended the sessions were 
asked to self-identify their gender and year 
of study in school. A total of 343 (62.82%) 
identified as female, 196 (35.90%) identified 
as male, and 7 (1.29%) identified as other or 

preferred not to answer (Table 1). A total of 85 
(15.57%) were in their first year, 116 (21.25%) 
were in their second year, 93 (17.03%) were 
in their third year, 113 (20.70%) were in their 
fourth year, 85 (15.57%) were in their fifth 
year, 52 (9.52%) were in their sixth year, and 
2 (0.37%) were in their preparatory year or 
were alumni (Table 1).

Session pretest and posttest scores

The numbers of participants who com-
pleted the pre- and posttest for each ses-
sion are given in Table 2.  In all five sessions, 
students’ posttest scores were significantly 
higher than their pretest scores (P < 0.001). 
All scores for the live and pre-recorded ses-
sions, along with combined results, show 
significant improvement in posttest scores 
compared with pretest scores.

Course evaluation

Of the 546 participants who completed 
the course evaluation survey, approximately 
96% strongly or somewhat agreed that the 
program increased their knowledge of im-
aging as a diagnostic tool (Table 3). Approxi-
mately 48% of students strongly agreed, and 
40% somewhat agreed, that the program 
increased their interest in radiology. In addi-
tion, approximately 71% of the participants 
strongly agreed and approximately 27% 
somewhat agreed that the program was a 
worthwhile experience. More than 93% of 
students strongly or somewhat agreed that 
the presence of a surgeon, internist, or other 
non-radiology specialist during the sessions 
improved the program. Students reported 
increased confidence ratings after attending 
the sessions that were statistically significant 
for all six survey items outlined in the meth-
ods section (Table 4).

Table 1. Participant characteristics

Student registrants by medical school type

State 1,256 (86.10)

Private 202 (13.90)

Gender of attendees, self-identified

Female 343 (62.82)

Male 196 (35.90)

Other 2 (0.37)

Prefer not to say 5 (0.92)

Number of attendees by year of study

First year 85 (15.57)

Second year 116 (21.25)

Third year 93 (17.03)

Fourth year 113 (20.70)

Fifth year 85 (15.57)

Sixth year 52 (9.52)

Other 2 (0.37)

Values are n, (%)

Table 2. Pretest and posttest scores by session topic and group

Topic and session date Students who 
did both tests, n

Live-session group Taped-session group All students

Pretest score, 
mean (SD)

Posttest score, 
mean (SD)

Pretest score, 
mean (SD)

Posttest score, 
mean (SD)

Pretest score, 
mean (SD)

Posttest score, 
mean (SD)

Imaging of liver disease
(11/7/20–11/8/20) 629 4.58 (1.74) 7.68 (1.70) 4.92 (1.80) 8.19 (1.56) 4.76 (1.78) 7.95 (1.65)

Imaging of neck infections
(11/21/20–11/22/20) 419 3.05 (1.45) 3.96 (1.86) 2.98 (1.39) 4.54 (1.66) 3.02 (1.42) 4.25 (1.79)

Imaging of pediatric 
headaches
(12/05/20–12/6/20)

399 3.19 (1.89) 5.95 (2.79) 3.10 (1.79) 6.76 (2.73) 3.15 (1.84) 6.36 (2.78)

Imaging of shoulder injuries
(12/19/20–12/20/20) 382 3.71 (1.69) 5.88 (2.44) 4.06 (1.60) 6.61 (2.43) 3.90 (1.65) 6.27 (2.46)

Ultra-sonography of first-
trimester pregnancy
(01/02/21–01/03/21)

360 3.80 (1.49) 5.70 (2.33) 4.01 (1.66) 6.49 (2.35) 3.91 (1.58) 6.12 (2.37)

All P < 0.001. SD, standard deviation.
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Discussion
A multidisciplinary approach to radiology 

education can be feasibly implemented via 
video teleconference for medical students. 
Our course for Turkish medical students was 
well received and served to increase student 
confidence in their radiology knowledge, 
as evidenced by the course evaluation sur-
vey results. The findings confirm that our 
approach enabled students to appreciate 
the interrelated roles of radiology and other 
specialties while managing different med-
ical cases. Course evaluation survey results 
affirmed that students found our multidis-
ciplinary approach worthwhile and gained 
valuable insight into how radiologists and 
accompanying specialists approach medical 
cases and interpret radiological findings. At 
the onset of the COVID-19 pandemic, Bao3 
published a case study regarding online ed-
ucation at Peking University that provided 
insight into five high-impact principles of 
online teaching (2020). As outlined in the 
methods section, these principles were im-
plemented in the course for effective online 
teaching. 

Many studies have discussed different 
approaches to addressing the educational 
challenges during the COVID-19 pandem-
ic.3 For example, readout sessions could be 
performed remotely using teleconferencing 
software with screen-sharing capabilities.3 
Such a platform was used to discuss a “case 
of the day” for every specialty, host didactic 
conferences, and virtually present cases to 

overcome the pandemic-related challenges 
of medical education.3 Elsayes et al.4 showed 
that an online multidisciplinary approach in-
volving several specialists helped students 
gain a more accurate understanding of the 
role of radiology. This approach teaches stu-
dents basic and clinical science concepts and 
realistically prepares them for future practice 
in which interdisciplinary collaboration is 
common and important. There is a paucity of 
data assessing the efficiency of a multidisci-
plinary approach to medical education. 

Our course, and similar ones, provided 
a solution to the challenges students faced 
because of COVID-19 distancing measures; 
we brought together physicians from US 
and Canadian universities to teach Turkish 
medical students via Zoom. The high-impact 
principles from Bao and the multidisciplinary 
teaching structure enabled us to design an 
effective multidisciplinary radiology course.3 
Students’ educational experience was aug-
mented with pretests and posttests, session 
handouts, and a question-and-answer ses-
sion. Other studies have indicated that an 
interdisciplinary course involving radiology 
and other disciplines increases students’ 
comprehension of radiology and anatomy 
and their overall motivation to learn.5-7 In our 
experience, medical students seemed to ap-
preciate the integration of clinically relevant 
content with the radiology and anatomy ma-
terial. A recent meta-analysis of 62 studies as-
sessing health science students’ perception 
of online learning demonstrated positive 

results, and this method of teaching was pre-
ferred to the traditional teaching methods.8

In our course, leadership from student 
ambassadors was crucial for successful im-
plementation. Student ambassadors relayed 
course information and initial registration 
opportunities, recruited participants from 
their medical schools, and prepared session 
handouts, pretests, and posttests with physi-
cian instructors. The ambassadors served as 
contact points for medical students regard-
ing questions about the course or material. 
They triaged questions and sought input 
from physician instructors when needed. 
Therefore, we encourage implementing a 
liaison role, as fulfilled by student ambas-
sadors in our course, to serve as a bridge 
between students and instructors when 
multiple different academic institutions are 
involved. 

Our study was conducted during the 
COVID-19 pandemic and has its strengths 
and limitations. The ability to use online vid-
eo conferencing for education helped break 
down geographical barriers and fostered 
global connections as physicians from the 
United States and Canada were able to aug-
ment the educational experience of Turkish 
medical students. Technical problems with 
internet connectivity were rare and statis-
tically insignificant but did disrupt the flow 
of sessions at times. The limit on live atten-
dance on video conferences impeded the 
ability of live participation for some students. 
These factors could be overcome in a setting 

Table 3. Participant responses in course evaluation survey

Survey item Strongly 
agree

Somewhat 
agree

Neither agree nor 
disagree

Somewhat 
disagree

Strongly 
disagree

This program increased your knowledge of using imaging as a diagnostic tool 60.26 36.63 2.93 0.00 0.18

This program has increased your interest in radiology 48.72 40.11 9.52 1.47 0.18

The material presented in this program was relevant to your medical education 40.66 43.22 12.45 2.75 0.92

The presence of a surgeon, internist, or other non-radiology specialist during 
education sessions added to the program 62.09 31.14 6.78 0.00 0.00

The program was a worthwhile experience 71.06 26.74 2.20 0.00 0.00

All values are percentages

Table 4. Participant confidence rating before and after the course

Survey item Mean rating
(before course)

Mean rating
(after course)

Test statistic
(Wilcoxon signed-rank test)

I am familiar with best-use radiology practices 1.85 3.01 1,573

I feel comfortable interpreting radiographs 1.68 2.82 1,004.5

I understand safety in radiology 2.25 3.34 1,723

I am able to identify gross abnormalities on imaging 1.99 3.04 1,584

I am familiar with how imaging is used as a diagnostic tool 2.18 3.25 1,581.5

I am familiar with the different imaging modalities and when to use them 2.01 3.12 1,871

All P < 0.001.
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where online learning is used more broad-
ly, the lectures recorded, and the limits on 
live participation removed. A bias may have 
been introduced in the selection process as 
those students with a pre-existing interest 
or proficiency in radiology may be more apt 
to participate. Additionally, there was no 
control group to compare the results of the 
online course with those of traditional teach-
ing methods. The study involved only Turkish 
medical students, and its applicability to oth-
er regions without validation is a limitation. 

The COVID-19 pandemic has subsided, 
and many institutions have returned to con-
ducting in-person didactic lectures. As dev-
astating as the COVID-19 pandemic was, ac-
cording to a White House document,9 future 
pandemics could be far worse. The document 
concludes, “the next pandemic will likely 
be substantially different than COVID-19. 
We must be prepared to deal with any viral 
threat”.9 It is important that we learn from 
the COVID-19 pandemic and have effective 
educational systems in place for future crises. 

In conclusion, follow-up studies have 
been planned by the authors to assess the re-

tention of knowledge and skills gained from 
the course over time. Future studies could 
also be performed to apply this educational 
model in different cultural and educational 
settings to enhance and evaluate the study’s 
broader applicability.

Footnotes
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PURPOSE
 

To evaluate the diagnostic performance of delayed post-gadolinium enhancement magnetic res-
onance imaging (DEMRI) in diagnosing Menière’s disease (MD) and to establish an effective MRI-
based diagnostic model.

METHODS
 

This retrospective multicenter study assessed DEMRI descriptors in patients presenting with 
Ménièriform symptoms who were examined consecutively between May 2022 and May 2024. A 
total of 162 ears (95 with MD, 67 controls) were included. Each ear was randomly assigned to either 
a training set (n = 98) or a validation set (n = 64). In the training cohort, diagnostic models for MD 
were developed using logistic regression. The area under the curve (AUC) was used to evaluate 
the diagnostic performance of the different models. The Delong test was applied to compare AUC 
estimates between models. 

RESULTS
 

The proposed DEMRI diagnostic model demonstrated strong diagnostic performance in both the 
training cohort (AUC: 0.907) and the validation cohort (AUC: 0.887), outperforming the clinical diag-
nostic model (P = 0.01231; 95% confidence interval: 0.033–0.269) in the validation cohort. The AUC 
of the DEMRI model was also higher than that of the combined DEMRI-clinical model (AUC: 0.796), 
although the difference was not statistically significant (P = 0.054). In the training set, the sensitivity 
and specificity of the DEMRI model were 78.9% and 88.5%, respectively.

CONCLUSION
A diagnostic model based on DEMRI features for MD is more effective than one based solely on 
clinical variables. DEMRI should, therefore, be recommended when MD is suspected, given its sig-
nificant diagnostic potential.

CLINICAL SIGNIFICANCE
This model may improve the accuracy and timeliness of MD diagnosis, as it is less influenced by the 
attending physician’s level of inquiry or the patient’s self-reporting ability. It may also contribute to 
more effective disease management in patients with MD.

KEYWORDS
Post-gadolinium enhancement magnetic resonance imaging, Menière’s disease, endolymphatic 
hydrops, diagnosis, model 

You may cite this article as: Chen X, Zhao Y, Han Y, et al. A diagnostic model based on magnetic resonance imaging for Menière’s disease: a multicentre study. 
Diagn Interv Radiol. 2025;31(4):347-358.

Menière’s disease (MD) is a multifactorial condition in which the combined effect of 
genetic and environmental factors may determine its onset.1 The main clinical symp-
toms include idiopathic fluctuating sensorineural hearing loss (SNHL), spontaneous 

vertigo, aural fullness, and tinnitus. Prosper Ménière first described the disease in 1861, pro-
posing that the pathological site was in the labyrinth rather than the brain.2,3 However, di-
agnosis has been challenging, especially when the initial symptoms are subtle, resulting in 
limited studies on the epidemiology of MD. The American Academy of Otolaryngology–Head 
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and Neck Surgery developed guidelines for 
the diagnosis and therapeutic evaluation of 
MD in 1972, which were revised in 1985 and 
1995.4 In 2015, the Barany Society updated 
and established consensus diagnostic crite-
ria for MD, partly to distinguish migraine-re-
lated vertigo from MD.5,6 However, these 
updated criteria still relied on patient self-re-
ports rather than objective medical tests. In 
addition, an insufficient understanding of 
MD in some clinical departments has led to 
delayed diagnosis and treatment.

In 1937, British and Japanese research-
ers discovered endolymphatic hydrops (EH) 
in the human temporal bone and provid-
ed a pathological description of Menière’s 
syndrome.7,8 In 2007, Nakashima et al.9 suc-
cessfully demonstrated EH in a patient with 
MD using delayed inner ear imaging with a 
three-dimensional fluid-attenuated inver-
sion recovery (3D-FLAIR) sequence after 
intratympanic gadolinium injection. Since 
then, a series of magnetic resonance imag-
ing (MRI) studies on EH have emerged.8,10-14 
3D-FLAIR and three-dimensional inversion 
recovery with real reconstruction (3D-real 
IR) are the most commonly used imaging se-
quences for EH.11 With these newer imaging 
techniques, EH can be visualized in vivo and 
used to support diagnosis. In addition to EH, 
several other signs1-20 can also be observed 
on MRI. As a non-invasive tool, the diagnos-
tic performance of delayed post-gadolinium 
enhancement MRI (DEMRI) remains to be ful-
ly clarified.

The aim of this study is to establish an 
intuitive and objective diagnostic model for 
MD, providing an effective diagnostic path-
way for patients, improving the efficiency 
and accuracy of diagnosis, and offering a ref-
erence for clinical treatment planning.

Methods

Patients

This multicenter retrospective study fol-
lowed the principles outlined in the Decla-
ration of Helsinki, including all amendments 
and revisions. The research was approved 
by the Medical Ethics Committee of the Sec-
ond Affiliated Hospital of Zhejiang Universi-
ty School of Medicine IRB-2024-0048 (date: 
13.05.2024). Informed written consent was 
obtained from all participants after an ex-
planation of the nature of the study, as ap-
proved by the same ethics committee.

This retrospective study included data 
from consecutive patients who first visited 
the otology departments of three medical 
centers with Menièriform symptoms such as 
vertigo, hearing loss, tinnitus, and aural full-
ness and who underwent DEMRI of the inner 
ear labyrinth between May 2022 and May 
2024. A total of 136 patients (272 ears) were 
retrospectively analyzed. Ultimately, 85 pa-
tients (162 ears: 95 MD ears, 67 control ears; 
mean age: 55.2 ± 13.6 years) were enrolled 
in the study based on the exclusion criteria 
(Figure 1). Each ear was treated as a single 
unit and randomly assigned to either a train-
ing set (n = 98 ears) or a validation set (n = 64 
ears) in a 6:4 ratio (Figure 1).

Baseline clinical data, including sex, age, 
affected side, inner ear symptoms (vertigo, 
hearing loss, tinnitus, aural fullness), and 
pure tone audiometry (PTA), were extract-
ed from the medical record management 

system. Given variations in clinical inquiry, 
symptoms such as vertigo, hearing loss, tin-
nitus, and aural fullness were recorded as 
either “yes” or “no,” excluding frequency and 
duration as specified in the diagnostic cri-
teria for MD. Based on the average hearing 
threshold from PTA at 0.5 kHz, 1 kHz, and 
2 kHz, hearing loss was classified into four 
stages: stage I = average hearing threshold 
≤ 25 dB HL; stage II ≥ 25–40 dB HL; stage III ≥ 
40–70 dB HL; and stage IV = average hearing 
threshold > 70 dB HL.

Magnetic resonance imaging examinations

Patients underwent DEMRI using 3T scan-
ners at the participating centers (Center A: 
uMR 790, UIH, Shanghai, China; Ceners B and 
C: Ingenia CX, Philips Healthcare, Nether-
lands) with a standard 32-channel head and 
neck coil. Prior to gadolinium administration, 
a 3D-T2-sampling perfection with applica-
tion-optimized contrasts using different flip 
angle evolutions (3D-T2-SPACE) sequence 
was performed with the following parame-
ters: repetition time (TR): 1300 ms; echo time 
(TE): 196.68 ms; slice thickness: 0.5 mm; ma-
trix size: 380 × 100; field of view (FOV): 220 
× 180 mm; acceleration factor: 2 (2D); scan 
time: 1 min 47 s. This scan was used to ex-
clude patients with organic brain syndromes, 
inner ear malformations, or acoustic neuro-
ma.

A 3D-FLAIR sequence was performed 4 
hours after administration of a double dose 
of intravenous gadobutrol (7.5 mL/vial, 1.0 
mmol/mL; Bayer AG) to ensure maximum 

Main points

• Delayed post-gadolinium enhancement 
magnetic resonance imaging (DEMRI) of the 
inner ear enables visualization of endolym-
phatic hydrops and perilymphatic spaces in 
patients with Menière’s disease (MD), which 
is critical for diagnosis.

• In the DEMRI-based diagnostic model, the 
most substantial features were “Cochlea_
EH_Grad,” “Cochlea_Apex_EH_Score,” “VA,” 
and “Vestibule_EH.”

• The diagnostic performance of DEMRI for 
MD is superior to that of clinical information 
alone.

Figure 1. Flowchart of the patient recruitment pathway. MRI, magnetic resonance imaging.
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perilymphatic enhancement (PLE). Imaging 
parameters were: FOV: 220 × 190 mm; sec-
tion thickness: 0.7 mm; TR: 6500 ms; TE: 426 
ms; number of excitations = 1; inversion time 
= 1935 ms; flip angle = 54°; matrix: 256 × 
100; bandwidth: 500 Hz/pixel; turbo factor: 
5 (acs); voxel size: 0.86 × 0.86 × 1 mm; scan 
time: 2 min 56 s. Previous studies21,22 have 
shown that gadobutrol offers advantages 
over other macrocyclic gadolinium contrast 
agents in MRI for diagnosing MD due to its 
higher concentration and greater relaxivity.

Extraction of qualitative and quantitative 
magnetic resonance imaging features

The MR images were qualitatively ana-
lyzed by three experienced radiologists (with 
15, 15, and 20 years of experience in head 
and neck imaging diagnosis, respectively), 
all blinded to the clinical findings and symp-
toms.

The degree of EH was indicated by a 
widening of the negative signal gap within 
the labyrinth. In this study, the cochlea and 
vestibule were dichotomized as EH-positive 
or EH-negative based on the presence or 
absence of hydrops. Cochlear and vestibular 
EH grades were evaluated using the visual 
four-grade method proposed by Gürkov and 
Bernaerts.23,24

Cochlea 

• Normal (grade 0): The scala media (SM) 
appeared as a vaguely visible dark area with 
a relatively straight border separating it from 
the scala vestibuli and scala tympani (Figure 
2a).

• Mild hydrops (grade 1): The SM exhibited 
a distinct hypointense area surrounded by a 
clear and continuous hyperintense perilym-
phatic ring (Figure 2b).

• Moderate hydrops (grade 2): The hyper-
intense perilymphatic ring was substantially 
interrupted (Figure 2c).

• Severe hydrops (grade 3): The surround-
ing hyperintense perilymphatic area became 
a clear, straight line (Figure 2d). 

Vestibule 

• Normal (grade 0): The saccule and utricle 
were separated, and their combined area oc-
cupied less than half of the vestibular space 
(Figure 3a).

• Mild hydrops (grade 1): The saccule was 
equal to or larger than the utricle, and the 
two could still be distinguished (Figure 3b).

• Moderate hydrops (grade 2): The saccule 
and utricle were fused, but peripheral peri-
lymph remained visible (Figure 3c).

• Severe hydrops (grade 3): No PLE was 
observed in the vestibule (Figure 3d). 

In addition, a new weighted visual scoring 
system based on the Inner Ear Structural As-
signment Method25,26 was employed (Table 
1). The signal intensity ratio of PLE to the ipsi-
lateral middle cerebellar peduncle was mea-
sured. The semicircular canals and vestibular 
aqueduct (VA) were graded as 0, 1, or 2, de-
pending on whether they were continuously 
developed. In total, six clinical variables and 
17 MRI features were included in the analysis 
(Supplementary Table 1).

Statistical analysis

To analyze all data, IBM SPSS (version 
27.0) and R software (version 4.2.1) were 
used. Continuous variables were presented 
as mean ± standard deviation or median 
with interquartile range. Measurement data 
conforming to a normal distribution were 
compared using the independent sample 
t-test. The Mann–Whitney U test was used 
to compare measurement data that did not 
conform to a normal distribution. Categorical 
data were compared using the χ2 test or Fish-
er’s exact test. Kendall’s W test was used to 
assess inter-observer agreement. 

Multivariable logistic regression analysis 
was applied to select MD-related features. 
Variables with P < 0.05 were included in the 

Figure 2. Grading of cochlear hydrops on axial 3D-FLAIR delayed-enhancement images. Grade 0 (normal): 
The scala media (SM) appears as a faint dark area (arrow) with a relatively straight border between the scala 
vestibuli and scala tympani (a). Grade 1 (mild hydrops): The SM shows a distinct nodular low signal area 
(white arrow), surrounded by a clear, continuous high-signal perilymphatic ring (b). Grade 2 (moderate 
hydrops): The high-signal perilymphatic ring is substantially interrupted (left arrow) (c). Grade 3 (severe 
hydrops): The surrounding high-signal perilymphatic area appears as a thin, straight line (left arrow) (d). 
3D-FLAIR, three-dimensional fluid-attenuated inversion recovery.

Figure 3. Grading of vestibular hydrops on axial 3D-FLAIR delayed-enhancement images. Grade 0 (normal): 
The saccule (short arrow) and utricle (long arrow) remain separated; the combined area is less than half of 
the vestibule (a). Grade 1 (mild hydrops): The saccule is equal to or larger than the utricle (arrow), but the 
two structures remain distinct (b). Grade 2 (moderate hydrops): The saccule and utricle are fused; peripheral 
perilymph remains visible (swallow-tail arrow, (c). Grade 3 (severe hydrops): Complete loss of perilymphatic 
enhancement in the vestibule (swallow-tail arrow, (d). 3D-FLAIR, three-dimensional fluid-attenuated 
inversion recovery.
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multivariate logistic regression model using 
the backward stepwise method to develop 
three models for MD diagnosis in the training 
cohort: DEMRI signature, clinical variables, 
and combined DEMRI-clinical parameters. 
The validation set was used to validate these 
models. The area under the curve (AUC) of 
the receiver operating characteristic (ROC) 
curve was used to evaluate the diagnostic 
performance of the different models. The De-
Long test was used to compare the AUC val-
ues between the models. A two-tailed P val-
ue less than 0.05 was considered statistically 
significant. The equation of the multivariate 
logistic regression model was as follows:

Results

Patient characteristics

A total of 85 patients (162 ears; mean 
age: 53.2 ± 13.6 years; age range: 17–86 
years) were included. The detailed clinical 
and DEMRI characteristics of all ears in the 

MD group (n = 95) and the control group (n 
= 67) are presented in Supplementary Table 
1. Except for sex, body mass index, and VA 
visualization degree, all other observed indi-
cators differed significantly between the MD 
and control groups (P < 0.05). The detailed 
characteristics of ears in the training set (n = 
98) and validation set (n = 64) are shown in 
Supplementary Table 2.

Diagnostic model development and valida-
tion

In the training set, 17 DEMRI-indepen-
dent descriptors were analyzed using mul-
tivariate logistic regression with backward 
stepwise selection. Four descriptors with P 
< 0.05 (Table 2) were selected to construct 
the DEMRI diagnostic model, which showed 
strong diagnostic performance for MD, with 
an AUC of 0.907 [95% confidence interval 
(CI): 0.848–0.966] in the training cohort and 
0.887 (95% CI: 0.802–0.971) in the validation 
cohort (Figures 4a, 4b). The same approach 
was used to build a clinical diagnostic model 
based on two independent descriptors (PTA 

stage, P < 0.001; tinnitus fullness, P < 0.001). 
The AUCs of the clinical model in the train-
ing and validation cohorts were 0.915 (95% 
CI: 0.860–0.970) and 0.736 (95% CI: 0.617–
0.855), respectively (Figures 4a, 4b).

Using multivariable logistic regression, 
four independent descriptors–Cochlea_EH_
Grade, Vestibule_EH, PTA Stage, and Tinnitus 
fullness–were identified for the combined 
DEMRI-clinical model (Table 3). The AUCs of 
the DEMRI-clinical model for diagnosing MD 
were 0.947 (95% CI: 0.903–0.990) in the train-
ing cohort and 0.796 (95% CI: 0.689–0.902) 
in the validation cohort (Figures 4a, 4b). De-
Long’s test was used to compare the correlat-
ed ROC curves. In the training set, the AUC of 
the DEMRI model was nearly equal to that of 
the clinical model. However, in the validation 
cohort, the DEMRI model had a significantly 
higher AUC (P = 0.012; 95% CI: 0.033–0.269). 
The DEMRI-clinical model also outperformed 
the clinical model in diagnosing MD (P = 
0.027). Although the DEMRI model had a 
slightly higher AUC than the DEMRI-clinical 
model, the difference was not statistically 
significant (P = 0.054) (Table 4).

The weights of the four independent risk 
factors used in the DEMRI model are illustrat-
ed in a nomogram (Figure 5a). The calibra-
tion curves of the DEMRI nomogram demon-
strated good agreement in both the training 
and validation sets (Figures 5b, 5c). 

Inter-observer agreement on the four mag-
netic resonance imaging features of the de-
layed post-gadolinium enhancement mag-
netic resonance imaging model

Inter-observer agreement for the four MRI 
features included in the DEMRI model was 
assessed using Kendall’s W test. The features 
“Cochlea_EH_Grade,” “Cochlea_Apex_EH_

Table 1. A new weighted visual scoring criteria based on the Inner Ear Structural Assignment 
Method for inner ear 3D-FLAIR images

Appearance Cochlea Vestibule Semicircular canals

Base Middle Apex Superior Horizontal Posterior

Not visible# 0 0 0 0 0 0 0

Partially visible* 2 1 -a 3b 1 1 1

Completely visible! 3 2 1 6c 2 2 2

Data represent scores awarded based on 3D-FLAIR images. #Indicates the absence of a high-signal contrast medium. 
*Refers to failure to show a high-signal image of the entire cochlear canal, a high-signal image limited to the 
tympanic or vestibular scala, interrupted high-signal images of the semicircular canals, or an incomplete high-signal 
image of the vestibule. !Denotes that all labyrinth structures are completely visible. aThis option is not applicable, 
as the apex of the cochlea is very small; only a score of 0 or 1 is assigned. If visible, a score of 1 is given without 
distinguishing between partial and complete visibility. bThe hypointensity zone in the vestibule extends below 
the lower margin of the horizontal semicircular canal and is scored as 3. cThe hypointensity zone in the vestibule is 
located entirely above the plane of the horizontal semicircular canal and is scored as 6. 3D-FLAIR, three-dimensional 
fluid-attenuated inversion recovery.

Table 2. Risk factors of DEMRI for MD in the training cohort

Variable B Wald SE P OR (95% CI)

(Intercept) 30,073 0 2955.414 0.992 1.15E+13 (0–NA)

Cochlea_EH_Grad 3.19 10,347 0.992 0.001* 24,292 (5,058–297.868)

Cochlea_Apex_EH_Score 3,698 4,298 1,784 0.038* 40,384 (1,906–3014.737)

Vestibule_EH_Score 0.631 1,915 0.456 0.166 1,879 (0.852–5,211)

Horizontal semicircular canal -21,236 0 1477.708 0.989 0 (NA–1.91E+27)

VA 1,116 4,579 0.522 0.032* 3,053 (1,196+9.632)

Vestibule_EH 3,729 6,663 1,445 0.010* 41,631 (3.44–1172.845)

PE/MCPE 1,612 2,332 1,056 0.127 5,014 (0.607–46,332)

*Statistically significant (P < 0.05). Data show multivariable regression results.
Cochlea_EH_Grad, Endolymphatic hydrops (EH) severity in the cochlea (0–3 grade); Cochlea_Apex_EH_Score, EH in the cochlear apex (scored per Table 1); Vestibule_EH_Score, EH 
in the vestibule (scored per Table 1); Horizontal Semicircular Canal, Development (0 = absent, 1 = partial, 2 = complete); Vestibule_EH, Presence/absence of vestibular EH (binary); 
VA, Vestibular aqueduct development (0 = absent, 1 = partial, 2 = complete); PE/MCPE, Perilymph-to-middle cerebellar peduncle signal intensity ratio; SE, standard error; OR, odds 
ratio; CI, confidence interval; DEMRI, delayed post-gadolinium enhancement magnetic resonance imaging; MD, Menière’s disease.
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Score,” “Vestibule_EH,” and “VA” all demon-
strated very good consistency, with Kendall’s 
coefficients of W = 0.954, 0.985, 0.967, and 
0.951, respectively. All associated P values 
were less than 0.001 (Supplementary Table 3).

Discussion
In this study, we developed and validated 

three models to diagnose MD. The results 
showed that both the DEMRI model and the 
combined DEMRI-clinical model had better 

clinical diagnostic performance than the 
clinical model alone (AUC: 0.736; sensitivity: 
55.3%; specificity: 92.3%). The DEMRI model 
demonstrated excellent predictive perfor-
mance in the validation set (AUC: 0.887; sen-
sitivity: 78.9%; specificity: 88.5%). Although 
the AUC value of the combined DEMRI-clin-
ical model was slightly lower than that of 
the DEMRI model, there was no significant 
difference in diagnostic performance. In the 
DEMRI model, the most substantial features 

were “Cochlea_EH_Grad,” “Cochlea_Apex_
EH_Score,” “VA,” and “Vestibule_EH.”

MD is associated with a variety of comor-
bidities, such as migraine, anxiety, allergies, 
and immune disorders, but its pathogenesis 
remains unknown.27 EH, characterized by an 
increase in endolymphatic fluid within the 
membranous labyrinth of the inner ear, has 
been identified as the histopathological hall-
mark of MD. EH is thought to result from dis-
rupted endolymph homeostasis caused by 
increased production, impaired absorption, 
or both.28 In EH, excess endolymph volume 
leads to longitudinal flow from the cochlea 
to the endolymphatic sac (ES) to restore bal-
ance. Gibson29 proposed that when the ES 
and endolymphatic duct (ED) are functional, 
they can remove excess endolymph. Howev-
er, in patients with MD and dysfunctional ES 
and ED, endolymph may accumulate in the 
sinus of the ED, leading to substantial over-
flow. Various methods have been proposed 
to assess the endolymphatic space both 
qualitatively and quantitatively.23,24,26 Studies 
have shown that the relationship between 
MD and EH is strong enough to consider EH 
a hallmark of MD and a sensitive target for 
diagnostic detection.12

In this study, significant differences were 
found in all MRI features related to EH be-
tween the MD and control groups (Supple-
mentary Table 1). Amwwong these, three 
EH-related MRI features–“Cochlea_EH_Grad,” 
“Cochlea_Apex_EH_Score,” and “Vestibule_
EH”–were included in the DEMRI model. It ap-
pears that cochlea-related EH carries greater 
diagnostic weight in MD and that the pres-
ence or absence of hydrops in the cochlear 
apical turn is of particular diagnostic value.

It has been shown that cochlear hydrops 
follows a reliable pattern of hydropic pro-

Figure 4. Receiver operating characteristic (ROC) curves. Performance of the three models in both the 
training and validation cohorts. AUC, area under the curve; MR, magnetic resonance.

Table 4. Diagnostic performance of the three models in the training and validation cohorts

Model AUC (95% CI) Sensitivity Specificity PPV NPV Accuracy

DEMRI

Training cohort
Validation cohort

0.907(0.848–0.966) 0.825 0.927 0.940 0.792 0.867

0.887(0.802–0.971) 0.789 0.885 0.909 0.742 0.828

Clinical

Training cohort 0.915(0.860–0.970) 0.772 0.951 0.957 0.75 0.847

Validation cohort 0.736(0.617–0.855) 0.553 0.923 0.913 0.585 0.703

DEMRI-clinical

Training cohort
Validation cohort

0.947(0.903–0.990) 0.877 0.927 0.943 0.844 0.898

0.796(0.689–0.902) 0.658 0.885 0.893 0.639 0.750

AUC, area under the receiver operating characteristic curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value. 
Model Features:
DEMRI model: Cochlea_EH_Grad, Cochlea_Apex_EH_Score, VA, Vestibule_EH
Clinical model: PTA Stage, Tinnitus fullness
DEMRI-clinical model: Cochlea_EH_Grad, Vestibule_EH, PTA Stage, Tinnitus fullness.

Table 3. Risk factors of the DEMRI-clinical model for Menière’s disease in the training cohort

Variable B Wald SE P OR (95% CI)

(Intercept) −2.711 5.258 1.182 0.022 0.066 (0.005–0.531)

Cochlea_EH_Grad 1.252 6.755 0.482 0.009* 3.4989 (1.449–10.256)

Vestibule_EH 1.377 2.996 0.796 0.083* 3.964 (0.845–20.353)

PTA Stage 1.581 5.911 0.65 0.015* 4.861 (1.603–20.68)

Tinnitus fullness −1.821 5.988 0.744 0.014* 0.162 (0.034–0.673)

*Statistically significant (P < 0.05).Multivariable regression results show:
Cochlea_EH_Grad: Cochlear endolymphatic hydrops severity grade (0–3)
Vestibule_EH: Presence or absence of vestibular endolymphatic hydrops (binary)
PTA Stage: Hearing loss classification based on pure tone audiometry (0.5 kHz, 1 kHz, 2 kHz).
SE, standard error; OR, odds ratio; CI, confidence interval; DEMRI, delayed post-gadolinium enhancement magnetic 
resonance imaging.
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gression over time, typically originating in 
the apex and proceeding toward the base, 
tonotopically resembling the progression of 
hearing loss.12,30,31 A hydrodynamic pressure 
shunt in the pars superior stimulates the utri-
cle and the saccule of the vestibule, resulting 
in “Vestibule_EH”.28,29 This longitudinal hy-
drops process may explain why the presence 
or absence of EH in the apical turn of the 
cochlea is diagnostically substantial for MD. 
Additionally, experimental studies have sug-
gested that cytochemical and ultrastructural 
disruption of the hair cells, afferent neurons, 
and fibrocytes of the lateral cochlear wall are 
involved in the pathogenesis of EH and occur 
prior to its development.10,32,33 These findings 
support the conclusion that “Cochlea_EH_
Grad” and “Vestibule_EH” are important risk 
factors for diagnosing MD. It is important to 
consider both the grade of EH in the cochlea 
and the presence or absence of EH in the ves-
tibule. The more severe the cochlear EH, the 
higher the likelihood of diagnosing MD when 
accompanied by vestibular EH, regardless of 
the severity of the vestibular component.

However, EH is not pathognomonic for 
MD, as it has also been observed in vestibu-
lar migraine (VM), isolated SNHL, and even in 
healthy individuals. This limits its diagnostic 
specificity for MD.5,34 VM is a leading cause of 
recurrent vertigo and is often misdiagnosed 
as MD despite being 5–10 times more prev-
alent.35 The clinical overlap between MD and 
VM presents substantial diagnostic challeng-
es. Emerging evidence suggests that differ-
ences in EH patterns may help distinguish 
the two conditions: MD typically presents 
with both cochlear and vestibular EH (as seen 
on Gd-enhanced MRI), whereas EH in VM is 
rare and usually limited to the cochlea.35-37 
Thus, inner ear imaging (e.g., Gd-DEMRI) may 
assist in differential diagnosis. Isolated SNHL 

may represent a prodromal phase of MD and 
warrants further investigation.

Furthermore, this study identified a rel-
atively novel finding: the VA appears to be 
a substantial risk factor in diagnosing MD. A 
study by Steve Connor et al.15 demonstrat-
ed that all VA descriptors showed excellent 
reliability for MD diagnosis and that incom-
plete VA visualization adds diagnostic value. 
Mainnemarre et al.16 further suggested that 
evaluating the VA on temporal bone com-
puted tomography (CT) could predict the 
presence of EH on MRI with a high positive 
predictive value. Attyé et al.38 proposed that 
discontinuous VA may correlate with MD. A 
non-visible or partially visible VA may result 
from bony abnormalities or central fibrosis, 
leading to endolymphatic stenosis. Although 
VA performance was included in our model, 
there was no statistically significant difference 
in VA between the MD and control groups 
(Supplementary File). This may be due to the 
low detection rate of VA on MRI, highlighting 
the need for clearer imaging techniques or 
combining MRI with other modalities, such as 
CT, for more comprehensive evaluation.

Following large-scale validation, our diag-
nostic model could be incorporated into clin-
ical practice to generate structured radiology 
reports with probability scores. These reports 
could support the following: (1) risk stratifi-
cation, (2) identification of high-risk patients 
needing specialist referral, and (3) long-term 
post-treatment management.

Limitations

Limited sample size: Although this is a 
multicenter study, the sample size (85 pa-
tients, 162 ears) is relatively small, which may 
limit the generalizability of the findings. Fu-
ture studies with larger cohorts are needed 

to validate these results.

Retrospective design: The retrospective 
nature of the study introduces potential bi-
ases in patient selection and data collection. 
Additionally, some asymptomatic patients 
with early MD may have been misclassi-
fied into the control group. Future research 
should include normal participants and other 
differential diagnoses (e.g., VM, benign posi-
tional vertigo) for more robust comparisons.

Lack of external validation: Although 
internal validation was performed, external 
validation using an independent dataset 
would further strengthen the reliability of 
the model.

Imaging feature selection: This study pri-
marily relied on conventional MRI features. 
Further exploration of advanced imaging bio-
markers may improve diagnostic accuracy.

In conclusion, we developed and validat-
ed a new DEMRI model for diagnosing MD, 
which demonstrated higher diagnostic val-
ue than clinical inquiry information alone. A 
combination of a high degree of cochlear EH, 
invisible cochlear apical turn, vestibular hy-
drops, and incomplete VA visualization sug-
gests a high risk of MD. Therefore, we recom-
mend DEMRI when MD is suspected due to 
its substantial diagnostic potential. Further 
studies are needed to explore the broader 
applicability of our model and support its 
clinical implementation.
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Supplementary Table 1. Comparison of clinical variables and MRI features between 
control group and MD group

Control ears
(n = 67)

Menière’s ears
(n = 95)

P value

PTA stage

1 52 (77.6%) 27 (28.4%) <0.001

2 13 (19.4%) 21 (22.1%)

3 2 (3.0%) 31 (32.6%)

4 0 (0%) 16 (16.8%)

Vertigo

49 (73.1%) 92 (96.8%) <0.001

Tinnitus fullness

17 (25.4%) 71 (74.7%) <0.001

Age

Mean (SD) 49.9 (13.1) 55.5 (13.6) 0.009

Gender

Male/female 33/34 43/52 0.733

BMI

Mean (SD) 23.0 (2.40) 22.7 (2.70) 0.426

Cochlea_Base_EH_Grad

0 63 (94.0%) 41 (43.2%) <0.001

1 1 (1.5%) 22 (23.2%)

2 3 (4.5%) 17 (17.9%)

3 0 (0%) 15 (15.8%)

Cochlea_Middle_EH_Grad

0 63 (94.0%) 40 (42.1%) <0.001

1 2 (3.0%) 14 (14.7%)

2 2 (3.0%) 16 (16.8%)

3 0 (0%) 25 (26.3%)

Cochlea_Apex_EH_Grad

0 62 (92.5%) 35 (36.8%) <0.001

1 2 (3.0%) 16 (16.8%)

2 3 (4.5%) 19 (20.0%)

3 0 (0%) 25 (26.3%)

Cochlea_EH_Grad

0 61 (91.0%) 25 (26.3%) <0.001

1 3 (4.5%) 24 (25.3%)

2 3 (4.5%) 21 (22.1%)

3 0 (0%) 25 (26.3%)

Cochlea_Base_EH_Score

0 0 (0%) 2 (2.1%) <0.001

2 4 (6.0%) 53 (55.8%)

3 63 (94.0%) 40 (42.1%)

Cochlea_Middle_EH_Score

0 0 (0%) 12 (12.6%) <0.001

1 4 (6.0%) 45 (47.4%)

2 63 (94.0%) 38 (40.0%)

Cochlea_Apex_EH_Score

0 4 (6.0%) 34 (35.8%) <0.001

1 63 (94.0%) 61 (64.2%)

Cochlea_EH_Score
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Supplementary Table 1. Continued

Control ears
(n = 67)

Menière’s ears
(n = 95)

P value

0 0 (0%) 1 (1.1%) <0.001

2 0 (0%) 10 (10.5%)

3 1 (1.5%) 12 (12.6%)

4 4 (6.0%) 31 (32.6%)

5 1 (1.5%) 12 (12.6%)

6 61 (91.0%) 29 (30.5%)

Vestibule_EH_Score

0 0 (0%) 15 (15.8%) <0.001

3 13 (19.4%) 45 (47.4%)

4 54 (80.6%) 35 (36.8%)

Vestibule_EH_Grade

0 57 (85.1%) 30 (31.6%) <0.001

1 8 (11.9%) 19 (20.0%)

2 2 (3.0%) 17 (17.9%)

3 0 (0%) 29 (30.5%)

Semicircular canal superior

Non-visualized 0 (0%) 5 (5.3%) 0.035

Incompletely visualized 0 (0%) 4 (4.2%)

Completely visualized 67 (100%) 86 (90.5%)

Semicircular canal horizontal

Non-visualized 0 (0%) 9 (9.5%) <0.001

Incompletely visualized 0 (0%) 18 (18.9%)

Completely visualized 67 (100%) 68 (71.6%)

Semicircular canal posterior

Non-visualized 0 (0%) 5 (5.3%) 0.023

Incompletely visualized 0 (0%) 5 (5.3%)

Completely visualized 67 (100%) 85 (89.5%)

VA

Non-visualized 23 (34.3%) 41 (43.2%) 0.318

Incompletely visualized 20 (29.9%) 30 (31.6%)

Completely visualized 24 (35.8%) 24 (25.3%)

Cochlea_EH

EH-positive 60 (89.6%) 25 (26.3%) <0.001

Vestibule_EH

EH-positive 57 (85.1%) 30 (31.6%) <0.001

PLE/MCPE

Mean (SD) 1.15 (0.291) 1.33 (0.368) <0.001

Group

Training set 41 (61.2%) 57 (60.0%) 1

Validation set 26 (38.8%) 38 (40.0%)

Cochlear and vestibular endolymphatic hydrops were evaluated according to Gurkov and Bernaerts’ visual 4-grade 
method. 
Cochlear and vestibular endolymphatic hydrops scorewere evaluated according to a new weighted visual scoring 
system (Table 1) based on Inner Ear Structural Assignment Method. 
PLE/MCPE: Measurements of signal intensity were performed by drawing an oval region of interest along the edge 
of the cochlear basal turn and a circular region of interest at the left middle cerebellar peduncle to calculate the 
signal intensity ratio. 
PTA, pure tone audiometry; SD, standard deviation; BMI, body mass index; VA, vestibular aqueduct; PLE, 
perilymphatic enhancement; MCPE, middle cerebellar peduncle.
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Supplementary Table 2. Comparison of clinical variables and MRI features between 
training set and validation set

Training set 
(n = 98)

Validation set 
(n = 64)

P value

Label

Control ears 41 (41.8%) 26 (40.6%) 1

Menière’s ears 57 (58.2%) 38 (59.4%)

PTA stage

1 47 (48.0%) 32 (50.0%) 0.972

2 20 (20.4%) 14 (21.9%)

3 21 (21.4%) 12 (18.8%)

4 10 (10.2%) 6 (9.4%)

Vertigo

90 (91.8%) 51 (79.7%) 0.044

Tinnitus fullness 

41 (41.8%) 33 (51.6%) 0.292

Age

Mean (SD) 53.4 (13.0) 53.0 (14.6) 0.852

Gender

Male/female 43/55 33/31 0.425

BMI

Mean (SD) 23.0 (2.59) 22.4 (2.54) 0.165

Cochlea_Base_EH_Grad

0 61 (62.2%) 43 (67.2%) 0.757

1 14 (14.3%) 9 (14.1%)

2 12 (12.2%) 8 (12.5%)

3 11 (11.2%) 4 (6.3%)

Cochlea_Middle_EHGrad

0 60 (61.2%) 43 (67.2%) 0.75

1 9 (9.2%) 7 (10.9%)

2 12 (12.2%) 6 (9.4%)

3 17 (17.3%) 8 (12.5%)

Cochlea_Apex_EH_Grad

0 56 (57.1%) 41 (64.1%) 0.653

1 10 (10.2%) 8 (12.5%)

2 15 (15.3%) 7 (10.9%)

3 17 (17.3%) 8 (12.5%)

Cochlea_EH_Grad

0 51 (52.0%) 35 (54.7%) 0.84

1 15 (15.3%) 12 (18.8%)

2 16 (16.3%) 8 (12.5%)

3 16 (16.3%) 9 (14.1%)

Cochlea_Base_EH_Score

0 2 (2.0%) 0 (0%) 0.498

2 35 (35.7%) 22 (34.4%)

3 61 (62.2%) 42 (65.6%)

Cochlea_Middle_EH_Score

0 10 (10.2%) 2 (3.1%) 0.235

1 28 (28.6%) 21 (32.8%)

2 60 (61.2%) 41 (64.1%)

Cochlea_Apex_EH_Score
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Supplementary Table 2. Continued

Training set 
(n = 98)

Validation set 
(n = 64)

P value

0 26 (26.5%) 12 (18.8%) 0.341

1 72 (73.5%) 52 (81.3%)

Cochlea_EH_Score

0 1 (1.0%) 0 (0%) 0.427

2 8 (8.2%) 2 (3.1%)

3 8 (8.2%) 5 (7.8%)

4 21 (21.4%) 14 (21.9%)

5 5 (5.1%) 8 (12.5%)

6 55 (56.1%) 35 (54.7%)

Vestibule_EH_Score

0 11 (11.2%) 4 (6.3%) 0.562

3 34 (34.7%) 24 (37.5%)

6 53 (54.1%) 36 (56.3%)

Vestibule_EH_Grade

0 52 (53.1%) 35 (54.7%) 0.617

1 14 (14.3%) 13 (20.3%)

2 12 (12.2%) 7 (10.9%)

3 20 (20.4%) 9 (14.1%)

Semicircular canal superior

Non-visualized 4 (4.1%) 1 (1.6%) 0.61

Incompletely visualized 2 (2.0%) 2 (3.1%)

Completely visualized 92 (93.9%) 61 (95.3%)

Semicircular canal horizontal

Non-visualized 6 (6.1%) 3 (4.7%) 0.772

Incompletely visualized 12 (12.2%) 6 (9.4%)

Completely visualized 80 (81.6%) 55 (85.9%)

Semicircular canal posterior

Non-visualized 3 (3.1%) 2 (3.1%) 0.999

Incompletely visualized 3 (3.1%) 2 (3.1%)

Completely visualized 92 (93.9%) 60 (93.8%)

VA

Non-visualized 37 (37.8%) 27 (42.2%) 0.766

Incompletely visualized 30 (30.6%) 20 (31.3%)

Completely visualized 31 (31.6%) 17 (26.6%)

Cochlea_EH

EH-positive 51 (52.0%) 34 (53.1%) 1

Vestibule_EH

EH-positive 52 (53.1%) 35 (54.7%) 0.967

PE/MCPE

Mean (SD) 1.21 (0.318) 1.32 (0.386) 0.065

PTA, pure tone audiometry; SD, standard deviation; BMI, body mass index; VA, vestibular aqueduct; PLE, 
perilymphatic enhancement; MCPE, middle cerebellar peduncle.
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Supplementary Table 3. Inter-observer reliability Kendall’ W values for the four DEMRI model features

Grade/score Cochlea_EH_Grade Cochlea_Apex_Score Vestibule_EH VA

0 1 2 3 0 1 Yes No 0 1 2

Observer1 84 29 26 23 38 124 75 87 66 48 48

Observer2 79 38 32 13 40 122 71 91 73 45 44

Observer3 81 32 25 24 38 124 75 87 66 57 39

Kendall’s W 0.954 0.985 0.967 0.951

P <0.001 <0.001 <0.001 <0.001

VA, vestibular aqueduct; DEMRI, delayed post-gadolinium enhancement magnetic resonance imaging.
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Blunt splenic injuries (BSI) are a common occurrence following traumatic events such as 
motor vehicle accidents, boating accidents, falls, or altercations.1 Splenic injuries can re-
sult in massive blood loss and high mortality.2 The management of BSI is aimed toward 

the preservation of splenic parenchyma, as the spleen serves a key role in the defense against 

PURPOSE
To describe the experience of a single level 1 trauma center in the management of blunt splenic 
injuries (BSI). 

METHODS
This is a retrospective study with Institutional Review Board approval. The medical records of 450 
patients with BSI treated between January 2016 and December 2022 were reviewed. Seventy-two 
patients were treated with splenic artery embolization (SAE), met the study criteria, and were eligi-
ble for data analysis. Spleen injuries were graded in accordance with the American Association for 
the Surgery of Trauma Organ Injury Scale. Univariate data analysis was performed, with P < 0.05 
considered statistically significant. 

RESULTS
The splenic salvage rate was 90.3% (n = 65/72). Baseline demographics were similar between the 
groups (P > 0.05). Distal embolization with Gelfoam® had similar rates of splenic salvage to proximal 
embolization with coils (90% vs. 94.1%, P > 0.05). There was no significant difference in the rate of 
splenic infarction between distal embolization with Gelfoam® (20%, 4/20) and proximal emboli-
zation with coils (17.6%, 3/17) (P > 0.05). There was no significant difference in procedure length  
(68 vs. 75.8 min) or splenic salvage rate (88.5% vs. 92.1%) between proximal and distal embolization 
(P > 0.05). There was no significant difference in procedure length (69.1 vs. 73.6 min) or splenic 
salvage rate (93.1% vs. 86.4%) between Gelfoam® and coil embolization (P > 0.05). Combined prox-
imal and distal embolization was associated with a higher rate of splenic abscess formation (25%, 
2/8) when compared with proximal (0%, 0/26) or distal (0%, 0/38) embolization alone (P = 0.0003). 
The rate of asymptomatic and symptomatic splenic infarction was significantly higher in patients 
embolized at combined proximal and distal locations (P = 0.04, P = 0.01). 

CONCLUSION
The endovascular management of BSI is safe and effective. The overall splenic salvage rate was 
90.3%. Distal embolization with Gelfoam® was not associated with higher rates of splenic infarction 
when compared with proximal embolization with coils. Combined proximal and distal emboliza-
tion was associated with a higher incidence of splenic infarction and splenic abscess formation.

CLINICAL SIGNIFICANCE
Distal splenic embolization with Gelfoam® is safe and may be beneficial in the setting of blunt 
splenic trauma.
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encapsulated pathogens.3 Safe and effica-
cious treatments to promote spleen salvage 
are imperative to improve long-term patient 
outcomes. 

Splenic artery embolization (SAE) is a 
safe and efficacious spleen-salvaging treat-
ment for high-grade splenic injuries.2 This 
treatment successfully achieves hemostasis,4 
increases the rate of splenic salvage,5,6 and 
preserves both short- and long-term im-
mune function.3 In the absence of compre-
hensive guidelines for SAE, the techniques 
used are often determined by the operator’s 
judgment and experience. At our institu-
tion, proximal embolization with coils and 
distal embolization with Gelfoam® remain 
the most common SAE techniques for the 
treatment of BSI. Based on current literature, 
distal embolization with Gelfoam® is not 
recommended because embolization with 
Gelfoam® has been associated with inferior 
clinical outcomes.

Recent studies have suggested that proxi-
mal7,8 SAE is associated with significantly low-
er fluoroscopy time9 and lower rates of major 
complications such as post-embolization 
abscess and splenic infarction.1,2,10 The use of 
Gelfoam® has been discouraged11 because of 
a reported association with an increased risk 
of recurrent bleeding12 and infection when 
compared with coil or plug embolization.13,14 
These findings, however, are inconsistently 
supported by the literature, and the optimal 
technique for SAE remains under debate. The 
purpose of this study is to describe a single 
level 1 trauma center experience in the man-
agement of blunt splenic trauma. A second-
ary goal is to determine if distal SAE with Gel-
foam® is associated with an increased risk of 
splenic infarction.

Methods

Patient population

A retrospective cohort study of adult pa-
tients with BSI treated between January 2016 

and December 2022 was performed at a sin-
gle level 1 trauma center. Patients aged 18 
and older with BSI were included. Children, 
pregnant women, and prisoners were ex-
cluded from the study. In total, 450 patients 
met the study criteria and were included in 
the medical record review. Of the eligible 
450 patients, 72 were treated with SAE and 
included in the data analysis (Figure 1). This 
retrospective study was approved by the 
LSUHSC New Orleans Institutional Review 
Board (approval: IRB #5040, date: February 
28, 2023), and a waiver of consent was ob-
tained.

Collected variables

The medical record review included the 
collection of demographic information, em-
bolization techniques and outcomes, and 
clinical outcomes. The embolization tech-
nique was defined by the embolization lo-
cation and embolization material. Patient 
charts were reviewed for reported compli-
cations or additional interventions up to 90 
days following the primary treatment. The 
clinical outcomes of interest included hos-
pital length of stay, intensive care unit (ICU) 
length of stay, and readmission within 30 
days. The embolization outcomes of interest 
included procedure length, splenic salvage 

rate, splenic abscess formation, splenic in-
farction, and the need for additional inter-
vention. Secondary interventions included 
SAE following observation, SAE following a 
previous SAE, or splenectomy following SAE. 
The diagnosis of splenic abscess formation 
required clinical symptoms, leukocytosis, 
and imaging findings on computed tomog-
raphy (CT). The presence of splenic infarction 
was evaluated based on imaging findings. 
Splenic infarction was considered clinically 
significant if the following symptoms were 
present: fever, leukocytosis, left upper quad-
rant pain, nausea, or vomiting. 

Injury grading

Spleen injuries identified in surgery or on 
abdominal CT scans were graded according 
to the 2018 American Association for the 
Surgery of Trauma Organ Injury Scale (AAST-
OIS).15 The injury severity score (ISS) was used 
to provide an overall injury grade for patients 
with multiple injuries. Each injury is allocat-
ed to one of six body regions and rated with 
an abbreviated injury score (AIS) from 1 to 5, 
ranging from minor to critical injuries. The ISS 
is calculated by squaring the AIS of the three 
most severely injured body regions and com-
bining them, creating a score of 0 to 75.16

Main points

• For the treatment of blunt splenic injury 
(BSI), distal embolization with Gelfoam® 
was not associated with an increased risk 
of splenic infarction or other inferior clinical 
outcomes when compared with proximal 
embolization with coils. 

• Combined embolization was associated 
with a higher incidence of splenic infarction 
and splenic abscess formation. 

• Splenic embolization is a safe spleen-salvag-
ing treatment for the management of BSI. Figure 1. Flowchart. AAST-OIS, American Association for the Surgery of Trauma Organ Injury Scale.
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Indications

At our institution, patients with BSI who 
were hemodynamically unstable were man-
aged with splenectomy. Hemodynamically 
stable patients were evaluated with con-
trast-enhanced CT. Patients with AAST-OIS 
grade III–V BSI, large perisplenic hematoma, 
contrast extravasation, pseudoaneurysm, or 
other vascular injuries were referred for SAE. 
Patients who did not meet the criteria for SAE 
on their first CT assessment were managed 
conservatively. These patients were moni-
tored for evidence of ongoing bleeding such 
as decreasing hematocrit levels or changes 
in vital signs. Patients with evidence of ongo-
ing bleeding after the initial assessment un-
derwent repeat contrast-enhanced CT scans 
and were reconsidered for treatment by SAE 
or splenectomy.

Embolization techniques

All procedures were performed by fellow-
ship-trained interventional radiologists in 
a state-of-the-art angiography suite. Proce-
dures were performed either under general 
anesthesia or monitored anesthesia care. 
Ultrasound guidance was used for arterial 
access to either the right or left common 
femoral artery. Selective catheterization of 
the celiac trunk was performed using stan-
dard angiographic catheters. A selective ar-
teriogram of the celiac trunk was performed 
using a power injector. The anatomy of the 
splenic artery was delineated, and the angio-
graphic findings were evaluated by the oper-
ators (Figure 2). The embolization techniques 
and materials used were determined during 
the procedure based on angiographic find-
ings, operator experience, preference, and 
judgment. Angiographic findings indicating 
the need for embolization included contrast 
extravasation, pseudoaneurysm, and con-
trast blush. 

Proximal embolization was defined as 
embolization of the main splenic artery 
trunk distal to the dorsal pancreatic artery 
but proximal to the splenic hilum (Figure 3). 
Distal embolization was defined as emboli-
zation of a splenic artery branch or branches 
at sites distal to collateral pathways (Figure 
4). Embolization was performed using Gel-
foam®, particles, coils, and plugs, used either 
alone or in combination. Embolization was 
considered complete when contrast extrav-
asation was no longer present. Procedure 
efficacy was measured using the splenic sal-
vage rate at 30 days. The medical records of 
patients who underwent embolization were 
reviewed up to 90 days after the procedure 

to determine technical and clinical success 
rates and incidence of complications. 

Statistical analysis 

Univariate analysis was performed using 
ANOVA for continuous variables or χ2 test for 
categorical variables. Data were analyzed us-
ing GraphPad Prism (version 10.0.0, La Jolla, 
CA, USA). A P value of less than 0.05 was con-
sidered statistically significant. 

Results

Patient population

A total of 302 (67.1%, 302/450) patients 
were treated by observation alone, 80 
(17.8%, 80/450) required splenectomy, and 
68 (15.1%, 68/450) underwent SAE. Of the 
302 patients initially treated by observation 
alone, 5 (1.7%, 5/302) showed signs of per-
sistent bleeding and underwent subsequent 
SAE. One patient underwent a splenic arte-
riogram, and embolization was attempted 
but was technically unsuccessful. This pa-
tient was excluded, leaving a total of 72 pa-
tients treated by SAE eligible for data analysis 
(Figure 1, Table 1). 

Patients treated by SAE had an average 
ISS of 26.9 ± 11.8 and spleen AAST-OIS grade 
of 3.5 ± 0.8. The patients were hospitalized 
for an average of 10.9 ± 9.0 days, with an 
average of 5.9 ± 5.6 days in the ICU. The SAE 
procedure averaged 71.7 ± 25.8 minutes and 
the rate of splenic salvage was 90.3% (n = 
65/72). Seven (9.7%, 7/72) patients exhibit-
ed evidence of persistent bleeding after SAE 
and required splenectomy; one (1.4%, 1/72) 
splenectomy occurred after a second SAE 

Figure 2. Celiac digital subtraction angiography 
showing the main splenic artery arising from the 
celiac trunk. The dorsal pancreatic artery (arrow) 
arises from the main splenic artery.

Table 1. Splenic artery embolization patient demographics, clinical characteristics, and 
outcomes

Total 72

Demographics/injury data  

Age, mean (range) 43.2 (18–79)

Male, n (%) 47 (65.3)

Female, n (%) 25 (34.7)

AAST-OIS grade, mean (SD)
Grade II, n (%)
Grade III, n (%)
Grade IV, n (%)
Grade V, n (%)

3.5 (0.8)
8 (11.1)
25 (34.7)
34 (47.2)
5 (6.9)

Injury severity score, mean (SD) 26.9 (11.8)

Embolization outcomes, n (%)  

Procedure length, mean min (SD) 71.7 (25.8)

Splenic salvage, n (%) 65 (90.3)

Failed observation SAE, n (%) 5 (6.9)

Repeat SAE splenectomy, n (%) 1 (1.4)

Post SAE splenectomy, n (%) 7 (9.7)

Splenic abscess, n (%) 2 (2.8)

Splenic infarct, n (%) 11 (15.3)

Symptomatic splenic infarct, n (%) 2 (2.8)

Clinical outcomes  

Hospital length of stay mean days (SD) 10.9 (9.0)

ICU length of stay mean days (SD) 5.9 (5.6)

Readmission within 30 days, n (%) 4 (5.6)

SAE, splenic artery embolization; AAST-OIS, American Association for the Surgery of Trauma Organ Injury Scale; SD, 
standard deviation; ICU, intensive care unit.



 

362 • July 2025 • Diagnostic and Interventional Radiology Gill et al.

was performed. Two patients (2.8%, 2/72) 
had imaging findings suggestive of splen-
ic abscess on follow-up CT scans. Splenic 
infarct was identified in 11 patients (15.3%, 
11/72); two of these patients (2.8%, 2/72) had 
symptomatic splenic infarct. Both patients 
that presented with symptomatic splenic 
infarcts were treated with combined embo-
lization using Gelfoam® and coils at proximal 
and distal locations. One patient presented 
following a second embolization attempt, 
later developed a splenic abscess, and was 

then treated by splenectomy. One patient 
was treated for left upper quadrant pain, 
and no further complication was identified. 
There were no in-hospital mortalities follow-
ing SAE. 

Embolization technique

Twenty patients (27.8%, 20/72) under-
went distal embolization with Gelfoam®, and 
17 patients (23.6%, 17/72) underwent prox-
imal embolization with coils. The remaining 
35 patients (48.6%, 35/72) were embolized 
with combinations of embolization mate-
rial and location and were not included in 
the data analysis. Baseline demographics, 
ISS, hospital length of stay, and readmission 
within 30 days were not significantly differ-
ent between the groups (P > 0.05). There was 
no significant difference in procedure length 
or splenic salvage rate between the groups 
(P > 0.05). The mean spleen AAST-OIS grade 
was significantly higher in patients treated 
by distal embolization with Gelfoam® (3.75 
± 0.7) than in patients treated by proximal 
embolization with coils (3.2 ± 0.8) (P = 0.03). 
Splenic infarct was identified on follow-up 
imaging in four patients (20%, 4/20) treated 
by distal embolization with Gelfoam® and 
three patients (17.6%, 3/17) treated by prox-
imal embolization with coils (P > 0.05) (Table 
2). Two splenic abscesses were reported in 
patients embolized using a combination of 

Gelfoam® distally and coils proximally (5.7%, 
2/35). 

The patients were additionally stratified 
by embolization location and material. Twen-
ty-six patients (36.1%, 26/72) underwent 
proximal embolization, 38 patients (52.8%, 
38/72) underwent distal embolization, and 
8 patients (11.1%, 8/72) underwent com-
bined proximal and distal embolization (Ta-
ble 3). Twenty-nine patients (40.3%, 29/72) 
were embolized with Gelfoam®, 22 patients 
(30.5%, 22/72) were embolized with coils, 
and 21 patients (29.2%, 21/72) underwent 
embolization with two or more embolic 
agents (Table 4). 

Combined embolization was performed 
with Gelfoam® and coils (n = 16, 22.2%), par-
ticles and coil (n = 3, 4.2%), and plug and coils 
(n = 2, 2.8%). Baseline demographics were 
similar between the groups (P > 0.05). The 
ISS, hospital length of stay, and readmission 
within 30 days were also similar between the 
groups (P > 0.05). There was no significant 
difference in procedure length or splenic sal-
vage rate between the groups (P > 0.05). Pa-
tients embolized with coils had a significant-
ly lower spleen AAST-OIS (3.01 ± 0.9) than 
those undergoing Gelfoam® embolization 
(3.7 ± 0.7) and combined embolization (3.6 
± 0.7) (P = 0.02). No splenic abscesses were 
reported for any technique used in isolation. 

Figure 3. Proximal splenic artery embolization 
with coils in a 49-year-old woman following a 
motor vehicle collision. (a) Contrast-enhanced 
computed tomography showing a grade III splenic 
laceration and significant hemoperitoneum. 
(b) Pre-embolization celiac digital subtraction 
angiography (DSA) with no contrast extravasation 
or pseudoaneurysm. (c) Post embolization DSA 
displaying decreased but preserved perfusion to the 
spleen. Multiple detachable AZUR CX coils (Terumo 
Interventional Systems, Tokyo, Japan) and pushable 
Tornado coils (Cook Medical, Bloomington, IN, USA) 
can be seen in the main splenic artery, distal to the 
dorsal pancreatic artery.

a

b

c

Figure 4. Distal splenic artery embolization with Gelfoam® in a 75-year-old woman following a motor 
vehicle collision. (a) Contrast-enhanced computed tomography showing multiple splenic lacerations 
with a perisplenic hemoperitoneum and active contrast extravasation. (b, c) Pre-embolization celiac 
digital subtraction angiography (DSA) showing multiple splenic arterial blushes without active contrast 
extravasation. (d) Post-embolization DSA displaying Gelfoam® embolization of splenic artery branches 
distal to all collateral pathways.    

a

c

b

d
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The rate of splenic abscess formation was 
significantly higher for patients embolized 
at both proximal and distal locations than for 
those who received either proximal or distal 
embolization alone (P = 0.0003). The rate of 
asymptomatic and symptomatic splenic in-
farction was significantly higher in patients 
embolized at combined proximal and distal 
locations (P = 0.04, P = 0.01). 

Discussion
SAE is a safe and efficacious treatment 

option for BSI; the current study revealed an 
overall splenic salvage rate of 90.3%, which 
is consistent with the current literature.2,4,5 
At our center, the preferred embolization 
techniques are distal embolization with Gel-
foam® and proximal embolization with coils. 
There was no significant difference in splenic 
salvage rates or procedure length between 
the various embolization techniques. Recent 
publications have criticized the distal embo-
lization approach, citing longer procedure 
times and higher complication rates, includ-
ing splenic abscess formation and splenic 
infarction, than proximal embolization.1,2,10 
Gelfoam® embolization has been associated 
with a higher incidence of life-threatening 
complications and a lower rate of clinical 
success than coil embolization.2 In addition, 
Gelfoam® has been reported to have an in-
creased risk of re-bleeding due to its tem-
porary nature.12,17,18 These inferior outcomes 
associated with distal embolization and em-
bolization with Gelfoam® were not found in 
our study. 

Table 2. Comparison of embolization techniques

Distal w/Gelfoam®
(n = 20)

Proximal w/coil
(n = 17)

P value

Demographics/injury data

Age, mean (SD) 44.5 (20.3) 39.8 (16.5) 0.45

Male, n (%) 16 (80) 11 (64.7) 0.46

AAST grade, mean (SD) 3.75 (0.7) 3.2 (0.8) 0.03

Injury severity score, mean (SD) 30.2 (12.4) 24.4 (11) 0.14

Post-embolization outcomes

SAE procedure length, mean min (SD) 71.4 (25.5) 68.9 (21.7) 0.75

Post SAE splenectomy, n (%) 2 (10) 1 (5.9) 1

Splenic abscess, n (%) 0 0 1

Splenic infarct, n (%) 4 (20) 3 (17.6) 1

Symptomatic splenic infarct, n (%) 0 0 1

Total units of PRBCs, mean (SD) 1.6 (3.4) 0.9 (1.3) 0.43

Clinical outcomes

Hospital length of stay, mean days (SD) 12 (10.1) 6.8 (4.5) 0.06

ICU length of stay, mean days (SD) 5.3 (4) 4.5 (4.1) 0.55

Readmission within 30 days, n (%) 1 (5) 1 (5.9) 1

SD, standard deviation; AAST, American Association for the Surgery of Trauma; SAE, splenic artery embolization; PRBCs, packed red blood cells; ICU, intensive care unit.

Table 3. Patient population stratified by embolization location

Proximal 
(n = 26)

Distal 
(n = 38)

Combined
(n = 8)

P value

Demographics/injury data

Age, mean (SD) 41.8 (17.1) 42.6 (18.2) 50.8 (12.4) 0.42

Male, n (%) 14 (53.8) 28 (73.6) 5 (62.5) 0.26

AAST grade, mean (SD) 3.3 (0.8) 3.6 (0.9) 3.6 (0.5) 0.35

Injury severity score, mean (SD) 25.9 (12.4) 28.1 (11.6) 24.5 (11.3) 0.64

Embolization material

Gelfoam® 9 20 0

Coil 17 5 0

Gelfoam® + coil 0 10 6

Particles + coil 0 2 1

Plug + coil 0 1 1

Embolization outcomes

Procedure length, mean min (SD) 68.0 (22.9) 75.8 (26.3) 64.4 (31.6) 0.35

Post SAE splenectomy, n (%) 3 (11.5) 3 (7.9) 1 (12.5) 0.86

Splenic abscess, n (%) 0 0 2 (25) 0.0003

Splenic infarct, n (%) 3 (11.5) 4 (10.5) 4 (50) 0.04

Symptomatic splenic infarct, n (%) 0 0 2 (25) 0.01

Total units of PRBCs, mean (SD)  2.9 (6.4) 2.4 (4.5) 1.9 (2.4) 0.87

Clinical outcomes

Hospital length of stay, mean days 
(SD) 9.2 (9.0) 12.3 (9.7) 10 (5.5) 0.4

ICU length of stay, mean days (SD) 5.9 (9.0) 6.0 (5.3) 5.8 (4) 0.24

Readmission within 30 days, n (%) 1 (3.8) 2 (5.3) 1 (12.5) 0.64

SD, standard deviation; AAST, American Association for the Surgery of Trauma; SAE, splenic artery embolization; 
PRBCs, packed red blood cells; ICU, intensive care unit.
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In particular, distal embolization with Gel-
foam® was not associated with an increased 
rate of splenic infarction when compared 
with proximal embolization with coils. Dis-
tal embolization is commonly cited as being 
associated with a higher incidence of splenic 
infarction than proximal embolization.1,17,18 
This increased risk of splenic infarction is 
thought to be the result of a lack of collat-
eral blood flow to the spleen, which is com-
monly preserved by proximal embolization.1 
Although splenic infarction often occurs in 
the absence of clinical consequences, it may 
result in sequalae such as splenic abscess or 
rupture.19 However, our study found no asso-
ciation between distal embolization and an 
increased risk of splenic infarct or abscess.

Physicians at our institution often select 
distal embolization with Gelfoam® because 
of its many perceived benefits. Distal em-
bolization preserves normal blood flow to 
a larger portion of the spleen, allowing for 
a more targeted treatment of focal lesions 
than proximal embolization.8 Distal embo-
lization may also be preferentially select-
ed over proximal embolization because of 
the lack of access for re-intervention distal 
to the initial site of embolization following 
proximal embolization.1 Gelfoam® acts as a 
temporary agent and may preserve larger 
portions of splenic parenchyma. This may 
be especially beneficial for the treatment of 
trauma patients, who are often younger and 

have fewer comorbidities that would hinder 
the healing process. In addition, Gelfoam® 
represents an inexpensive embolization ma-
terial when compared with other options, 
lowering the cost burden for both hospitals 
and patients.8,10,20

In our study, two patients were reported 
to have follow-up CT scans with findings sug-
gestive of splenic abscess formation follow-
ing embolization. Both patients were embo-
lized with a combination of Gelfoam® distally 
and coils proximally. Our study also found 
that patients treated with combined em-
bolization had a significantly higher rate of 
symptomatic and asymptotic splenic infarct 
than patients treated with any emboliza-
tion technique used in isolation. Combined 
embolization has previously been associat-
ed with higher rates of complications, with 
one meta-analysis indicating that combined 
embolization had a complication rate more 
than double that of proximal or distal embo-
lization alone.2 The increase in complications 
following combined embolization may be 
attributed to the loss of perfusion to great-
er portions of the spleen. This is supported 
by our study, which identified no abscesses 
following embolization with any technique 
used in isolation yet identified splenic ab-
scesses in 25% of patients embolized with 
combined proximal and distal emboliza-
tion.2,11,12,21,22

This study demonstrates that distal em-
bolization with Gelfoam® and the use of 
Gelfoam® or distal embolization alone is safe 
and may be beneficial in the setting of acute 
blunt trauma. The limitations of the present 
study are that it is a retrospective, single-cen-
ter study. However, the results of our study 
represent a real-life, level 1 trauma center ex-
perience representative of the patient popu-
lation in our region.

In conclusion, the splenic salvage rate in 
this study was 90.3%. The results of this study 
suggest that distal SAE with Gelfoam® is safe, 
and in our experience, it was not associated 
with an increased risk of splenic infarction 
compared with proximal SAE with coils. 

Footnotes

Conflict of interest disclosure

Bahri Üstünsöz, MD, is Section Editor in 
Diagnostic and Interventional Radiology. He 
had no involvement in the peer-review of this 
article and had no access to information re-
garding its peer-review. Alison A. Smith is a 
paid consultant for Aroa Biosurgery and on 
the advisory board for Prytime Medical De-
vices. Other authors have nothing to disclose.

References
1. Quencer KB, Smith TA. Review of proximal 

splenic artery embolization in blunt 
abdominal trauma. CVIR Endovasc. 
2019;2(1):11. [CrossRef]

2. Rong JJ, Liu D, Liang M, et al. The impacts of 
different embolization techniques on splenic 
artery embolization for blunt splenic injury: a 
systematic review and meta-analysis. Mil Med 
Res. 2017;4:17. [CrossRef]

3. Lukies M, Zia A, Kavnoudias H, et al. Immune 
function after splenic artery embolization 
for blunt trauma: long-term assessment of 
CD27(+) IgM B-cell levels. J Vasc Interv Radiol. 
2022;33(5):505-509. [CrossRef]

4. Lin BC, Wu CH, Wong YC, et al. Splenic artery 
embolization changes the management of 
blunt splenic injury: an observational analysis 
of 680 patients graded by the revised 2018 
AAST-OIS. Surg Endosc. 2023;37(1):371-381. 
[CrossRef]

5. Cretcher M, Panick CEP, Boscanin A, Farsad 
K. Splenic trauma: endovascular treatment 
approach. Ann Transl Med. 2021;9(14):1194. 
[CrossRef]

6. Aoki M, Onogawa A, Matsumoto S, 
Matsushima K. Recent trends in the 
management of isolated high-grade splenic 
injuries: A nationwide analysis. J Trauma Acute 
Care Surg. 2023;94(2):220-225. [CrossRef]

7. Ahuja C, Farsad K, Chadha M. An overview of 
splenic embolization. AJR Am J Roentgenol. 
2015;205(4):720-725. [CrossRef]

Table 4. Patient population stratified by embolization material

Gelfoam®
(n = 29)

Coil
(n = 22)

Combined
(n = 21)

P value

Demographics/injury data

Age, mean (SD) 44.9 (18.8) 43.5 (17.6) 40.7 (15) 0.7

Male, n (%) 19 (65.5) 15 (68.2) 13 (61.9) 0.97

AAST grade, mean (SD) 3.7 (0.7) 3.1 (0.9) 3.6 (0.7) 0.02

Injury severity score, mean (SD) 30.7 (13.5) 24 (11.0) 22.7 (47.3) 0.54

Post-embolization outcomes    

SAE procedure length, mean min (SD) 69.1 (24) 73.6 (23.4) 73.3 (30.8) 0.78

Post SAE splenectomy, n (%) 2 (6.9) 3 (13.6) 2 (9.5) 0.72

Splenic abscess, n (%) 0 0 2 (9.5) 0.08

Splenic infarct, n (%) 4 (13.8) 3 (13.6) 4 (19.4) 0.84

Symptomatic splenic infarct, n (%) 0 0 2 (19.4) 0.08

Total units of PRBCs, mean (SD) 2.6 (6.4) 2 (3.2) 3 (9.5) 0.81

Clinical outcomes

Hospital length of stay, mean days (SD) 11.0 (8.8) 10.5 (8.9) 11.2 (10.1) 0.97

ICU length of stay, mean days (SD) 5.2 (4) 7 (6.2) 5.9 (6.7) 0.52

Readmission within 30 days, n (%) 1 (3.4) 1 (4.5) 2 (9.5) 0.63

SD, standard deviation; AAST, American Association for the Surgery of Trauma; SAE, splenic artery embolization; 
PRBCs, packed red blood cells; ICU, intensive care unit.

http://doi.org/10.1186/s42155-019-0055-3
http://doi.org/10.1186/s40779-017-0125-6
http://doi.org/10.1016/j.jvir.2022.02.004
http://doi.org/10.1007/s00464-022-09531-0
http://doi.org/10.21037/atm-20-4381
http://doi.org/10.1097/TA.0000000000003833
http://doi.org/10.2214/AJR.15.14637


 

Splenic artery embolization in the treatment of blunt splenic injury • 365

8. Raikhlin A, Baerlocher MO, Asch MR, 
Myers A. Imaging and transcatheter 
arterial embolization for traumatic splenic 
injuries: review of the literature. Can J Surg. 
2008;51(6):464-472. [CrossRef]

9. Brahmbhatt AN, Ghobryal B, Wang P, Chughtai 
S, Baah NO. Evaluation of splenic artery 
embolization technique for blunt trauma. 
J Emerg Trauma Shock. 2021;14(3):148-152. 
[CrossRef]

10. Ekeh AP, Khalaf S, Ilyas S, Kauffman S, 
Walusimbi M, McCarthy MC. Complications 
arising from splenic artery embolization: 
a review of an 11-year experience. Am J Surg. 
2013;205(3):250-254. [CrossRef]

11. Habash M, Ceballos D, Gunn AJ. Splenic artery 
embolization for patients with high-grade 
splenic trauma: indications, techniques, and 
clinical outcomes. Semin Intervent Radiol. 
2021;38(1):105-112. [CrossRef]

12. Smith HE, Biffl WL, Majercik SD, Jednacz 
J, Lambiase R, Cioffi WG. Splenic artery 
embolization: have we gone too far? J Trauma. 
2006;61(3):545-546. [CrossRef]

13. Abada HT, Golzarian J. Gelatine sponge 
particles: handling characteristics for 
endovascular use. Tech Vasc Interv Radiol. 
2007;10(4):257-260. [CrossRef]

14. Lopera JE. Embolization in trauma: review 
of basic principles and techniques. Semin 
Intervent Radiol. 2021;38(1):18-33. [CrossRef]

15. Kozar RA, Crandall M, Shanmuganathan K, et 
al. Organ injury scaling 2018 update: Spleen, 
liver, and kidney. J Trauma Acute Care Surg. 
2018;85(6):1119-1122. [CrossRef]

16. Javali RH, Krishnamoorthy, Patil A, 
Srinivasarangan M, Suraj, Sriharsha. 
Comparison of injury severity score, new 
injury severity score, revised trauma score and 
trauma and injury severity score for mortality 
prediction in elderly trauma patients. Indian J 
Crit Care Med. 2019;23(2):73-77. [CrossRef]

17. Imbrogno BF, Ray CE. Splenic artery 
embolization in blunt trauma. Semin Intervent 
Radiol. 2012;29(2):147-149. [CrossRef]

18. Schnüriger B, Inaba K, Konstantinidis A, 
Lustenberger T, Chan LS, Demetriades D. 
Outcomes of proximal versus distal splenic 

artery embolization after trauma: a systematic 
review and meta-analysis. J Trauma. 
2011;70(1):252-260. [CrossRef]

19. Entriken C, Weed Z, Parikh PP, Ekeh AP. 
Complications following splenic embolization 
for trauma: have things changed over time? J 
Surg Res. 2022;277:44-49. [CrossRef]

20. Lin BC, Wu CH, Wong YC, et al. Comparison 
of outcomes of proximal versus distal and 
combined splenic artery embolization in the 
management of blunt splenic injury: a report 
of 202 cases from a single trauma center. Surg 
Endosc. 2023;37(6):4689-4697. [CrossRef]

21. Liu PP, Lee WC, Cheng YF, et al. Use of 
splenic artery embolization as an adjunct 
to nonsurgical management of blunt 
splenic injury. J Trauma. 2004;56(4):768-773. 
[CrossRef]

22. Franco F, Monaco D, Volpi A, Marcato C, Larini 
P, Rossi C. The role of arterial embolization 
in blunt splenic injury. Radiol Med. 
2011;116(3):454-465. [CrossRef]

  

http://doi.org/10.4103/JETS.JETS_64_20
http://doi.org/10.1016/j.amjsurg.2013.01.003
http://doi.org/10.1055/s-0041-1724010
http://doi.org/10.1097/01.ta.0000235920.92385.2b
http://doi.org/10.1053/j.tvir.2008.03.002
http://doi.org/10.1055/s-0041-1724015
http://doi.org/10.1097/TA.0000000000002058
http://doi.org/10.5005/jp-journals-10071-23120
http://doi.org/10.1055/s-0032-1312577
http://doi.org/10.1097/TA.0b013e3181f2a92e
http://doi.org/10.1016/j.jss.2022.03.021
http://doi.org/10.1007/s00464-023-09960-5
http://doi.org/10.1097/01.ta.0000129646.14777.ff
http://doi.org/10.1007/s11547-011-0624-y


I N T E R V E N T I O N A L  R A D I O L O G Y
O R I G I N A L  A R T I C L ECopyright@Author(s) - Available online at dirjournal.org.

Content of this journal is licensed under a Creative Commons
Attribution-NonCommercial 4.0 International License.

366

PURPOSE
The use of flow diverter (FD) stents is continually expanding. Aneurysms on arterial bifurcation typ-
ically have an undesirable anatomical form, are frequently wide-necked, and include one or more 
side-branch arteries. In recent years, the off-label use of flow diversion in treating intracranial aneu-
rysms beyond the internal carotid artery has become increasingly popular. This study reports our 
center’s initial experience treating bifurcation aneurysms with FD devices, documenting occlusion 
outcomes using the O’Kelly–Marotta and modified Cekirge–Saatci scales, as well as the safety of FD 
usage in bifurcation locations.

METHODS
This retrospective, single-center study analyzed a prospectively maintained database of patients 
with cerebral aneurysms treated endovascularly. The study identified bifurcation aneurysms that 
were treated between January 2019 and May 2022 by placing an FD device covering the neck of 
the aneurysm. 

RESULTS
Our short series suggests that flow diversion is a viable therapeutic option for bifurcation aneu-
rysms with favorable angiographic outcomes. 

CONCLUSION
In highly selective cases, flow diversion may be considered for treating bifurcation aneurysms in 
patients who will undergo follow-up examinations in the future. 

CLINICAL SIGNIFICANCE
Flow diversion has emerged as a valuable technique in the management of bifurcation aneurysms, 
offering the potential for satisfactory occlusion and long-term outcomes. 

KEYWORDS
Intracranial aneurysm, bifurcation cerebral aneurysm, flow diverter, O’Kelly–Marotta Scale, modi-
fied Cekirge–Saatci scale

The majority of cerebral aneurysms can now be successfully treated with flow diverter 
(FD) stents, and their applications are continually expanding to include distal aneu-
rysm locations.1 Aneurysms located on arterial bifurcation typically exhibit undesirable 

anatomical morphology, involving one or more side-branch arteries and often possessing a 
large neck.2 Bifurcation artery aneurysms may sometimes feature wide-neck topologies that 
incorporate adjacent branches, resulting in a particularly complex morphology.3 Due to the 
high rate of long-term occlusion and lower surgical morbidity, despite the above-mentioned 
features, endovascular treatment is often considered the primary option for bifurcation aneu-
rysms in some institutions.4

Nonetheless, there is a growing trend in utilizing endovascular methods to treat bifurca-
tion aneurysms, driven by advancements in angiographic imaging, increased operator exper-
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tise, and the adoption of more sophisticated 
techniques. Various endovascular tech-
niques, such as stent-assisted coiling, bal-
loon remodeling, Y-stenting, and Woven En-
doBridge devices, have been employed for 
bifurcation aneurysm treatment. However, 
the outcomes do not provide satisfactory oc-
clusion and have some complication rates.5

Flow diversion has emerged as an alterna-
tive method for treating challenging bifurca-
tion aneurysms, particularly those involving 
a single side branch or those with a history 
of endovascular or surgical failure. The effec-
tiveness and safety of this approach are still 
under investigation, with ongoing debate 
regarding the role of flow diversion in bifur-
cation aneurysms.6

Methods 
This retrospective single-center study is 

based on a prospectively maintained data-
base of patients with cerebral aneurysms 
treated endovascularly. The study identified 
bifurcation aneurysms treated between Jan-
uary 2019 and May 2022 by placing an FD 
device covering the neck of the aneurysm, as 
shown in Figure 1.

The study’s FDs were used regardless of 
the availability of appropriate clips or stents, 
with dual-trained physicians overseeing the 
specifics of the treatment plan. The common 
antiplatelet regimen was acetylsalicylic acid 
(100 mg daily) and ticagrelor (one 90-mg 

tablet twice daily). Postoperative follow-up 
visits were scheduled at 6, 12, and 24 months 
for comprehensive neurological assess-
ments. Magnetic resonance imaging (MRI)/
MR angiography was accepted if the patient 
was unable to undergo digital subtraction 
angiography (DSA).

Operation characteristics

Following the induction of general anes-
thesia, all procedures were conducted us-
ing a biplane flat-panel DSA unit (Artis Zee, 
Siemens). A long 6-Fr introducer sheath was 
inserted into the femoral artery. A guiding 
catheter, either Chaperon (MicroVention) 
or Asahi (Asahi Intecc), and, in some cases, 
a more distal intermediate catheter (Far-
gomax, Balt; or Sofia, MicroVention), were 
positioned. The appropriate microcatheter 
(Echelon Medtronic; Headway, MicroVention; 
Gama-17, Balt Extrusion) was advanced into 
the chosen bifurcation branch using 0.014 
guidewires. When positioning the FD stent, 
particular attention was given to covering 
the fewest branches as possible. Following 
the FD stent’s deployment, adjunctive coil-
ing was performed using a jailed microcath-
eter in aneurysms greater than 15 mm. The 
Silk FD (Balt Extrusion) was used in 11 pa-
tients, and 4 patients were treated with the 
P48 MW (Phenox). All aneurysms in our series 
were treated with a single FD stent. Three 
aneurysms (20%) required the use of coils 
as an adjunct due to their size (patients #7, 
#11, and #13). In one case of low-profile FD 
usage with the P48 stent, additional coiling 
was used for better occlusion (patient #12). 
Patient #15 had coiling initially after the rup-
ture, and the FD was used 2 weeks later. Fol-
lowing extubation in the intensive care unit 
(ICU), the patients spent at least 2 hours in a 
neurovascular ICU.

Clinical and imaging assessment

At every stage, the patients underwent a 
clinical evaluation using the modified Rankin 
scale (mRS). Following treatment, clinical 
statuses and any neurologic impairments at 
discharge or follow-up were documented. 
At least two DSAs, including 3-dimensional 
selective angiography runs, were performed 
at 6, 12, and 24 months after the operation. 
The angiographic results were assessed ac-
cording to the O’Kelly–Marotta and modified 
Cekirge–Saatci grading scales. Integrated 
branch changes and the presence of intimal 
hyperplasia were also assessed.

Written informed consent was obtained 
from the patients for publication and any 
accompanying images. The Ethical Commit-
tee of the National Center provided ethical 
approval for this study (number 2 of ethical 
approval for neurosurgery on June 19, 2024). 
In addition, the investigators ensured that 
the study conformed to the principles of the 
Declaration of Helsinki (last revised in 2013) 
and was conducted in accordance with the 
ICH Guidelines for Good Clinical Practice.

Results

Baseline population characteristics

There was a total of 15 patients: 7 men 
and 8 women, with a mean age of 54.6 ± 8.1 
years (range 46–68 years). The pretreatment 
mRS scores were 1 for 12 patients, 0 for one 
patient, 3 for one patient, and 4 for one pa-
tient. Four cases involved ruptured aneu-
rysms, two patients had multiple intracranial 
aneurysms, and five patients presented with 
headaches. Table 1 summarizes the baseline 
clinical characteristics.

Figure 1. The flowchart of the study representing the criteria and number of patients from initial retrieval to 
the final study cohort.

Main points

• Flow diversion may be a viable treatment 
option for certain bifurcation aneurysms 
with complex anatomical features and 
challenging hemodynamics, particularly in 
cases when the aneurysm is off-centered or 
involves small distal vessels, and the patient 
can commit to ongoing follow-up exam-
inations. However, this approach requires 
careful patient selection and thorough as-
sessment of the potential risks and benefits 
in a multidisciplinary setting.

• The modified Cekirge–Saatci classification 
scale is highly useful in reporting aneurysms 
treated by flow diverter stents.

• Understanding the development and impli-
cations of neointimal hyperplasia is essential 
for clinicians involved in the management 
of bifurcation aneurysms treated with flow 
diversion. As research in this area continues 
to evolve, ongoing efforts are focused on 
refining techniques and identifying strate-
gies to minimize the impact of neointimal 
hyperplasia while optimizing the long-term 
outcomes for patients undergoing flow di-
version for bifurcation aneurysms.
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Aneurysm characteristics

Seven patients had anterior cerebral ar-
tery distal bifurcation aneurysms, four pa-
tients had middle cerebral artery bifurcation 
aneurysms, three had an anterior communi-
cating artery (ACom) aneurysm, and one had 
a posterior cerebral artery (PCA) bifurcation 
aneurysm. Two (13%) were giant aneurysms, 
and six (40%) were large aneurysms; the re-

maining aneurysms were small. We did not 
treat any aneurysms during the acute phase.

Outcomes

Table 2 summarizes the angiographic out-
comes and the immediate post-procedure 
results. The average follow-up period for 
all patients in the study was 22 ± 9 months 
(95% confidence interval for the mean, 19–

24 months). In the immediate results, we 
observed mostly grade C outcomes (33%) 
according to the O’Kelly–Marotta grading 
scale. During the follow-up period, 10 out 
of 15 patients attended their follow-up ap-
pointments. Among them, 80% achieved 
complete occlusion (class 1 by the modified 
Cekirge–Saatci grading scale) or had stable, 
altered angioarchitecture. Intimal hyperpla-
sia was detected in 27% of our patients but 

Table 1. Patient, aneurysm, and stent characteristics

Case no. Presentation Age/gender Side/location Size of neck/dome 
(mm)

Dome-to-
neck ratio* FD stent, size (mm) Additional 

coiling

1 
mIAs, arterial 
hypertension 48/F

Bilobar
Small
Right
A1–A2

2.00 
3.66 × 2.15 1.83 Silk Vista 2.50 × 20 No

2 Headache 46/F

Saccular
Small
Left

A1–A2

2.5
3.09 × 2.97 1.23 P48 MW 3.00 × 18 No

3
Speech problems; 
right hemiparesis 

SAH in 2014
49/M

Saccular
Small

Right A2

2 
2.5 × 2.5 1.25 Silk Vista 2.75 × 20 No

4 Left hemiparesis
SAH in 2022 52/F Small

ACom
2.5 

2.5 × 3.3 1.32 Silk Vista Baby
 2.5 × 20 No

5
 Loss of conciseness 47/F

Giant
Right 

M1–M2

5.31
17.5 × 6.0 × 15.3 3.2 Silk Vista Baby 2.75 × 25 No

6
 Headache 63/F

Large
Right

A1–A2

3.7
5.39 × 3.50 × 4.12 1.45 Silk Vista Baby 2.75 × 20 No

7 Vision decrease in 
left eye 62/M Large

ACom
6.5

10.7 × 11.4 × 15 1.75 Silk Vista Baby 2.75 × 25 Yes

8 Headache 68/M
Large
Right 
P1–P2

9.1
11.9 × 14.0 1.5 Silk Vista Baby 2.25 × 20 No

9
Headache

AH 
Recanalized

54/F
Large
Right

M1-M2

3.5
7.5 × 3.0 2.14 Silk 2.25 × 15 No

10 Hemorrhage after 
stent 50/F

Small
Left
A3

2.87
2.5 × 2.5 × 2.0 0.87 P48 1.5 × 20 No

11 Ischemic stroke in 
1998 64/M

Giant
Right 

M1–M2

3.8
21 × 12.2 5.5 Silk Vista 3.0 × 25 Yes

12 mIAs, headache 47/M
Small
Right 

A2–A3

7.18
4.70 × 3.74 0.6 P48 MW 3.0 × 18 Yes

13 Headache 58/M
Large
Left

A2–A3

3.39
6.28 × 4.20 × 3.39 1.85 Silk Vista 2.5 × 15 Yes

14 SAH 2016
Recanalized 62/M

Large
Left 

M1–M2

3.5
7.5 × 3.0 2.14 P48 MW 3.0 × 18 No

15 SAH in 2022 50/F
Recanalized

Small
ACom

3.0
3 × 3 1.0 Silk Vista 2.25 × 15 Yes 

FD, flow diverter; F, female; M, male; ACom, anterior communicating artery.
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was not clinically significant; these patients 
were advised to continue dual antiplatelet 
therapy (DAPT).

In this study, adjunctive coiling was per-
formed in one-third of the patient cohort. 
This was done by coiling the aneurysm dome 
while sparing the neck and then applying 
the stent. Some technical complications are 
also described in Table 2.

Unfortunately, our case series included 
one death: 6 months after discharge, one 
patient (#14) passed away from a myocardi-
al infarction, according to the clinical history 
provided by the family.

One patient (#7) was lost to follow-up, 
and three patients (#4–6) declined follow-up 
during the telephone interview. One patient 
(#11) is currently receiving chemotherapy 

for cancer, but MRI shows signs of aneurysm 
obliteration.

Case examples

Case #1: patient #8

A 68-year-old man presented to our clinic 
in 2020 with a large incidental aneurysm at 
the junction of the posterior communicating 
artery and the PCA, measuring 11.9 × 14.0 
mm in diameter, with a neck size of 9.1 mm. 
The decision was made to treat the aneu-
rysm with FD placement. The operation was 
performed using a Silk Vista Baby measuring 
2.25 × 20 mm. Control angiography showed 
aneurysm occlusion at the initial follow-up 
6 months later (Figure 2). At the 3-year fol-
low-up, the O’Kelly–Marotta grade was D and 
class 1A according to the modified Cekirge–
Saatci classification.

Case #2: patient #7

A 62-year-old man presented with an ini-
tial complaint of decreased vision in his left 
eye. MRI revealed a large ACom aneurysm 
with maximum dimensions of 10.7 × 11.4 × 
15 mm and a neck size of 6.5 mm. The man-
agement plan involved the use of an FD de-
vice, and the procedure included placing a 
Silk Vista Baby stent measuring 2.75 × 25 mm 
in the A1–A2 segment of the right anterior 
cerebral artery, along with additional coil-
ing. During follow-ups at 12- and 24-months 
post-procedure, residual aneurysm filling 
with remodeling was noted. Despite this 
finding, the decision was made to continue 
observation with DAPT due to ongoing oblit-
eration. At the 3-year follow-up, the O’Kelly–
Marotta grade was 3B and class 3 according 
to the modified Cekirge–Saatci classification, 
as shown in Figure 3.

Table 2. Immediate and latest follow-up results

Case 
no.

mRS 
before Immediate results Last FU result

Integrated 
branch site 
changes*

Intimal 
hyperplasia

Complications mRS 
after

Peri 
operative

90 days 
FU

Jailed 
artery(s)

O’Kelly–
Marrotta 
grading 
system

O’Kelly–Marrotta 
grading system

Modified 
Cekirge–Saatci 
classification

MRI/MRA

1 1 Right A2 C2 D (6, 12 months) 1 abs No change No No No 1

2 0 Left A1, A2 C2 D (6, 12 months) 1 abs No change No No No 0

3 4 Left A1, A2 A2 D (6, 12 months) 1A abs Changing 
caliber Yes No No 1

4 3 Left A1, A2 A3 - - - - - Yes$ - 3

5 1 Right parietal 
MCA C1 - - - - - No - 1

6
 1 Left A1, A2 D - - - - - Yes+ - 1

7 1 Right A1, A2 B3 B3 5A Stagnation No change No No No 1

8 1 Right PCA C2 D (6, 12, 24 
months) 1 abs No change No No No 1

9 1 Right M1 A2 D (6, 12 months) 1 abs No change No No No 3

10 1 Right M3 D D (6, 12 months) 1 abs No change Yes No No 1

11 1 Right M1 C2 - - abs - - - - 1

12 1 Left A1 C2 D (12 months ) 2

Aneurysm 
neck 

filling (26 
months)

Changing 
caliber Yes No No 1

13 1 Left A2, A3 C1 D (6, 12, 24 
months) 1 abs No change Yes No No 0

14 1 Right A2, A3 C2 - - - - - - - 6

15 1 Left A2 А2 D (6, 12, 24 
months) 1 abs No change No No No 0

*No change/occlusion/changing caliber. $Spontaneous stent separation in the microcatheter from the delivery system, Echelon-10 replaced by HeadwayDUO; Silk Vista Baby 2.25 
× 20 mm changed to Silk Vista Baby 2.5 × 20 mm. +Due to the difficult acute angle of detachment of the A1 segment of the left PMA and the rigidity of the distal segment of the 
microcatheter, gamma17_d was replaced with gamma17_DS. mRS, modified Rankin scale; MRI, magnetic resonance imaging; MRA, magnetic resonance angiography.
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Discussion
FDs are medical devices used in the treat-

ment of intracranial aneurysms, including 
those located at bifurcations.1 Bifurcation 
aneurysms occur at the junction where two 

blood vessels divide, creating a Y-shaped 
structure.2 Treating aneurysms in these loca-
tions poses specific challenges, and FDs are 
one of the evolving tools in neuro-interven-
tional procedures.3

Schob et al.4 conducted a retrospective 
analysis of patients treated with indirect flow 
diversion for off-centered bifurcation aneu-
rysms. The authors found that indirect flow 
diversion was a safe and effective approach, 
with reduced perfusion of the aneurysm im-
mediately after implantation and observable 
occlusion and reduction in size at follow-up.4 
The pipeline embolization device (Medtron-
ic, Irvine, CA, USA) was granted Food and 
Drug Administration approval in 2011, mak-
ing it the first FD approved for use in the 
United States market.5 Initially, approval was 
intended for use in treating large or giant 
wide-necked aneurysms in the internal ca-
rotid artery, from the petrous to the superior 
hypophyseal segments, in individuals aged 
22 years and older.6 For more than 5 years, 
the off-label use of FD stents for the treat-
ment of distal aneurysms has been reported, 
but it remains debated.6

In our preliminary experience, FD devices 
were found to be safe for use in bifurcational 
aneurysms. The outcomes of this assessment 
were documented using the O’Kelly–Marotta 
and modified Cekirge–Saatci scales. In our 
series, among the patients who attended 
follow-up examinations, the total occlusion 
rate was 53% (8/15), with 80% of these classi-
fied as class 1 by the modified Cekirge–Saat-
ci classification. This outcome is primarily 
attributed to factors related to the patients, 
such as missed follow-up MRI appointments 
and one case of mortality. Some studies have 
reported high rates of complete occlusion 
with flow diversion in bifurcation aneurysms, 
ranging from 62% to 80%.7,8 While high rates 
of complete occlusion with flow diversion in 
bifurcation aneurysms have been reported, it 
is important to consider the potential draw-
backs and complications associated with this 
technique. Additionally, there have been 
reports of ischemic complications (NICE le-
sions) and procedure-related morbidities in 
patients treated with flow diversion for bi-
furcation aneurysms;9 however, we did not 
observe any in our case series.

Some emerging technologies, such as 
intrasaccular flow disruption devices and 
intrasaccular FDs, are being investigated 
as alternatives to traditional flow diversion 
techniques. These devices aim to address 
the limitations of standard flow diversion by 
providing more precise aneurysm occlusion 
while minimizing the risk of delayed aneu-
rysm rupture.10 Stent-assisted coiling was 
initially introduced for wide-neck aneurysms 
based on the hypothesis that a stent can pro-
vide a framework to hold the coils in the an-
eurysmal cavity, preventing coil migration.11 

Figure 2. Patient #8. (a) Axial post-contrast images demonstrating a large incidental aneurysm at the junction 
of posterior communicating artery and posterior cerebral artery (PCA). (b) Sagittal images demonstrating 
a PCA aneurysm with adjacent brain compression. (c, d) Control magnetic resonance imaging/magnetic 
resonance angiograph demonstrating the absence of the aneurysm. (e, f) Pre-operative digital subtraction 
angiography demonstrating aneurysm sizes of 11.9 × 14.0 mm and a neck size of 9.1 mm. (g, h) At 3 years 
of follow-up, O’Kelly–Marotta grade D and class 1A according to the modified Cekirge–Saatci classification. 
The sequence of images illustrates the potential physiological development following flow diverter 
reconstruction, beginning with mechanical flow diversion and advancing to natural aneurysm thrombosis 
and complete occlusion. This is followed by internal parent artery repair, leading to complete anatomical 
restoration with the disappearance of the aneurysm-thrombus mass and a decrease in the regional mass 
effect. 

a

e f g h

b c d

Figure 3. Patient #7. (a) Axial T2 Propeller magnetic resonance imaging showing a large partially thrombosed 
anterior communicating artery (ACom) aneurysm measuring 37 × 33 × 28 mm on initial presentation on 
09/14/2022, with perianeurysmal edema. (b) Axial T2 image from the control presentation on 04/11/2024, 
showing signs of aneurysm shrinkage measuring 29 × 28 × 26 mm. (c) Initial angiogram in the working 
projection demonstrating a large contrast-filled aneurysm measuring 10.7 × 11.4 × 15 mm arising from 
ACom. (d) At 3 years of follow-up, O’Kelly–Marotta grade 3B and class 3 according to the modified Cekirge–
Saatci classification.     

a b

c d
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However, some new stents are being devel-
oped specifically for this approach.7 Patient 
#12 presented with a filling of the aneurys-
mal neck despite coiling, and the underlying 
cause remained unclear.

The modified Cekirge–Saatci classification, 
first described in 2015,12 is an FD-specific oc-
clusion classification that allows the subclas-
sification of incorporated branches, aneu-
rysm neck, and aneurysm occlusion changes 
in patients. However, not many centers report 
outcomes using this scale, which makes it 
difficult to assess outcomes in bifurcation or 
other challenging pathologies. In our series, 
one patient was classified as modified Ce-
kirge–Saatci class 1A, with a reduced caliber 
branch due to intimal hyperplasia, although 
this was not clinically significant. The cause of 
intimal hyperplasia is the vascular endotheli-
um, which is located at a crucial interface and 
becomes vasoactive in response to minute 
changes in hemodynamic conditions.13

Intimal hyperplasia is a common physio-
logical response to vascular injury or alter-
ations in blood flow dynamics, and it can be 
a significant issue when dealing with FDs, 
especially in the context of treating cerebral 
aneurysms.13,14 Intimal hyperplasia involves 
the proliferation of smooth muscle cells 
and the accumulation of extracellular ma-
trix within the intima, the innermost layer of 
the blood vessel.14 When an FD is placed, the 
body may respond to the presence of foreign 
material and altered flow dynamics by initi-
ating a healing response, which can include 
the development of intimal hyperplasia.15

Intimal hyperplasia has been reported 
with FD usage but not clearly in bifurcation 
aneurysms.13,14 However, neither pore densi-
ty nor metal coverage has a significant asso-
ciation with aneurysmal occlusion.15 Accord-
ing to systematic reviews,16 ticagrelor was 
associated with better survival17 and lower 
neointimal hyperplasia.18 Nevertheless, the 
27% rate of intimal hyperplasia observed at 
the latest follow-up in our series of patients 
could be due to non-adherence to therapy.

This study has several limitations that need 
to be acknowledged. First, the retrospective 
single-center design introduces inherent bias, 
presenting descriptive data on a limited and 
diverse population. The retrospective nature 
of the research relies on previously collected 
data, which might introduce several biases 
and limitations of the single-centered study. 
For instance, the core lab analyses and fol-
low-up images may be incomplete, and the 
study cannot control for all variables that 
might influence outcomes. Additionally, the 

retrospective nature means that the study is 
subject to selection bias, as it depends on cas-
es that were previously selected for treatment 
or observation. These factors may affect the 
generalizability and accuracy of the findings. 
Second, subgroup analysis by FD stent type 
is not possible due to the limited population 
size. The rarity of flow diversion usage in bi-
furcational aneurysms further exacerbates 
this issue, making it challenging to conduct 
prospective studies or randomized trials. Con-
sequently, it is crucial to interpret the results 
of this study while considering the inherent 
selection bias. The study’s main limitation lies 
in its small sample size, suggesting that sur-
gical outcomes might differ when research is 
conducted on a larger scale. We recommend 
that future researchers recruit larger sample 
sizes through multicenter studies.

In conclusion, flow diversion has emerged 
as an exceptionally valuable technique in the 
management of bifurcation aneurysms, pro-
viding the potential for satisfactory occlusion 
and favorable long-term outcomes. However, 
this technique requires further assessment. 

Footnotes
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Computed tomography-guided cryoablation in treating adrenal 
metastases: a retrospective single-center study

PURPOSE
To assess the effectiveness and safety of computed tomography (CT)-guided cryoablation for treat-
ing adrenal metastases (AMs).

METHODS
This study included 12 patients treated with 13 CT-guided cryoablation procedures for AMs be-
tween 2016 and 2020. Patients were selected based on specific criteria, including tumor size ≤5 cm 
and suitability for surgery. Procedures were performed by expert radiologists, with comprehensive 
monitoring for complications and regular post-treatment evaluations.

RESULTS
The primary technical success rate was 91.7%, with a secondary success rate of 100% following 
repeat procedures. Over an 8–24-month follow-up period, local tumor recurrence was observed in 
16.7% of patients, and systemic progression occurred in five (41.6%) patients. The average overall 
survival duration was 26.4 ± 5.6 months.

CONCLUSION
CT-guided cryoablation is a feasible and effective treatment option for AMs, demonstrating high 
technical success rates and manageable complications.

CLINICAL SIGNIFICANCE
This study highlights CT-guided cryoablation as a promising treatment for AMs, offering a mini-
mally invasive alternative to surgery with good local control and safety profile. Further research, 
including multi-center studies, is needed to confirm these findings.
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The increasing occurrence of metastatic tumors in the adrenal glands, originating from 
various types of cancers, such as lung, breast, colorectal, hepatocellular carcinoma, and 
melanoma, presents substantial challenges in the field of oncology.1-4

Studies indicate that adrenal metastatic presence can be as high as 27% in patients with 
widespread cancer.5,6

While the efficacy of direct adrenal interventions is yet to be established through randomized 
studies, the role of surgical resection, particularly for isolated adrenal metastases (AMs), has gained 
recognition in observational studies.7-11

However, surgical procedures such as adrenalectomy are often hampered by individual 
health concerns and the intricacies of the operations, resulting in prolonged hospital admis-
sions.1-4

In contrast, computed tomography (CT)-guided methods, such as radiofrequency and 
microwave ablation, have demonstrated encouraging 1-year survival rates without local re-
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currence, ranging from 70.5% to 82% in the 
treatment of AMs.1-3

As a CT-guided technique for treating 
AMs, cryoablation stands out among abla-
tion methods due to its unique advantag-
es. Unlike radiofrequency and microwave 
ablation, cryoablation allows for real-time 
visualization of the iceball, ensuring precise 
targeting and minimizing the risk of dam-
aging surrounding tissues. This method also 
benefits from the cold-induced anesthesia 
effect, which reduces pain during the proce-
dure and often eliminates the need for gen-
eral anesthesia, leading to quicker recovery 
times.12-16

As a more recent development, CT-guided 
cryoablation of AMs offers several benefits, 
including clear visualization of the treated 
area, minimized discomfort, and expedited 
recovery, achieving promising results in re-
cent studies, although its ultimate efficacy 
remains under evaluation.17-24

The purpose of this study is to evaluate 
the efficacy and safety of CT-guided cryoab-
lation in the treatment of AMs in comparison 
with other established ablation techniques.

Methods
This study was conducted according to 

the guidelines of the Declaration of Helsinki. 
Ethical review and approval were waived for 
the study due to its retrospective nature. The 
study was approved by Armando Businco On-
cology Hospital’s Ethics Committee (decision 
no: 53/15, date: 14/12/2015).

The study involved 12 patients who re-
ceived 13 CT-guided cryoablation procedures 

for AMs between January 2016 and Decem-
ber 2020.

Eligibility criteria included patients unsuit-
able for surgery, tumor size ≤5 cm, controlled 
or absent extra-adrenal tumors, and life ex-
pectancy ≥3 months. Exclusion criteria were 
adrenal vein invasion, significant coagula-
tion disorders, active infections, or bleeding 
(Figure 1, Table 1).

Diagnosis involved patient history, ab-
dominal CT/magnetic resonance imaging, 
and biopsy results, complemented by posi-
tron emission tomography-CT for detecting 
extra-adrenal tumors.

The procedures were performed by two 
expert interventional radiologists. Informed 
consent was secured from parents or guard-
ians, and patients were briefed on possible 
complications. Prior to the procedure, the 

skin entry site was anesthetized using 1% 
lidocaine, and patients received conscious 
sedation with midazolam and tramadol. The 
interventions utilized a multidetector CT 
system (SOMATOM® go.Top 128, Siemens 
Healthineers, Erlangen, Germany). An initial 
non-contrast CT scan was performed to as-
certain the morphological features of the le-
sion.

Following this, the cryoablation was con-
ducted-with the patient in the prone posi-
tion-utilizing a cryoablation system (Visual 
ICETM, Galil Medical-Boston Scientific, Arden 
Hills, MN, USA). This system was equipped 
with a single 17G insulated cryoprobe that 
could create ablation zones of varying diam-
eters: IceSphere 1.5 (22 × 28 mm at −20 °C 
and 15 × 24 mm at −40°) and IceRod 1.5 (29 
× 45 mm at −20 °C and 18 × 40 mm at −40°) 
(Figures 2, 3). Argon was used as the cryogen 

Main points

• Computed tomography-guided cryoabla-
tion achieved a high primary technical suc-
cess rate of 91.7% and a secondary success 
rate of 100% in treating adrenal metastases 
(AMs).

• The procedure demonstrated good local 
control with a low recurrence rate, compa-
rable to other ablation techniques.

• The safety profile was favorable, with no ma-
jor complications reported, making cryoab-
lation a viable option for patients unsuitable 
for surgery.

• The study suggests that cryoablation can 
effectively manage AMs while minimizing 
patient discomfort and recovery time.

• The findings support the need for further 
research to establish cryoablation as a stan-
dard treatment for AMs.

Table 1. Patient characteristics and treatments

Patient Age/sex Primary tumor Size of lesion in mm Number of cryoprobes

1 74/M NSCLC 24 × 18 2

2 78/F NSCLC 18 × 28 1

3 65/F RCC 17 × 11 1

4 68/M NSCLC 32 × 22 2

5 64/F RCC 2.5 × 2 2

6
67/M SCLC 28 × 22 2

SCLC 20 × 24* 2

7 45/F Gastric cancer 30 × 24 3

8 57/M NSCLC 20 × 26 2

9 58/M NSCLC 30 × 22 2

10 63/F NSCLC 28 × 21 1

11 54/M SCLC 22 × 18 1

12 61/F Synovial sarcoma 30 × 25 3

*Local recurrence treated with a second cryoablation. M, male; F, female; NSCLC, non-small cell lung cancer; SCLC, 
small cell lung cancer; RCC, renal cell carcinoma.

Figure 1. Flowchart of patient selection. CT, computed tomography; MRI, magnetic resonance imaging; PET, 
positron emission tomography.
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to create the iceball during the cryoablation 
process.

The cryoprobes were coaxially inserted 
into the adrenal lesions, as shown in Figure 
2d. Scans were taken during the procedure 
to verify the placement and orientation of 
the instrument. The procedure involved a sin-
gle 10-minute freezing cycle, followed by an 
8-minute passive thawing phase. The freez-
ing cycle was repeated twice. Post-freezing 
phase, non-contrast CT images were cap-
tured to evaluate the iceball’s coverage and 
to identify any immediate complications.

To ensure patient safety, particularly in 
terms of managing the risk of hypertensive 
crises that can occur during interventional 
procedures on the adrenal gland, an anesthe-
siologist was present to continuously monitor 
vital parameters, including blood pressure. 
Additionally, an alpha-blocker was readily 
available in the operating room to promptly 
address any hypertensive emergencies. 

Following the completion of the cryoabla-
tion procedures, abdominal CT images were 
acquired in all patients to detect early com-
plications.

Patients were monitored during the first 
24 hours and then discharged 1 day after the 
procedure if they were experiencing no dis-
comfort.

Regular physical and laboratory evalua-
tions, comprising blood cell count analysis, 
adrenal hormone measurements, and tumor 
marker monitoring based on the histological 
characteristics of the primary tumor, were 
conducted monthly.

Following adrenal cryoablation treatments 
and during the entire clinical and radiologic 
follow-up period, all the patients continued 
to receive their usual systemic therapies.

Regularly scheduled CT scans of the chest, 
abdomen, and pelvis, both with and without 
contrast, were conducted for patients at inter-
vals of 1, 3, 6, and 12 months post-cryoablation, 
followed by biannual scans. The scanning pro-
tocols mirrored those used initially to evaluate 
the adrenal tumor lesions prior to the cryoab-
lation.

Two months after the procedure, a com-
plete disappearance of contrast enhance-
ment in CT imaging was interpreted as a full 
response to the ablation treatment. By the 6th 
month, any alterations in contrast enhance-
ment or size increases of the treated areas 
seen in CT scans were indicative of potential 
recurrence or progression of the disease. The 
schedule for these radiological evaluations 
was largely influenced by the understanding 
that early post-procedure CT scans (within 
the first 30 days) can show intense enhance-
ment of the treated areas due to the inflam-
matory response triggered by the cryoabla-
tion process.20

Hormonal analysis, including adrenal hor-
mone levels, was conducted to assess the 
treatment’s impact on adrenal function.

Statistical analysis

Statistical analysis was conducted to eval-
uate the outcomes of the cryoablation pro-
cedures. Descriptive statistics were used to 
summarize patient demographics, treatment 
characteristics, and follow-up data, including 
means, standard deviations, and percentag-
es. For survival analysis, the Kaplan–Meier 
method was employed to estimate overall 
survival (OS) and progression-free survival 
(PFS) rates. The OS was defined as the time 
from the date of the first cryoablation pro-
cedure to the date of death from any cause, 
whereas the PFS was defined as the time from 
the first cryoablation procedure to the first 
documented evidence of disease progres-
sion or recurrence. The Kaplan–Meier curves 

Figure 2. A 78-year-old woman with a history of non-small cell lung cancer with solid left adrenal metastasis 
[yellow circle in the preoperative computed tomography (CT) scan in a]. Treatment of the lesion with 
cryoablation using two Icesphere 1.5 cryoprobes (Visual ICETM, Galil Medical-Boston Scientific, Arden Hills, 
MN, USA), via posterior percutaneous access (blue arrows in the intraoperative axial scan image in b and in 
the sagittal plane reconstruction in c). Complete necrosis of the lesion in the CT follow-up (green arrow in d).

Figure 3. A 68-year-old man with a history of non-small cell lung cancer with solid right adrenal metastasis 
(red circle in the preoperative computed tomography scan in a). Treatment of the lesion with cryoablation 
using two Icesphere 1.5 cryoprobes (Visual ICTM, Galil Medical-Boston Scientific, Arden Hills, MN, USA) via 
transhepatic access (blue arrows in the intraoperative reformatted coronal scan image in b and in the axial 
plane in c).
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were used to illustrate survival probabilities 
over time, and the corresponding 95% confi-
dence intervals (CIs) were calculated.

Results
All cryoablation sessions were success-

fully completed, and no procedure-related 
complications were observed. The CT scans 
performed post-procedure confirmed the 
expansion of the iceball, extending 1 cm be-
yond the tumor borders, thus establishing an 
adequate safety margin.

Patient demographics and treatment over-
view:

• A total of 12 patients with AMs under 
  went cryoablation treatment.

• Each patient presented with a single 
  adrenal tumor.

• None of the patients had undergone 
  adrenal resection prior to cryoablation.

Technical success:

• Complete tumor ablation, defined by  
  the disappearance of any intratumoral  
  arterial enhancement according to  
  mRECIST criteria17 was achieved in 11  
  out of 12 patients.

• This resulted in a primary success rate of  
  91.7%.

• One patient exhibited residual tumor  
  activity at follow-up and required a sub 
  sequent cryoablation session, which led  
  to complete local tumor control, 
  bringing the overall technical success  
  rate to 100%.

Follow-up and recurrence:

• The follow-up period ranged from 8 to  
  24 months, with a mean duration of 
  16.3 ± 5.1 months.

• Six patients (50%) underwent additional  
  systemic therapy post-cryoablation.

• Among this subgroup, three patients  
  developed extra-adrenal tumors.

• Local tumor recurrence was observed in  
  two patients (16.7%), occurring within a  
  span of 6–20 months (median: 13  
  months).

• One of these patients underwent a sec 
  ond cryoablation session due to local  
  recurrence, after which no further local  
  recurrences were detected in subse 
  quent CT scans.

Systemic progression and mortality:

• Systemic progression was documented  
  in five patients (41.7%):

  - Two cases of renal cancer recurrence

   - Two cases of non-small cell lung 
    cancer recurrence

  - One case of multiple bone metastases

• During the study period, five patients  
  died:

  - Four deaths were due to tumor 
    progression

  -  One death was due to heart failure

• The average OS duration was calculated  
  to be 26.4 ± 5.6 months (95% CI: 
  20.2–32.6).

Discussion
In recent advancements in oncological 

treatment, cryoablation has emerged as a 
standout technique for addressing AMs.15-19 
This minimally invasive procedure has gained 
prominence due to its unique mechanism of 
action and significant clinical benefits, par-
ticularly when compared with other thermal 
ablation methods, such as radiofrequency 
and microwave ablation.

Cryoablation works by inducing cellular 
destruction through the rapid freezing of 
tumor tissue, leading to ice crystal formation 
within cells and subsequent cell death.12 One 
of the key advantages of cryoablation is that 
it allows for visualization of the iceball in re-
al-time using CT imaging. This real-time vis-
ualization enables precise monitoring of the 
ablation process, ensuring that the iceball 
extends beyond the tumor margins, which 
is critical for achieving a complete ablation 
and minimizing the risk of recurrence.13,14 
Additionally, the cold-induced anesthesia 
effect often results in a generally painless 
procedure, reducing or eliminating the need 
for general anesthesia, which is a significant 
benefit for patients who may be at higher 
risk for anesthesia-related complications.15,16

This single-center study contributes val-
uable insights into the efficacy and safety 
of CT-guided cryoablation for AMs. With 12 
patients undergoing 13 procedures, we re-
corded a primary success rate of 91.7% and 
a secondary success rate of 100%, notewor-
thy when compared with existing literature 
where success rates for cryoablation, radiofre-
quency, and microwave ablation for AMs typi-
cally range from 70.5% to 82%.1,2,19-25

The high technical success rates observed 
in this study underscore the efficacy of cry-
oablation, particularly in achieving high pri-
mary complete ablation rates. Furthermore, 
the ability to perform follow-up cryoabla-
tions in cases of residual tumor activity en-
hances the overall efficacy of this treatment 
modality.11-18

In a study by Zhang et al.22, CT-guided cry-
oablation for AMs demonstrated a primary 
technical success rate of 90.3% and a second-
ary success rate of 100% among 31 patients. 
The study reported a 19.4% local progression 
rate and favorable survival outcomes, with 
1-, 3-, and 5-year local PFS rates at 80.6%, 
37.8%, and 18.4%, respectively. These results 
further validate the high efficacy of cryoabla-
tion, particularly in cases where initial treat-
ment might not fully eradicate the tumor.22

In 2021, Aoun et al.23 assessed the tech-
nical feasibility and safety of percutaneous 
cryoablation for AMs in 34 patients. The local 
recurrence rate was 10% over 1.8 years. Re-
currence was higher in tumors >3 cm. Major 
complications occurred in 5% of cases, with 
one directly linked to the procedure. Blood 
pressure increases were more significant in 
patients with residual adrenal tissue, but were 
manageable, especially with pre-treatment 
using alpha blockade.

Comparative studies further support 
the efficacy and safety of cryoablation. 
For example, in a meta-analysis by Pan et 
al.25, the efficacy and safety of image-guid-
ed percutaneous thermal ablation for 
AMs were evaluated. The study revealed 
a 1-year local control rate of 80% and a 
1-year OS rate of 77%, with severe ad-
verse events occurring in 16.1% of cases 
and intraprocedural hypertensive crises 
in 21.9%. These findings align closely with 
the outcomes of the present study, where 
we observed that cryoablation effectively 
controlled local tumor progression with 
minimal complications.25

An added benefit of cryoablation is the 
reduced risk of major complications, such as 
hypertensive crises, which are often associat-
ed with other thermal ablation methods.26,27

In the present study, minor complications, 
primarily mild increases in blood pressure, 
were effectively managed without any re-
ports of severe hypertensive crises. This as-
pect positions cryoablation as a potentially 
more favorable option for specific patient 
groups, particularly those who may be at 
higher risk for complications associated with 
other forms of thermal ablation.
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However, it is important to acknowledge 
the limitations of this study. The retrospec-
tive design may have introduced selection 
bias, and the single-center nature, coupled 
with a small patient cohort, limits the gen-
eralizability of the findings. Consequently, 
while our results are promising, they high-
light the need for multi-center randomized 
controlled trials to further validate the effica-
cy and safety of cryoablation in treating AMs 
and to explore its broader application across 
diverse patient populations.

In summary, this study reinforces the clin-
ical efficacy of cryoablation for the treatment 
of AMs, particularly in achieving high pri-
mary complete ablation rates with a favora-
ble safety profile. As the field of oncological 
treatment continues to evolve, cryoablation 
stands out as a compelling option, offering 
both precision and safety in the manage-
ment of AMs.

In conclusion, CT-guided cryoablation is 
safe and effective in treating AMs, equating to 
other ablation techniques in terms of techni-
cal success, local tumor control, and the han-
dling of complications.

These findings support the method’s con-
sideration as a practical alternative in onco-
logical treatments, given its versatility in ad-
dressing various cancer types and its efficacy 
in both localized and systemic disease man-
agement.

Footnotes
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PURPOSE
Intrahepatic cholangiocarcinoma (iCCA) is a rare and aggressive malignancy with limited treatment 
options, often diagnosed at advanced stages. Radioembolization has emerged as a promising ther-
apy, but its efficacy varies among patients, necessitating reliable biomarkers to predict treatment 
response. This study evaluates the prognostic impact of systemic inflammatory response markers 
on treatment outcomes in patients with iCCA undergoing radioembolization.

METHODS
This retrospective study included 70 patients with iCCA treated with radioembolization between 
January 2016 and December 2023. Inflammatory markers, including the neutrophil-to-lymphocyte 
ratio (NLR), platelet-to-lymphocyte ratio (PLR), and systemic immune-inflammation index (SII), were 
measured from peripheral blood samples. Treatment response was assessed using the modified 
RECIST criteria, and survival analyses were performed using the Kaplan–Meier method and Cox 
proportional hazards regression.

RESULTS
Patients with lower NLR, PLR, and SII values exhibited significantly higher objective response rates 
(P = 0.032, P = 0.016, and P = 0.001, respectively). High levels of NLR, PLR, and SII were associated 
with shorter overall survival (12 vs. 16 months, P = 0.007; 12 vs. 16 months, P = 0.004; and 10 vs. 22 
months, P < 0.001, respectively) and progression-free survival (3 vs. 7 months, P = 0.046 for SII). Mul-
tivariate analysis identified high SII (P = 0.040), lymph node metastasis (P = 0.042), and high serum 
total bilirubin (P = 0.013) as significant independent prognostic factors.

CONCLUSION
 

Systemic inflammatory markers such as NLR, PLR, and SII are valuable prognostic indicators for pa-
tients with iCCA undergoing radioembolization. These markers can aid in identifying patients likely 
to benefit from personalized treatment strategies, potentially improving clinical outcomes.

CLINICAL SIGNIFICANCE
The clinical significance of this study lies in its demonstration that systemic inflammatory markers 
(NLR, PLR, and SII) serve as valuable prognostic indicators for predicting treatment outcomes in 
patients with iCCA undergoing radioembolization, thus aiding in the identification of patients who 
may benefit from personalized treatment strategies and potentially improving clinical outcomes.

KEYWORDS
Intrahepatic cholangiocarcinoma, radioembolization, systemic inflammatory markers, treatment 
response, outcomes
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Intrahepatic cholangiocarcinoma (iCCA) 
is a rare and highly aggressive malignan-
cy originating from the intrahepatic bile 

ducts. The global incidence of iCCA is pro-
jected to increase tenfold over the next 20–
30 years.1 This rise is attributed to various risk 
factors, including chronic liver diseases such 
as hepatitis B and C, cirrhosis, and lifestyle 
factors such as alcohol consumption and 
obesity.2,3 Despite advancements in medical 
science, treatment options for iCCA remain 
limited, and most patients are diagnosed at 
advanced stages, minimizing the benefits of 
available systemic therapies.4 Consequent-
ly, there is a pressing need to explore novel 
and more effective therapeutic strategies for 
iCCA.

Radioembolization has emerged as a 
promising treatment option for patients 
with iCCA. It is a form of locoregional thera-
py that involves the injection of radioactive 
microspheres directly into the tumor’s blood 
supply, effectively delivering high doses of 
radiation while sparing surrounding healthy 
tissues.5 Clinical studies have demonstrated 
that radioembolization, either as a mono-
therapy or in combination with chemothera-
py, can significantly improve overall survival 
(OS) and progression-free survival (PFS) in 
patients with iCCA.6 However, the therapeu-
tic efficacy of radioembolization varies con-
siderably among patients, underscoring the 
necessity for reliable biomarkers to predict 
treatment response and optimize patient 
selection.

In recent years, the systemic inflamma-
tory response (SIR) has garnered significant 
attention for its role in influencing cancer 
treatment outcomes. Biomarkers such as the 
neutrophil-to-lymphocyte ratio (NLR), plate-
let-to-lymphocyte ratio (PLR), and systemic 
immune-inflammation index (SII) have been 
identified as indicators reflecting the impact 
of the SIR on the tumor microenvironment. 
Elevated SIR levels are known to substan-
tially affect tumor growth, invasion, and 
metastasis, thereby influencing treatment 
outcomes.7 Emerging evidence suggests that 
the relationship between inflammation and 
cancer progression involves complex signal-
ing pathways, including cytokine release, 
immune cell recruitment, and changes in the 
extracellular matrix, which collectively create 
a tumor-promoting microenvironment.8

The SIR has been demonstrated to sig-
nificantly impact treatment response in liver 
tumors. Notably, in patients with hepatocel-
lular carcinoma (HCC), elevated SIR levels are 
associated with poorer outcomes following 
radioembolization therapy.9,10 However, the 
literature on the effects of the SIR in patients 
with iCCA undergoing radioembolization 
remains limited.11 By evaluating multiple in-
flammatory markers, this study aims to fill 
this gap by providing crucial insights into 
how these markers impact treatment out-
comes in patients with iCCA. Our findings 
highlight the potential of implementing 
personalized therapies for this malignancy, 
which has a generally poor prognosis. To 
our knowledge, this is one of the first stud-
ies to comprehensively evaluate the impact 
of these markers in iCCA, and it includes the 
largest patient cohort studied to date. These 
contributions are critical for optimizing treat-
ment strategies and facilitating more person-
alized approaches for patients with iCCA.

Therefore, this study aims to evaluate the 
prognostic impact of inflammatory respons-
es on treatment outcomes in patients with 
iCCA undergoing radioembolization.

Methods

Study population

The study was performed in accordance 
with the ethical standards of the 1964 Dec-
laration of Helsinki, and signed informed 
consent forms were obtained from all pa-
tients. The Institutional Clinical Research Eth-
ical Committee (Çukurova University Faculty 
of Medicine Research Ethics Committee, 
meeting dated: 14.06.2024, decision num-
ber: 62/145) approved this single-center ob-
servational study.

This retrospective study reviewed the clin-
ical records of patients diagnosed with iCCA 
who underwent radioembolization therapy at 
the radiology department between January 
2016 and December 2023. The inclusion crite-
ria were as follows: patients aged ≥18 years, 
with histopathologically confirmed iCCA, 
suitable for radioembolization therapy, and 
with complete clinical and imaging data. Pa-
tients with a minimum follow-up period of 3 
months were included in the study. The exclu-
sion criteria were as follows: patients who had 
previously undergone other local treatments 
such as transarterial chemoembolization or 
thermal ablation, those who did not achieve a 
response to treatment, those with incomplete 
medical records, and those who underwent 
surgery after radioembolization (Figure 1). 

Pre-treatment clinical and imaging assess-
ment

All patients underwent clinical, laborato-
ry, and radiological evaluation before treat-
ment. The Eastern Cooperative Oncology 
Group (ECOG) performance scores of the 
patients were assessed. Patients with ECOG 
performance scores between 0 and 2 were 
planned for treatment. Laboratory tests were 
conducted for the complete blood count, 
biochemistry, and hormone marker values 
of the patients before treatment. Dynamic 
contrast-enhanced magnetic resonance im-
aging (MRI) was performed, and the obtained 
images were evaluated by two abdominal ra-
diologists with over 5 years’ experience. The 
evaluation included an assessment of tumor 
size, number, location, presence of macrovas-
cular invasion, and lymph node involvement.

Inflammatory markers measurement

Peripheral blood samples were collected 
from all patients within 1 week before radio-
embolization therapy. The NLR was calculat-
ed by dividing the absolute neutrophil count 
by the absolute lymphocyte count. The PLR 
was calculated by dividing the absolute 
platelet count by the absolute lymphocyte 
count. The aspartate aminotransferase (AST) 
to lymphocyte ratio (ALRI) was calculated 
by dividing the AST value by the lympho-
cyte count. The SII was calculated as platelet 
count × neutrophil count/lymphocyte count.

Radioembolization procedure

All patients underwent a detailed pretreat-
ment evaluation, including contrast-enhanced 
MRI to assess the extent of the disease, along 
with liver function tests. The radioemboliza-
tion procedure was performed using resin- or 

Main points

• Systemic inflammatory markers, including 
the neutrophil-to-lymphocyte ratio (NLR), 
platelet-to-lymphocyte ratio (PLR), and 
systemic immune-inflammation index (SII), 
serve as significant prognostic indicators 
for patients with intrahepatic cholangiocar-
cinoma (iCCA) undergoing radioemboliza-
tion.

• Lower levels of NLR, PLR, and SII are signifi-
cantly associated with an improved treat-
ment response, as well as enhanced overall 
survival and progression-free survival.

• Elevated SII, the presence of lymph node 
metastasis, and increased serum total bili-
rubin levels are identified as independent 
prognostic factors correlating with reduced 
survival in patients with iCCA.

• The integration of inflammatory markers 
into clinical decision-making processes has 
the potential to guide personalized treat-
ment strategies, thereby optimizing out-
comes for patients receiving radioemboli-
zation.
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glass-based yttrium-90 (90Y)–loaded micro-
spheres in accordance with the Cardiovascular 
and Interventional Radiological Society of Eu-
rope Standards of Practice in Transarterial Ra-
dioembolization.12 The choice of glass or resin 
microspheres was based on supply or logisti-
cal factors, regardless of tumor characteristics. 
Post-procedural imaging with 90Y positron 
emission tomography/computed tomogra-
phy was performed to confirm the distribution 
of the microspheres within the liver and to de-
tect any extrahepatic shunting.

Follow-up and assessment

Patients were followed up at regular in-
tervals of 1, 3, and 6 months post-treatment 
and every 3 months thereafter, with clinical 
examination, laboratory tests, and imaging 
studies. OS and PFS were the primary end-
points. Treatment response was evaluated 
using the modified Response Evaluation 
Criteria in Solid Tumors 1.1 criteria based on 
imaging studies.13 Patients who demonstrat-
ed a complete response, partial response, or 
stable response to treatment were classified 
as having an objective response, whereas 
those with tumor progression were defined 
as having no objective response.

Statistical analysis

Data were analyzed using SPSS software 
version 24.0 (IBM Corp., Armonk, NY, USA). 
Continuous variables were expressed as mean 
± standard deviation or median (interquartile 
range), and categorical variables as frequen-
cies and percentages. The laboratory values 
of the patients did not show a homogeneous 
distribution; therefore, the median value was 
used to divide the patients into groups. The 
groups were formed as “below median” and 
“above median.” The chi-square test was em-
ployed to compare categorical variables be-
tween two groups. The Mann–Whitney U test 
was used to compare parametric data that 
did not show a homogeneous distribution. 
Survival curves for OS and PFS were plotted 
using the Kaplan–Meier method and com-
pared using the log-rank test. Cox proportion-
al hazards regression analysis was employed 
to identify independent prognostic factors for 
survival. A P value of less than 0.05 was con-
sidered statistically significant.

Results
In this study, a total of 70 patients were 

included, 34 (48.57%) of whom were men. 
The age range was 34–89 years, with a mean 
age of 59.29 ± 11.89 years. The demographic 
and clinicopathological characteristics of the 
patients are presented in Table 1.

Figure 1. Study flowchart. TACE, transarterial embolization.

Table 1. Baseline demographic and clinical characteristics of the patients (n = 70)

Variables n (%)

Age, years 59.2 ± 11.8

Gender
Men
Women

34 (48.5%)
36 (51.4%)

ALT, U/L 22.5 (27.2–38.3)*

AST, U/L 30 (33.3–46.5)*

Albumin, g/L 3.9 (3.5–3.8)*

TBIL, mg/dL 0.6 (0.5–1.1)*

CA19-9, U/mL 95 (770–3516)*

Largest tumor size 
≤6 cm
>6 cm

48 (68.5%)
22 (31.4%) 

Lymph node metastasis
Yes
No

41 (58.5%)
29 (41.4%)

Tumor number
1
>1

27 (27 (38.5%)
43 (61.4%) 

Macrovascular invasion
Yes
No

31 (55.7%) 
39 (55.7%)

NLR 3.3 (3.6–5.7)*

PLR 143 (158–237)*

SII 771 (901–1398)*

ALRI 22.3 (24.6–41.7)*

*Values in parentheses represent median (lower limit–upper limit). ALT, alanine aminotransferase; AST, aspartate 
aminotransferase; TBIL, total bilirubin; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; SII, 
systemic immune-inflammation index; ALRI, aspartate aminotransferase-to-lymphocyte ratio index.
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Response to treatment

In the follow-up evaluation at 3 months 
to assess response to treatment, 6 (8.5%) 
patients achieved a complete response, 31 
(44.2%) patients had a partial response, 1 
(1.4%) patient had a stable response, and 38 
(54.2%) patients exhibited progressive dis-
ease. An objective response was observed 
in 32 (45.7%) patients. Patients with low NLR, 
PLR, and SII values had a significantly higher 
objective response rate (P = 0.032, P = 0.016, 
and P = 0.001, respectively). No significant 
difference was found between the groups 
for ALRI (P > 0.05) (Table 2). The median NLR, 
PLR, and SII values of patients who obtained 
an objective response were significantly low-
er than those of the other group (P = 0.037, P 
= 0.002, and P = 0.002, respectively) (Table 3).

Overall survival analysis

In this study, 65 (92.8%) patients died. The 
median survival time was 14 months [95% 
confidence interval (CI): 10–16]. The mean 
survival time for the surviving patients was 
28.4 months (95% CI: 11.1–45.6). Kaplan–
Meier analysis revealed that patients with 
high NLR, PLR, and SII values had significant-
ly shorter OS times than other patients (12 
vs. 16 months, P = 0.007, 12 vs. 16 months, 
P = 0.004, and 10 vs. 22 months, P < 0.001, 

respectively). No significant difference was 
found between the groups for ALRI (11 vs. 
16, P = 0.071) (Figure2 a-d). In the univariate 
analysis, the demographic information of the 
patients, tumor burden, liver function tests, 
tumor hormone markers, and inflammatory 
scores were evaluated. Tumor burden, liver 
function tests, and inflammatory scores were 
identified as prognostic factors. In the mul-
tivariate analysis, high SII values (P = 0.040), 
the presence of lymph node metastasis (P = 
0.042), and high serum total bilirubin (TBIL) 
values (P = 0.013) were identified as signifi-
cant independent prognostic factors (Table 
4).

Progression/recurrence analysis

In this study, 44 (62.8%) patients experi-
enced progression/recurrence. The median 
PFS was 7 months (95% CI: 6–9). Kaplan–Mei-
er analysis showed that patients with high 
SII values had significantly shorter PFS than 
other patients (3 months, 95% CI: 3–6 vs. 
7 months, 95% CI: 7–22, P = 0.046). No sig-
nificant difference was found between the 
groups for NLR, PLR, and ALRI (P > 0.05) (Fig-
ure 3). In the univariate analysis for PFS, the 
demographic information of the patients, 
tumor burden, liver function tests, tumor 
hormone markers, and inflammatory scores 

were evaluated. However, no prognostic fac-
tors were identified (P > 0.05).

Discussion
This study assessed the prognostic im-

pact of inflammatory markers on treatment 
outcomes in patients with iCCA undergoing 
radioembolization. Our findings indicate that 
patients with higher NLR, PLR, and SII values 
had lower treatment response rates, shorter 
OS times, and higher progression/recurrence 
rates. These results align with the existing lit-
erature, underscoring the critical role of the 
SIR in predicting treatment outcomes.

Neutrophils suppress anti-tumor immu-
nity through immunosuppressive cytokines, 
fostering a pro-tumorigenic environment, 
whereas platelets promote tumor progres-
sion by protecting circulating tumor cells 
from immune surveillance and facilitating 
their adhesion to the endothelium, thereby 
promoting metastasis. Conversely, lympho-
cytes support anti-tumor immunity by tar-
geting and destroying cancer cells; hence, 
elevated NLR, PLR, and SII levels indicate a 
shift toward a pro-tumorigenic state, reflect-
ing tumor biology and significantly affecting 
treatment outcomes.1,4 Recent studies have 
examined the impact of the inflammatory 
response on treatment outcomes in patients 
with CCA, emphasizing the prognostic val-
ue of these markers in this specific cancer 
type.11,14,15

Yu et al.15 demonstrated that lower SII val-
ues in patients with liver cancer undergoing 
interventional therapy were associated with 
improved treatment outcomes, including 
higher response rates and reduced rates of 
recurrence and metastasis. Similarly, studies 
on patients with HCC undergoing radioem-
bolization have shown that lower NLR and 
PLR values correlate with better treatment 
responses and OS.16 In our study, we found 
that patients with low NLR, PLR, and SII val-
ues had significantly higher objective re-
sponse rates (P = 0.032, P = 0.016, and P = 
0.001, respectively). These findings align with 
the existing literature, suggesting that lower 
systemic inflammation is also associated 
with better treatment outcomes in patients 
with CCA.

Filippi et al.11 reported that elevated NLR 
levels were significantly associated with 
shorter OS times in patients with iCCA treat-
ed with 90Y-radioembolization, with a medi-
an OS of 7.5 months for patients with high 
NLR compared with 17.5 months for those 
with low NLR. In this study, Kaplan–Meier 
analysis showed that patients with higher SII 

Table 2. Comparison of treatment response among patients grouped by inflammatory 
markers

Objective response
n (%)

Non-objective response
n (%)

P

NLR
Below median
Above median

24 (34.3%)
14 (20.0%)

12 (17.1%)
20 (28.6%)

0.032

PLR
Below median
Above median

24 (%34.3)
14 (%20.0)

11 (15.7%)
21 (30,0%)

0.016

SII
Below median
Above median

19 (27.1%)
19 (27.1%)

16 (22.9%)
16 (22.9%)

0.001

ALRI
Below median
Above median

21 (30.0%)
17 (24.3%)

14 (20.0%)
18 (25.7%)

0.472

NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; SII, systemic immune-inflammation index; 
ALRI, aspartate aminotransferase-to-lymphocyte ratio.

Table 3. Comparison of inflammatory markers of values among patients grouped by 
treatment response

Objective response Non-objective response P

NLR 2.7 (1.36–28) 3.9 (1.3–16.2) 0.037

PLR 125 (27.2–1180) 215 (32.5–665) 0.002

SII 605 (119–5503) 1166 (331–4322) 0.002

ALRI 17.9 (6.1–230) 23.9 (6.1–135) 0.120

NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; SII, systemic immune-inflammation index; 
ALRI, aspartate aminotransferase-to-lymphocyte ratio.
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values had significantly shorter OS times (P < 
0.001). Specifically, patients with high SII had 
a median OS of 10 months compared with 22 
months for those with low SII. Cox regression 
analysis in our study identified several inde-
pendent prognostic factors for OS in patients 

with iCCA undergoing radioembolization. 
Specifically, high SII values [hazard ratio (HR): 
2.36, 95% CI: 1.04–5.34, P = 0.04], the pres-
ence of lymph node metastasis (HR: 1.85, 
95% CI: 1.02–3.34, P = 0.042), and elevated 
serum TBIL levels (HR: 1.3, 95% CI: 1.06–1.59, 

P = 0.013) were significant independent pre-
dictors of poor survival. These findings are 
consistent with previous studies, such as the 
work by Li et al.17, which demonstrate that el-
evated SII levels are associated with poorer 
survival outcomes in patients with perihilar 

Table 4. Univariate and multivariate Cox regression models examining risk factors for overall survival

Variables Univariate Multivariate

HR 95% CI P HR 95% CI P

Age, years 0.87 0.53–1.42 0.572

Gender, men 1 0.97–1.02 0.754

ALT, U/L 1.01 1.01–1.02 0.057

AST, U/L 1.01 0.92–1.02 0.070

Albumin, g/L 0.08 0.6–1.26 0.447

TBIL, mg/dL 1.35 1.11–1.66 0.004 1.3 1.06–1.59 0.013

CA19-9, U/mL 1.49 0.81–2.71 0.197

Largest tumor size, cm (6>/≤6 ) 2.17 1.19–3.94 0.011 1.49 0.74–3 0.260

Lymph node metastasis (yes/no) 2.36 1.37–4.07 0.002 1.85 1.02–3.34 0.042

Tumor number (>1/1) 1.45 0.87–2.41 0.156

Macrovascular invasion (yes/no) 1.46 0.89–2.4 0.132

NLR 2.04 1.19–3.51 0.010 1.21 0.61–2.43 0.584

PLR 2.11 1.24–3.61 0.006 0.99 0.48–2.02 0.975

SII 3.17 1.79–5.51 <0.001 2.36 1.04–5.34 0.04

ALRI 1.55 0.94–2.55 0.082

HR, hazard ratio; CI, confidence interval; ALT, alanine aminotransferase; AST, aspartate aminotransferase; TBIL, total bilirubin; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-
lymphocyte ratio; SII, systemic immune-inflammation index; ALRI, aspartate aminotransferase-to-lymphocyte ratio.

Figure 2. (a-d) Kaplan–Meier curves comparing overall survival for those with an above or below median neutrophil-to-lymphocyte ratio (NLR) (a), platelet-to-
lymphocyte ratio (PLR) (b), systemic immune-inflammation index (SII) (c), and aspartate aminotransferase-to-lymphocyte ratio (ALRI) (d). High NLR, PLR, and SII 
were associated with significantly shorter survival times, whereas no significant difference was observed for ALRI.

a

c

b

d
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CCA (HR: 1.57, 95% CI: 1.17–2.10, P = 0.003). 
Furthermore, the presence of lymph node 
metastasis has been widely recognized as 
a significant prognostic factor in iCCA, as 
highlighted by Li et al.18, who reported sim-
ilar associations with OS (HR: 1.88, 95% CI: 
1.32–2.68, P < 0.001). Elevated serum TBIL, 
indicative of impaired liver function, also 
aligns with findings from multiple studies 
that underscore its role in predicting survival 
outcomes in hepatobiliary malignancies.15 

Several studies have shown that the SIR 
significantly impacts tumor progression and 
recurrence. For example, Yu et al.15 demon-
strated that patients with liver cancer and el-
evated SII levels had a shorter PFS (HR: 1.152, 
95% CI: 1.878–5.329, P < 0.001). Similarly, Li 
et al.18 found that patients with high preoper-
ative SII levels and NLR were significantly cor-
related with a shorter PFS (HR: 1.385, 95% CI: 
1.005–1.909, P = 0.046). In our study, patients 
with iCCA and higher SII values had signifi-
cantly shorter PFS, with a median PFS of 3 
months compared with 7 months for those 
with lower SII values, indicating a higher risk 
of tumor progression and recurrence.

This study has several strengths. It in-
cludes a comprehensive retrospective anal-
ysis of a large patient cohort and a detailed 

evaluation of inflammatory markers, pro-
viding robust data on the prognostic signif-
icance of these markers in patients with iCCA 
undergoing radioembolization. The findings 
from our study contribute to the growing 
body of literature by suggesting that sys-
temic inflammatory markers, such as SII, NLR, 
and PLR, could serve as valuable prognostic 
indicators in this patient population. These 
markers may help identify patients who are 
more likely to benefit from the addition of ra-
dioembolization to their treatment regimen, 
potentially guiding more personalized and 
effective therapeutic strategies.

This study has several limitations. Its ret-
rospective nature may introduce selection 
bias and limit the ability to establish causal 
relationships. The sample size, although suf-
ficient for initial findings, is relatively small 
and may not fully represent the broader 
population of patients with iCCA. This study 
relies on data from a single institution, which 
may limit the generalizability of the results. 
Variability in radioembolization techniques 
and the lack of standardized protocols for 
measuring inflammatory markers could also 
influence the outcomes. Future prospective 
studies with larger, multicentric cohorts and 
standardized methodologies are necessary 
to validate these findings and better explain 

the role of systemic inflammatory markers in 
predicting treatment outcomes for patients 
with iCCA.

In conclusion, this study underscores the 
prognostic significance of systemic inflam-
matory markers (NLR, PLR, and SII) in patients 
with iCCA undergoing radioembolization. El-
evated levels of these markers correlate with 
poorer treatment response, shorter OS, and 
increased progression. Incorporating these 
biomarkers into clinical practice can aid in 
patient stratification and personalized treat-
ment planning, potentially improving out-
comes. Further prospective studies are need-
ed to validate these findings and enhance 
the use of inflammatory markers in guiding 
iCCA treatment.
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Efficacy of endovascular circulating false lumen occlusion in chronic 
aneurysmal descending aortic dissections

PURPOSE
To evaluate the efficacy of endovascular circulating false lumen occlusion (CFLO) in inducing posi-
tive aortic remodeling in chronic aneurysmal descending aortic dissection (AD). 

METHODS
This retrospective monocentric study included patients treated by CFLO between 2003 and 2022 in 
the context of chronic AD with progressive descending aneurysmal evolution and persistent circu-
lating false lumen (FL). The procedure was achieved with coils, plugs, and/or glue at the entry tear 
or in the FL and/or with covered stenting in the supra-aortic trunk. The primary endpoint evaluated 
the positive aortic remodeling, defined as stabilization or a decrease in the aortic diameter on a 
computed tomography scan at the 1-year follow-up after the procedure. The FL circulating status, 
safety, and occurrence of aneurysm events during follow-up were also evaluated.

RESULTS
Twenty patients [median age: 65.4 years, interquartile range (IQR): 58.4–69.9; 13 men] were includ-
ed, with a median duration from an acute AD of 32.5 months (IQR: 8.8–76.5). Twelve patients (60%) 
achieved complete FL thrombosis after CFLO, whereas 8/20 patients (40.0%) experienced partial 
thrombosis. Additionally, positive aortic remodeling was observed in 13 patients (65%). Following 
the procedure, the aneurysmal aortic diameter decreased in 8/20 patients (40.0%) and remained 
stable in 5/20 patients (25.0%). Two patients (10%) had complications related to the procedure. Two 
patients (10%) had secondary aneurysm events during follow-up. 

CONCLUSION
CFLO is a feasible and efficient method to induce FL thrombosis and reduce aneurysmal progres-
sion in chronic AD.

CLINICAL SIGNIFICANCE
The positive outcomes observed highlight the potential of this technique to improve patient man-
agement in complex aortic pathologies. This approach offers a valuable option in the management 
of chronic AD and emphasizes the importance of endovascular interventions in enhancing patient 
outcomes.

KEYWORDS
Chronic aortic dissection, false lumen, true lumen, entry tear, endovascular occlusion, circulating 
false aortic lumen, embolization, coils, plugs, glue, stent, thoracic endovascular aortic repair, false 
lumen thrombosis, aortic aneurysm
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Aortic dissection (AD) is a serious pathology with a high mortality rate of 11%–25% in 
the acute phase.1 One third of dissections develop an aneurysm requiring reinterven-
tion within 4 years.2,3 A persistent patent false lumen (FL) fed by an entry tear (ET) is 

associated with a relatively high risk of long-term mortality and late aortic events in patients 
with AD;4 however, complete FL thrombosis limits this risk.5 The development of chronic dia-
stolic aortic hypertension6,7 contributes to elevated pressure within the expanding FL, increas-
ing the risk of aortic rupture.8
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In chronic dissection, optimal antihyper-
tensive therapy is recommended,9 but the 
chronic aneurysmal evolution may require 
open surgical repair10 or thoracic endovas-
cular aortic repair (TEVAR).11 These two ap-
proaches do not always result in FL thrombo-
sis, which continues to circulate in 80%–90% 
of patients after isolated proximal surgical 
repair12 and in up to 43% of patients treated 
using TEVAR.13 By targeting the ET feeding 
the circulation of the FL, endovascular cir-
culating false lumen occlusion (CFLO) using 
embolization material (coils, glue, and plugs) 
or an uncovered stent can be an effective ap-
proach. This other endovascular method may 
be a valuable alternative or a complementa-
ry option when the FL remains patent and is 
supplied by an accessible ET. This treatment 
enables personalized targeted embolization 
for each patient to achieve FL thrombosis, 
thereby limiting aneurysmal evolution and 
reducing the risk of aortic rupture. Although 
TEVAR is now considered the gold standard 
for this indication,14 the risk of spinal cord 
ischemia, although low (approximately 8%), 
remains a serious concern with serious con-
sequences (approximately 1.5% incidence 
of paraplegia).15 Currently, no comparative 
efficacy studies exist regarding CFLO and tra-
ditional TEVAR. The advantage of CFLO treat-
ment may lie in the fact that it is considered 
a less invasive option than the placement of 
an aortic stent graft and can avoid the asso-
ciated complications. Moreover, CFLO could 

reduce the risk of spinal cord ischemia asso-
ciated with TEVAR by maintaining the paten-
cy of certain intercostal arteries. 

The main objective of this study was to 
evaluate the efficacy of CFLO on mid-term 
positive aortic remodeling in chronic aneu-
rysmal descending AD. In addition, particular 
attention has been given to the safety of this 
treatment by investigating the associated 
adverse effects associated with the interven-
tion.

Methods

Patients

This monocentric retrospective study 
was conducted between 2003 and 2022 at 
the University Hospital of Grenoble Alpes 
(France). The inclusion criteria (Figure 1) were 
patients who underwent CFLO for chronic 
(i.e., >90 days)16 persistent descending AD 
(type A after surgery or B with or without 
previous TEVAR) in the context of pejorative 
aneurysmal evolution with a patent FL fed by 
an ET unable to be treated by TEVAR and the 
following: 1) an aortic descending diameter 
>55 mm; and/or 2) aortic descending diam-
eter progress >5 mm/year; and/or 3) TEVAR 
failure with a persistent untreated puncti-
form entry tear (PET) far from the prothesis 
and retrograde false lumen flow (RFLF). The 
exclusion criteria were no imaging follow-up 
>12 months, no imaging at baseline, trau-
matic AD, or aneurysm without AD or from 
infectious etiology. Aneurysmal evolution 
treated by isolated TEVAR or the treatment of 
a perigraft leak in the context of TEVAR were 
also excluded. All procedures performed 
were in accordance with the ethical stan-
dards of the national research committee 
and with the 1964 Helsinki Declaration and 

its later amendments or comparable ethi-
cal standards. This study was approved by 
the Comité d’Ethique pour la Recherche en 
Imagerie Médicale (approval no: CRM-2107-
194, date: 09/2021) For this type of retrospec-
tive study, informed consent is not required. 
A declaration of informed non-opposition 
was required for each enrolled participant.

Pathologic aortic evaluation

Imaging follow-up was performed using 
computed tomography (CT) scans to explore 
the aorta from the supra-aortic trunks (SATs) 
to the common femoral arteries, performed 
with and without contrast material enhance-
ment. Aortic diameters were evaluated using 
the latest available imaging before CFLO 
(baseline CT scan) and the latest available 
imaging after CFLO (follow-up CT scan), 
which was defined as the end of follow-up.

The Ishimaru classification17 was utilized 
to localize the aortic aneurysm level and the 
ETs (Table 1) on CT scans. This classification 
divides the aorta into several zones, allowing 
for the precise identification of lesions: zone 
0 involves the origin of the innominate ar-
tery; zone 1, the origin of the left common 
carotid artery; zone 2, the origin of the left 
subclavian artery; zone 3, the proximal de-
scending thoracic aorta down to the T4 ver-
tebral body (aortic isthmus); and zone 4, the 
remainder of the thoracic aorta. 

To increase reproducibility and avoid 
cross-sectional effects, the aortic diame-
ter was measured by the largest short-axial 
diameter of the outer contour of the aneu-
rysm and, in the aortic arch, by the largest 
diameter perpendicular to the curvature.18 
Measurement was performed by a single ob-
server and controlled by intraobserver repro-
ducibility measurements.

Main points

• Chronic aortic dissection (AD) often leads 
to persistent patent false lumen (FL) circula-
tion, which increases the risk of aneurysmal 
progression and aortic rupture. 

• Thoracic endovascular aortic repair is now 
the standard treatment for AD but does not 
always achieve complete thrombosis of the 
FL (43% remains patent) and may fail in cas-
es with unfavorable anatomy.

• This study evaluates the efficacy of endo-
vascular circulating false lumen occlusion 
(CFLO), using coils, glue, plugs, and an un-
covered stent, in achieving FL thrombosis 
and inducing positive aortic remodeling, 
aiming to promote these techniques within 
the therapeutic arsenal.

• Complete FL thrombosis was achieved in 
60% of patients, and positive aortic remod-
eling was obtained in 65% of patients. 

• The feared consequences and complica-
tions were minimal compared with the un-
derlying pathology, with no reported cases 
of spinal cord ischemia associated with 
CFLO.

Figure 1. Study flowchart. CFLO, circulating false lumen occlusion; FL, false lumen; TEVAR, thoracic 
endovascular aortic repair; CT, computed tomography.
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Angiography and embolization techniques

The procedures were performed in an 
angiography department (Allura Integris 15, 
Philips Medical systems, Best, Netherlands, 
and Artis Zeego, Siemens, Erlangen, Ger-
many) by three interventional radiologists 
with 8 (M.F.), 18 (M.R.), and 30 (F.T.) years of 
experience. The CFLO was performed using 
different embolization materials, such as 
coils (AZUR® Peripheral HydroCoil, Terumo, 
Rueil-Malmaison, France; Nester Emboliza-
tion Coil, Cook Medical Europe LTD, Limerick, 
Ireland), glue (Onyx® Liquid Embolic Agent, 
Medtronic, Paris, France; Hystoacril®, B. Braun 
Medical SA, Granges-Paccot, Schweiz), and 
plugs (Amplatzer® Vascular Plug II, Abbot 
Medical, Issy-les-Moulineaux, France). Cov-
ered (WallGraft®, Boston Scientific, Marlbor-
ough, MA, USA; AdvantaV12®, Atrium Medical 
Corporation, Hudson, NH, USA) or uncovered 
(SmartControl®, Cordis, Issy-les-Moulineaux, 
France; Zilver®, Cook Medical Europe LTD, 
Limerick, Ireland) stents were also utilized 
to prevent reinjection from an ET in the SAT. 
These materials were used separately (CFLO 
single technique) or in combination (CFLO 
combined technique).

The patients’ cases were reviewed prior to 
the procedure to determine the most appro-
priate strategy. The precise description of the 
conditions for the use of embolic materials 
is challenging, as each case requires person-
alized embolization that considers various 
parameters, such as the location, size, shape 
and number of ETs, dimensions of the FL, 
and blood flow velocity. Similarly, the overall 
morphology of the aorta and the potential 
access routes should be considered, as not all 
types of materials can be implanted. Plugs, 
for example, can sometimes be difficult to 
insert, making it necessary to prioritize the 
remaining tool options. Some of these cases 
have been illustrated as examples in Figures 
2, 3, and 4, and the entire range of emboli-
zation tools should be considered, especially 
the liquid agents, as illustrated by the col-
umn relating to glue in Figure 4. 

Several key FL embolization scenarios are 
described here, although it is challenging to 
be more precise in this complex pathology. 
For SAT PETs, stenting was preferred to cov-
er the ET, redirecting the flow into the trunk 
lumen. Punctiform ET occlusion can be per-
formed directly by placing a plug with one 
fin in the true lumen (TL) and the rest of the 
materials in the FL. There is a risk of coil or 
glue migration in the case of rapid flow in 
the FL, which can be reduced by the com-
bined use of these materials (for example, a 

framework of large coils sealed by glue). Any 
RFLF can be managed using glue, with the 
natural retrograde flow directed toward the 
aneurysm. 

Under local anesthesia, radiologic percu-
taneous arterial (femoral, radial, or humeral) 
access was performed using a 4–6F introduc-
er sheath. Digital subtraction angiography 
was performed within the aorta to identify 
the ET targeted on the CT scan. The end of 
the procedure was characterized by the ab-
sence of opacification of the FL on the final 
angiogram. Sometimes, if the benefit–risk 
ratio of the technique becomes unfavorable, 
the FL is allowed to circulate weakly, leading 
to secondary thrombosis. An additional pro-
cedure could be performed in the case of a 
persistent increase in aortic diameter control 
imaging. 

Study endpoints

The primary objective of this study was 
to evaluate the efficacy of CFLO in the aortic 
remodeling at the thoracic level. The prima-

ry outcome was defined by positive aortic 
remodeling16 described as a reduction in 
or the stability of the total aortic maximal 
diameter on the follow-up CT scan at the 
1-year follow-up along with a reduction in 
the FL diameter and/or expansion of the TL. 
An increase in the aortic maximal diameter 
at the 1-year follow-up was considered to 
represent worsening aortic remodeling. In 
the follow-up CT scan, measurement of the 
descending aortic diameter was performed 
at the same maximum aortic level as at base-
line. An aortic diameter decrease was de-
fined as a decrease >2 mm on the follow-up 
CT scan. A diameter increase was defined as 
an increase >2 mm. Stability was defined as 
a constant diameter without any increase or 
decrease. The maximum aortic diameter, the 
diameter of the FL, and the diameter of the 
TL are the main parameters monitored in pa-
tients with chronic dissection, regardless of 
whether the FL is perfused or not.

Secondary objectives were to evaluate 
the efficacy of CFLO on the circulation of the 
FL (technical success), the safety of the pro-

Table 1. Demographics and aortic pathologic data

Variables n = 20

Age (years), median (IQR) 65.4 (58.4–69.9)

Gender (male), n (%) 13 (65.0) 

Hypertension, n (%) 12 (60.0)

Type of dissection*, n (%)

A 16 (80.0)

B 4 (20.0)

Type of initial treatment before CFLO, n (%)

Bentall 6 (30.0)

Tirone David 1 (5.0)

Aorto-aortic tube 9 (45.0)

TEVAR 7 (35.0)

Surgical SAT reimplantation 4 (20.0)

Aortic aneurysm level, n (%)

Zone 3 12 (60.0)

Zone 4 8 (40.0)

Location of ET, n (% of total ET)

SAT 8/32 (25.0)

Distal surgical anastomosis 8/32 (25.0)

Zone 1 2/32 (6.3)

Zone 2 3/32 (9.4)

Zone 3 5/32 (15.6)

Zone 4 6/32 (18.8)

Indications for CFLO, n (%)

Punctiform entry tear 16 (80.0)

Retrograde false lumen flow 4 (20.0)

*Stanford classification; n, number; IQR, interquartile range; CFLO, circulating false lumen occlusion; TEVAR, thoracic 
endovascular aortic repair; SAT, supra-aortic trunk; ET: entry tear.
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cedure, and the occurrence of aortic events 
during follow-up. The technical success of 
CFLO was defined as complete FL thrombosis 
at the thoracic level, assessed by the absence 
of opacification of the FL on the follow-up 
CT scan (delayed contrast enhanced ≥80 s) 
at 3 months, in the two areas described by 
the Ishimaru classification on the descending 
aorta: zones 3 and 4. The FL was evaluated 
as partially thrombosed (neither patent nor 
thrombosed, defined as a clot within the FL 
with a residual circulating flow channel) or 
patent (similar to the baseline CT scan). The 
safety of CFLO was assessed by monitoring 
the occurrence of complications during fol-
low-up, with data collected according to the 
European Society of Cardiovascular and In-
terventional Radiology.19

Statistical analysis

Standard descriptive statistics were used 
for continuous quantitative variables, pre-
sented as medians with interquartile ranges 
(IQRs), and for qualitative variables, present-
ed as numbers and percentages. Regarding 
aortic measurements, a paired-sample mean 
comparison analysis was performed using 
Student’s t-test. Standard descriptive statis-
tics were used to describe aortic remodeling, 
technical success, and safety, with a calcula-
tion of the corresponding number and per-
centages. Regarding intraobserver reproduc-
ibility, the intraclass correlation coefficient 
was analyzed using the Pearson correlation 
test for quantitative variables. The analy-
ses were conducted using Jamovi® (version 
1.6.23.0). A P value <0.05 was considered sig-
nificant. 

Results

Population characteristics

During the study period, 62 patients un-
derwent procedures for aneurysmal pathol-
ogy of the thoracic descending aorta (Figure 
1). Twenty-five patients (40.3%) were ex-
cluded due to isolated TEVAR treatment and 
three patients (4.8%) for the embolization 
of perigraft leaks related to TEVAR. Thirteen 
patients (21%) were excluded for having less 
than 12 months of follow-up, and one pa-
tient (1.6%) was excluded due to the lack of 
a baseline CT scan. Twenty patients (32.3%) 
were finally included and underwent CFLO to 
prevent pejorative aortic remodeling.

The study included 7 women (35%) and 
13 men (65%), with a median age of 65.4 
years (IQR: 58.4–69.9) (Table 1). Sixteen pa-
tients (80%) had type A dissection, and four 
patients (20%) had type B dissection. Addi-
tionally, seven patients (35%) had a history of 

previous TEVAR. The median duration from 
AD to CFLO was 32.5 months (IQR: 8.8–76.5), 
with the majority of aortic aneurysms locat-
ed in zone 3 (60%), the isthmic segment. A 
total of 32 ETs were identified in 20 patients, 
including 8 in the SAT (25%) and 8 at the dis-
tal surgical anastomosis level (25%).

The median total number of CFLO ses-
sions was approximately 1.5 (IQR: 1.0–2.3). 
Ten patients (50%) underwent two or more 
CFLO sessions, and ten patients (50%) re-
ceived isolated CFLO without prior or addi-
tional TEVAR. The embolization agents used 
are summarized in Table 2.

Efficacy

False lumen circulatory status

At the 1-year follow-up, 12 patients (60%) 
achieved technical success with complete 
FL thrombosis after CFLO (Table 3), whereas 
8 patients (40%) had partial thrombosis. No 
patients had a patent FL on the follow-up CT 
scan. Complete thrombosis was achieved in 

the isthmic segment in zone 3 in 17 patients 
(85%). Thirteen patients (65%) had thrombo-
sis in zone 4, including 12 patients who also 
had thrombosis in zone 3. One patient had 
thrombosis only in the distal third of the tho-
racic aorta without proximal thrombosis.

Impact on aortic remodeling

After the procedure, 13 patients (65%) 
exhibited positive aortic remodeling at 
the 1-year follow-up imaging, including 8 
patients with decreased aneurysmal aor-
tic diameter and 5 patients with stabilized 
diameters (Table 3). In the subgroup with 
complete FL occlusion, 75% exhibited posi-
tive remodeling. The median maximal aortic 
diameter on the baseline CT scan was 52.5 
mm (IQR: 43.8–59.8) compared with 54.0 mm 
(IQR: 41.8–68.5) on the follow-up CT scan 
(P = 0.115). The median FL diameter signifi-
cantly decreased at 1 year compared with 
the baseline CT [16.0 (IQR: 10.3–26.8) vs. 25.0 
mm (IQR: 19.5–33.0); P = 0.044]. Among the 
10 patients with isolated CFLO, 6 achieved 

Figure 2. Treatment of a thoracic chronic dissecting aortic aneurysm after Bentall surgery in a 73-year-old 
patient with a history of chronic aortic dissection by coiling of the proximal portal of entry. The target entry 
tear (ET, black arrows) is located within segment 2, feeding the false lumen (FL, black stars). The coils (white 
arrows) indirectly occlude the ET, allowing thrombosis and regression of the FL (white arrowheads). Computed 
tomography scan with injection at arterial time before (a, c, e) and after (b, g) embolization. Serigraphy with 
injection and locating the ET by retrograde catheterization of the FL (d) and the true lumen (f). 

a

c

e

b

d

f g



 

388 • July 2025 • Diagnostic and Interventional Radiology Gremen et al.

FL thrombosis and 9 (90%) achieved positive 
aortic remodeling. The intraclass correlation 
coefficient for the intraobserver reproduc-
ibility of the aortic diameter measurements 
was 0.997 (95% confidence interval: 0.995, 
0.998).

Safety and aortic events

The median follow-up was 4.7 years (IQR: 
2.9–12.4). After CFLO, five patients (25%) ex-
perienced transient post-embolization syn-
drome, characterized by increased pain (last-
ing approximately 10 days) and a temporary 
increase in C-reactive protein levels, related 
to large FL thrombosis; these symptoms 
were resolved within 3 months (grade I). Two 
patients (10%) had complications associat-
ed with CFLO: one transient ischemic stroke 
(grade II) and one coil migration that could 
be recaptured (grade I). Four patients (20%) 
required additional TEVAR during follow-up. 
Among the seven patients with a persistent 
patent FL, two had secondary aortic events 
related to aneurysmal evolution (Table 4), 
but no patients with complete FL occlusion 
experienced aortic events during follow-up. 
No cases of spinal cord ischemia were report-
ed in connection with the CFLO procedure. 

Discussion
This study demonstrated satisfactory 

CFLO results in inducing positive aortic re-
modeling in chronic aneurysmal descend-
ing AD in 13 out of 20 patients (65%), with 
a decreased aneurysmal aortic diameter 
observed in 40% of patients. Additionally, 
for 25% of patients, the diameter remained 
stable, associated with either a decrease in FL 
size or an increase in TL size. Moreover, 60% 
of patients had technical success with com-
plete FL thrombosis after CFLO. These results 
are encouraging when considering that the 
blood flow circulation in the FL is the key risk 
factor for aortic enlargement, associated with 
a significant and significantly higher aortic 
mean growth rate, as described by Sueyoshi 
et al.18 The natural evolution of a patent FL 
is not toward thrombosis, and the authors 
demonstrated that only one third of FL cases 
progressed to complete thrombosis with-
out the need for interventional treatment. 
In cases where FL patency persists, abdom-
inal-level embolization may be appropriate 
but should be considered with caution, as 
this further complicates treatment given that 
the thrombus may extend to the mesenteric 
arteries in cases of extensive dissection.

Direct FL occlusion was first described by 
Loubert et al.20 as the “cork in the bottle neck” 

Figure 4. Treatment of a chronic aneurysmal dissection at the thoracic level using glue. Sagittal maximum 
intensity projection reconstruction scans before (a) and after (b) glue embolization (white arrows). Occlusion 
of the entry tear (black arrow) allows thrombosis of the false lumen (white star).

a b

Figure 3. Plug treatment of chronic aortic dissection with aneurysmal progression at the thoracic level 
in a patient after Bentall surgery. The entry tear (ET, black arrow) is located at the distal anastomosis 
(arrowheads) of the ascending aortic surgical prothesis. A type II plug (white arrow) is deployed through 
the ET. The proximal wing is in the true lumen (TL), and the body and distal wing are in the false lumen 
(FL). Axial computed tomography scan with injection at arterial time before (a) and after (b) embolization. 
Serigraphy with injection (c) identifying the ET. Maximum intensity projection reconstruction scans (d) after 
embolization. Three-dimensional reconstruction at arterial time before (e) and after (f) embolization. After 
treatment: regression of the FL, re-expansion of the TL, and decrease in the aortic diameter.
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strategy. A few studies have been conducted 
on embolization agents using coils and cy-
anoacrylate glue21,22 or plugs;23,24 these have 
been concomitant or with prior TEVAR but 
in small cohorts. Even if indications of CFLO 
differ with TEVAR, aortic diameter control has 
been reported in 65% of patients managed 
with isolated TEVAR.25 In the present study, 
the results suggest that CFLO may improve 
TEVAR results and that this technique can 
be an effective option when TEVAR cannot 
be performed because of anatomical con-
traindications. The retrograde expansion of 
dissection often requires extended methods, 
such as a covering stent,26 to achieve suffi-
cient sealing and avoid inadvertently cover-
ing the SAT with the stent graft. 

This study did not reveal a significant 
reduction in aortic diameter (P = 0.115). Al-
though the optimal timing for the emboli-
zation procedure is unclear, it seems more 
effective in the subacute period (14 to 90 
days),27 as the aorta is less likely to reshape 
in the chronic phase.3 In this study, the aver-
age time from AD to CFLO was 33 months, 
indicating that earlier intervention might 
have led to improved outcomes. Additional-
ly, assessing aortic diameters at 1 year may 
underestimate the long-term effects of this 
condition. Thrombus reduction in the FL may 
take time, emphasizing the need for a longer 
follow-up to observe these effects. In cases 
with a large thrombotic FL, the thrombus 
does not decrease in size, which means there 
is no overall reduction in aortic diameter.

Of course, the retrospective character 
of this study leads to missing data, and the 
monocentric design is a limitation, but this 
study was conducted in a single specialized 
university hospital, reducing the risk of pa-
tients being treated in another close geo-
graphical center. The number of patients 
included allowed inter-individual variability 
and was sufficient for this type of interven-
tion. Due to the rarity of these cases, our 
study offers an additional contribution to 
the literature, which could be valuable for 
future guidance on the subject. The absence 
of a control group is a limitation but ethical-
ly justifiable, as the natural course of the pa-
thology is well understood. The association 
of CFLO and TEVAR techniques is common 
and, unfortunately, limits the demonstra-
tion of the effectiveness of the isolated CFLO 
technique. Nevertheless, the isolated CFLO 
technique was used with approximately 50% 
of our study population and produced satis-
fying results, achieving 60% complete throm-
bosis and 90% positive aortic remodeling, 
demonstrating its effectiveness when per-

formed alone. In the literature, CFLO achieves 
complete FL thrombosis in 60% of patients 
compared with 40% for isolated TEVAR at the 

2-year follow-up28 and 60%–80% for com-
bined CFLO and TEVAR in a review conducted 
by Spanos et al. involving 101 patients.29

Table 2. Angiographic data

Variables n = 20

Duration from AD (months), median (IQR) 32.5 (8.8–76.5) 

Procedure duration (min), median (IQR) 124.0 (78.5–158.5)

Scopy duration (min), median (IQR) 17.4 (12.1–24.3)

Dose (Gy.cm2), median (IQR) 175.2 (59.1–319.2)

CFLO single technique, n (%) 7 (35.0)

CFLO combined technique, n (%) 13 (65.0)

Occlusion material used*, n (%)

   Coil 5 (25.0)

   Coil + glue 2 (10.0)

   Coil + plug 3 (15.0)

   Coil + SAT stenting 2 (10.0)

   Glue + plug 2 (10.0)

   Plug + SAT stenting 2 (10.0)

   Plug 2 (10.0)

   Coil + glue + plug 2 (10.0)

Total number of CFLO sessions, median (IQR) 1.5 (1.0–2.3)

Patients with ≥2 CFLO sessions, n (%) 10 (50.0)

Isolated CFLO** 10 (50.0)

Additional TEVAR treatment after CFLO, n (%) 4 (20.0)

Interval to CFLO after TEVAR (months), median (IQR) 6.6 (1.5–16.7)

Interval to TEVAR after CFLO (months), median (IQR) 10.2 (4.9–16.9)

 *Considering all CFLO sessions; **isolated CFLO = CFLO without prior or additional TEVAR; n, number; AD, aortic 
dissection; IQR, interquartile range; CFLO, circulating false lumen occlusion; SAT, supra-aortic trunk; TEVAR, thoracic 
endovascular aortic repair.

Table 3. Imaging follow-up 

Variables n = 20

Duration from baseline CT scan to CFLO (days), median (IQR) 51.0 (110.8–10.3)

Patient follow-up (years), median (IQR) 4.7 (2.9–12.4)

Follow-up aortic diameter evolution, n (%)

   Decrease 8 (40.0)

   Stable 5 (25.0)

   Increase 7 (35.0)

Baseline CT scan aortic diameter (mm), median (IQR) 52.5 (43.8–59.8)

1-year CT scan aortic diameter (mm), median (IQR) 54.0 (41.8–68.5)

Baseline CT scan FL diameter (mm), median (IQR) 25.0 (19.5–33.0)

1-year CT scan FL diameter (mm), median (IQR) 16.0 (10.3–26.8)

1-year CT scan FL circulatory status, n (%)

   Thrombosed 12 (60.0)

   Partially thrombosed 8 (40.0)

1-year CT scan frequencies of complete thrombosis, n (%)

   Zone 3 17 (85.0)

   Zone 4 13 (65.0)

n, number; CT, computed tomography; CFLO, circulating false lumen occlusion; IQR, interquartile range; FL, false 
lumen. 
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The anticipated consequences and com-
plications were minimal compared with the 
underlying pathology. Therefore, CFLO can 
be considered relatively safe considering the 
absence of complications in 90% of patients, 
whereas TEVAR has a 30-day morbidity rate 
of 36.5%.29 In comparison to TEVAR, no cases 
of spinal cord ischemia or associated compli-
cations have been reported with the use of 
CFLO, which could be a decisive advantage 
when choosing between the two techniques.

As mentioned previously, the precise de-
scription of the conditions for the use of em-
bolic materials is challenging, and many pa-
rameters must be considered in the selection 
of the embolization material to be used. The 
small sample size of patients and the study 
design unfortunately did not allow for addi-
tional statistical tests to identify favorable or 
unfavorable predictive factors that influence 
the effectiveness of embolization in achiev-
ing either complete or partial FL thrombosis. 
One factor that appears to contribute to the 
failure of remodeling is the presence of calci-
fications on the wall of the FL. However, fu-
ture efforts should focus on identifying these 
predictive factors, and further studies are 
needed to support and refine the indications 
for CFLO.

The CFLO is a technically complicated pro-
cedure with multiple parameters to be man-
aged. The success of this treatment depends 
on several factors, including the experience 
of the operator, and must be performed in 
close collaboration with medical–surgical 
teams. A high level of understanding of aor-
tic pathology and fluid mechanics is required. 
These results promote the use of CFLO tech-
niques in the future, as they are currently not 
included in the guidelines.

This study highlights the potential of 
CFLO as a valuable addition to the thera-
peutic arsenal for chronic AD, particularly 
when traditional methods such as TEVAR do 
not achieve complete FL thrombosis. This 
technique offers a promising alternative for 
patients who do not respond fully to exist-
ing treatments and could reduce the risk of 
aneurysmal progression and aortic rupture, 
ultimately improving long-term patient out-
comes. By targeting the ET and using vari-
ous embolization materials (coils, glue, and 
plugs) or uncovered stents, CFLO allows for 
a tailored treatment approach that can be 
adapted to individual patient anatomy and 
pathology, enhancing treatment efficacy 
and safety. The study suggests that CFLO 
may reduce the incidence of complications 
related to persistent FL circulation, such as 
aneurysmal progression, thereby potentially 
decreasing the need for more invasive pro-
cedures. No cases of spinal cord ischemia 
were reported with this procedure, which 
may provide a significant advantage when 
comparing CFLO to TEVAR. It is important 
to emphasize that this management should 
be multidisciplinary and performed in close 
collaboration with cardiac surgery and cardi-
ology teams.

In conclusion, this study supports the effi-
cacy and safety of endovascular occlusion in 
the management of chronic AD. Further stud-
ies are needed to define the exact place and 
most opportune timing of this procedure in 
the management algorithm for patients with 
aneurysmal evolution following AD.
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PURPOSE
To determine the amide proton transfer-weighted (APTw) imaging features in testes with age, and 
to assess the feasibility of APTw magnetic resonance imaging (MRI) in assessing testicular sper-
matogenic function.

METHODS
A total of 23 male patients with clinically confirmed hypospermatogenesis caused by epididy-
mo-orchitis were included in the case group (group A) and another 93 men (age range, 20–80 years) 
were included in the control group. The control group was divided into four subgroups: group B1 
(20–34 years, n = 25), group B2 (35–49 years, n = 23), group B3 (50–64 years, n = 21), and group B4 
(65–80 years, n = 24). All participants underwent 3.0T MRI scan, and the APT signal intensity (SI) and 
apparent diffusion coefficient (ADC) value of each testis were examined. The ADC and APT SI were 
independently measured by two radiologists blinded to clinical data, and average values were cal-
culated. A power analysis was conducted to determine the required sample size. 

RESULTS
APT SI was negatively correlated with age (r = −0.510, P < 0.001), whereas ADC was positively cor-
related with age (r = 0.317, P = 0.006). The APT SI was significantly higher in group A (1.77 ± 0.41) 
than in group B1 (1.43 ± 0.21), group B2 (1.37 ± 0.31), group B3 (1.30 ± 0.35), and group B4 (1.20 ± 
0.35) (all P < 0.01). The ADC was significantly higher in group A [(0.549 ± 0.091) × 10−3 mm2/s] com-
pared with group B1 [(0.449 ± 0.047) × 10−3 mm2/s], group B2 [(0.475 ± 0.022) × 10−3 mm2/s], and 
group B3 [(0.488 ± 0.051) × 10−3 mm2/s] (all P < 0.01), whereas no statistically significant difference 
was found between group A and group B4 (P > 0.05). 

CONCLUSION
The APT SI of the normal testes decreased with age, whereas a significant elevation of APT SI was 
detected in patients with hypospermatogenesis caused by epididymo-orchitis.

CLINICAL SIGNIFICANCE
Hypospermatogenesis caused by degeneration or inflammation can be differentiated by APT quan-
tity combined with ADC value. 

KEYWORDS
Testis, oligospermia, orchitis, MRI, amide proton transfer

Orchitis and epididymo-orchitis are important causes of male infertility. A prolonged 
course of bilateral orchitis may impair spermatogenesis and lead to non-obstructive 
azoospermia (NOA).1-3 The spermatogenic function of normal testes decreases with 

increasing age.4-6 Magnetic resonance imaging (MRI) allows for non-invasive assessment of 
testicular lesions and provides adequate anatomic information, satisfactory tissue contrast, 
and functional information.7,8 Functional MRI methods, including dynamic contrast-enhanced 
MRI,9,10 diffusion-weighted imaging (DWI),10-15 magnetization transfer imaging (MTI),16-18 and 
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MR spectroscopy (MRS),19-21 have recently 
provided useful additional diagnostic data 
for determining normal and abnormal testes. 

Amide proton transfer-weighted (APTw) 
imaging, a specific type of chemical ex-
change saturation transfer MRI, has been 
introduced as a novel endogenous contrast 
modality for MRI by detecting low concen-
tration solutes, including mobile proteins 
and peptides in tissue or tumor samples with 
abundant amide chemical constituents.22,23 
APT has been examined as an imaging bio-
marker in a variety of cancers and non-on-
cological diseases.24-29 Currently, a limited 
number of studies have evaluated APT in the 
assessment of human testicular metabolic 
profile. Whether APTw imaging can be used 
to evaluate the spermatogenic potential of 
the testis remains unknown. The purpose of 
this study is to examine the APTw imaging 
features of the testis with age, and to exam-
ine the feasibility of APTw MRI in assessing 
testicular spermatogenic function.

Methods

Study population 

The current study was approved by the In-
stitutional Ethics Committee of the First Affil-
iated Hospital of Sun Yat-sen University (pro-
tocol number: 537/2022, date: 2022/11/25), 
and signed informed consent was obtained 
from all participants. The study initially in-
cluded 28 consecutive men with hyposper-
matogenesis caused by epididymo-orchitis 
(age range, 22–57 years; mean age, 35 years) 
who underwent scrotal MRI with DWI and 
APTw between June 2020 and June 2023. 
The inclusion criteria were as follows: (1) di-
agnosis of hypospermatogenesis according 
to the 2021 WHO guidelines30 (semen anal-
ysis showing azoospermia or sperm concen-
tration below the lower reference limit of 15 
million sperm/mL of ejaculate after centrifu-
gation in at least two tests); (2) clinical diag-

nosis of epididymo-orchitis (diagnostic crite-
ria defined by The 2016 European guideline 
on the management of epididymo-orchitis31) 
based on medical history, physical exam-
ination, and laboratory tests; and (3) semi-
nal plasma biochemistry showing elevated 
polymorphonuclear elastase concentration 
(>250 ng/mL), indicating active testicular 
injury by inflammation.32-34 The exclusion cri-
teria included (1) poor image quality for ADC 
or APTw map; (2) other testicular diseases, in-
cluding testicular tumors; and (3) a history of 
testicular injury or surgery. 

During the same period, another 111 
healthy males were referred for scrotal MRI 
as controls. In the control group, no abnor-
mal findings of the scrotum were found by 
physical examination, as well as no traumatic 
history of the scrotum. Volunteers under 50 
years old underwent seminal plasma bio-
chemistry and showed normal results, and 
those over 50 years all had genetically relat-
ed children with natural insemination. The 
exclusion criteria were the same as described 
for the case group. 

Among the 139 men enrolled, 15 were ex-
cluded because of APT and ADC images of in-
sufficient quality, including motion artifacts 
(n = 5), poor image quality caused by B0 field 
inhomogeneity (n = 6), and a combination of 
motion artifacts and B0 field inhomogeneity 
(n = 4). In addition, 8 were excluded because 
of complications with other testis diseases or 
with a history of testicular injury or surgery. 
Among the 23 excluded cases, 5 were in the 
case group and 18 were controls. Thus, a to-
tal of 116 men were analyzed, including 23 
men (age range, 22–57 years; mean age, 36.4 
years) with hypospermatogenesis caused by 
epididymo-orchitis (case group A) and 93 
male volunteers (control group B; age range, 

20–80 years). The control group was further 
divided into four subgroups by age: group B1 
(20–34 years, n = 25), group B2 (35–49 years, 
n = 23), group B3 (50–64 years, n = 21), and 
group B4 (65–80 years, n = 24). The study 
flowchart is presented in Figure 1.

Magnetic resonance examinations

All participants underwent non-en-
hanced MRI, DWI, and APTw examinations 
in the supine position after urination us-
ing a 3.0T MR scanner (Ingenia CX, Philips 
Healthcare, Best, The Netherlands) with a 
32-channel phased-array torso coil. Axial and 
coronal fast spin-echo T2-weighted imaging 
[repetition time/echo time (TR/TE): 2,500/65 
ms] and axial spin-echo T1WI (TR/TE: 600/20 
ms) images were obtained, with a small tow-
el placed between the thighs to stabilize the 
testes and the penis taped to the anterior 
abdominal wall. An additional axial fat satu-
rated T1W sequence was acquired when T1 
hyperintense foci were detected in testes. 

DWI was performed with free-breathing, 
with spectral attenuated inversion recov-
ery axial single-shot spin-echo echo-planar 
imaging (TR/TE, 4,500/107 ms; 2 NSA) with 
b values of 0, 900, and 4,000 s/mm2, a slice 
thickness of 3 mm, an intersection gap of 0.6 
mm, a field of view (FOV) of 120*71 mm2, a 
sampling resolution of 1.8*1.8*3 mm3, and a 
total scan time of 4 minutes and 55 seconds 
for each DWI scan. Moreover, APTw imaging 
was performed with a three-dimensional 
TSE-mDixon sequence. Parameters for the 
APTw sequence were as follows: saturation 
power, 2 µT; saturation duration, 2 s; frequen-
cy offsets, ± 3.5, ± 3.42, ± 3.58, −1,540 ppm; 
TR/TE, 5,864/8.8 ms; FOV, 250*346 mm2; 
sampling resolution, 1.8*1.8*4 mm3; slice 
thickness, 4 mm; sensitivity encoding factor, 

Main points

• Amide proton transfer (APT) signal intensi-
ty (SI) of normal testes tended to decrease 
with increasing age, and apparent diffusion 
coefficient (ADC) of normal testes was posi-
tively correlated with age.

• Patients with hypospermatogenesis caused 
by epididymo-orchitis exhibited much high-
er APT SI compared with all age groups of 
controls. 

• An increased APT SI combined with an el-
evated ADC is more likely to be associated 
with active or persistent inflammation. Figure 1. Study flowchart showing the patient inclusion and exclusion criteria. DWI, diffusion-weighted 

imaging; APT, amide proton transfer; MRI, magnetic resonance imaging; ADC, apparent diffusion coefficient.
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2; and total scan time, 4 minutes and 59 sec-
onds for each APTw scan.

Image analysis

The ADC and APT SI were independent-
ly measured by two radiologists (P.Y. and 
J.G., with 6 and 20  years of experience, 
respectively) blinded to clinical data, and 
average values were used. Circular regions 
of interest (ROIs) were placed centrally (with 
the center at the intersection of the long and 
short axes) on both the automatically gener-
ated ADC maps and the APTw maps to en-
compass most of the testes without artifacts 
or margins, with an area of no less than 110 
mm2. The ROIs are shown in Figure 2. Each 
testis was measured three times to deter-
mine the average ADC and APT SI. 

Statistical analysis

Statistical analysis was performed using 
SPSS version 22 (IBM, Armonk, NY, USA). 
Data normality was assessed using the Sha-
piro-Wilk test. Continuous variables were 
expressed as mean ± standard deviation 
and categorical variables in terms of count. 
The ADC and APT SI values of the patients 
and the controls were compared using the 
independent samples t-test. Spearman’s rank 
correlation coefficient was used to analyze 
correlations between age and APT/ADC. 

Interobserver reproducibility was evaluat-
ed for ADC and APT SI measurements using 
the intraclass correlation coefficient (ICC). 
The level of agreement was considered ex-
cellent (ICC > 0.74), good (ICC = 0.60–0.74), 
fair (ICC = 0.40–0.59), or poor (ICC < 0.40). 
Statistical significance was defined as P < 
0.05. 

A priori power analysis was performed 
using G-Power software (version 3.1.9.7). To 
detect the difference in the APT SI and ADC 
value of testes between patients with epidid-
ymo-orchitis and the controls, a sample size 
of 15 was required for each group based on 

these data. The sample size was considered 
sufficient to draw conclusions in this study.

Results
Average patient age and testicular APT SI 

and ADC values are listed in Table 1. In group 
B, Spearman’s rank correlation coefficient 
showed that APT SI was negatively correlat-
ed with age (r = −0.510, P < 0.001) (Figure 3), 

whereas ADC was positively correlated with 
age (r = 0.317, P = 0.006) (Figure 4). The APT 
SI was significantly higher in group A (1.77 
± 0.41) (Figure 3) compared with group B 
and all its subgroups (all P < 0.01). The ADC 
was significantly higher in group A [(0.549 ± 
0.091) × 10−3 mm2/s] compared with group 
B [(0.482 ± 0.052] × 10−3 mm2/s, P < 0.001), 
including group B1 [(0.449 ± 0.047) × 10−3 
mm2/s, P < 0.001], group B2 [(0.475 ± 0.022) × 

Table 1. Testicular APT SI and ADC values in various groups

Group Age APT SI Pa ADC (mm2/s) Pb

Group A 36.40 ± 5.43 1.77 ± 0.29 NA 0.549 ± 0.091 × 10−3 NA

Group B 48.97 ± 16.54 1.32 ± 0.16 <0.001 0.482 ± 0.052 × 10−3 <0.001

 Group B1 27.88 ± 3.85 1.43 ± 0.21 0.008 0.449 ± 0.047 × 10−3 <0.001

 Group B2 41.90 ± 4.15 1.37 ± 0.31 <0.001 0.475 ± 0.022 × 10−3 0.002

 Group B3 54.94 ± 3.70 1.30 ± 0.35 <0.001 0.488 ± 0.051 × 10−3 <0.001

 Group B4 71.50 ± 5.63 1.20 ± 0.35 <0.001 0.512 ± 0.089 × 10−3 0.111

a: Comparison with APT SI of group A. b: Ccomparison with ADC value of group A.
APT SI, amide proton transfer signal intensity; ADC, apparent diffusion coefficient.

Figure 2. (a, b) Placement of regions of interest in testes.

a b

Figure 3. Scatter plot of APT signal intensity and age. APT, amide proton transfer.
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10−3 mm2/s, P = 0.002], and group B3 [(0.488 
± 0.051) × 10−3 mm2/s, P < 0.001], but there 
was no statistically significant difference be-
tween group A and group B4 [(0.549 ± 0.091) 
× 10−3 vs. (0.512 ± 0.089) × 10−3 mm2/s, P = 
0.111]. Examples of control groups and pa-
tients with epididymo-orchitis are shown in 
Figure 5.

Interobserver agreement was high for 
both the ADC (ICC = 0.850, 95% confidence 
interval (CI): 0.829–0.975) and the APT SI (ICC 
= 0.820, 95% CI: 0.805–0.853) measurements. 

Discussion
Recently published studies have investi-

gated the potential of functional MRI in male 
infertility.13,16,21 Proton MRS (1H MRS), DWI, 
and MTI are promising for the evaluation 
of male infertility.13,16,21 Increased testicular 
ADC and decreased magnetization transfer 
ratio have been reported in patients with im-
paired spermatogenic function.13-15 Previous 
studies also reported that 1H-MRS may be 
utilized for the evaluation of the testes of pa-
tients with NOA, in which decreased levels of 
choline, myoinositol, and lipids are found.20,21 
Both ADC and MTI reflect certain histological 
features of testes, but neither can provide 
information at the levels of molecules and 
metabolites. Although 1H-MRS may be valu-
able as a tool for quantitative evaluation of 
metabolites in spermatogenesis, the study 
of testes has adopted a common approach 
from brain MRS, which neglects the differ-
ences in metabolites between testes and 
the brain,20,21 meaning it is unclear whether 
the method can accurately reflect the actu-
al metabolic status of the testis. Moreover, 

APTw imaging represents a non-invasive 
imaging technique, one used as an adjunct 
tool to conventional MRI that allows for the 
determination of metabolite concentration 
changes, such as mobile proteins and pep-
tides in organs or tumors, and is utilized in 
studies involving brain tumors, hepatocel-
lular carcinoma, bladder cancer, prostate 
cancer, and endometrioid endometrial ade-
nocarcinoma.24-28 Beyond its applications in 
oncology, APT imaging has also been utilized 
in non-neoplastic conditions such as renal 
impairment35-36 and multiple sclerosis (MS).37 

In these studies, the potential mechanism 
underlying APT SI is hypothesized to be the 
increased concentration of mobile proteins 
and peptides during the progress of chron-
ic kidney disease and within MS-associated 
chronic inflammatory lesions. Additionally, 
renal dysfunction will affect ion exchange 
and disrupt the original acid-base balance. 
This might change the pH value within tissue 
to a certain extent, leading to the increase 
of exchange rate between amide and water 
protons, consequently elevating the APT 
values. The concentration changes of a vari-
ety of proteins and peptides are involved in 
the production of spermatozoa by the tes-
tes,38,39 meaning applying APT in the evalu-
ation of spermatogenic function of the testis 
is a promising approach. To the best of our 
knowledge, this is the first study that reports 
APT SI for the testis and spermatogenic func-
tion.

In this study, a negative correlation was 
found (coefficient: −0.510) between the APT 
SI of the testis and age in 94 healthy controls. 
In addition, the ADC value of normal testes 
increased with age, corroborating the find-

ings obtained by Wang et al.13 Aging in men 
is associated with both functional and struc-
tural alterations of the testis. With increasing 
age, testosterone levels and sperm produc-
tion progressively decrease.5,6,40,41 Circulating 
testosterone levels are known to decrease 
by 0.4%–2% each year after the age of 30, 
which is due to altered Leydig cell number 
and function.4-6 In addition, the function of 
tubules and the number of Sertoli cells also 
decrease with age.5,6 According to previous 
reports, the APT SI of brain tumors is posi-
tively correlated with cellular density and/or 
proliferation (i.e., intracellular mobile protein 
and peptide concentrations).24,25 Therefore, 
decreased number of germ cells and reduced 
amounts of extracellular mobile proteins and 
peptides might account for APT SI reduction 
and ADC increase in testes. As such, elderly 
men with decreased spermatogenic function 
should, in theory, exhibit decreased APT and 
elevated ADC. The above results corroborate 
those of previous studies.13,14

The testicular ADC values were higher 
in the patients with hypospermatogene-
sis caused by epididymo-orchitis (group A) 
than in all age groups of controls, including 
the oldest (group B4), which appeared to 
reflect impaired spermatogenic function in 
the group A patients. Moreover, the testicu-
lar APT SI values were significantly increased 
in group A compared with all age groups of 
controls, including the youngest (group B1). 
The results revealed that both ADC and APT 
could serve as biomarkers of impaired sper-
matogenic function caused by epididymo-or-
chitis. Interestingly, APT SI and ADC values in 
group A showed opposite trends of changes 
versus the observed trends with aging. Both 
parameters are believed to be related to cel-
lular density,24,25,42,43 meaning reduced APT 
SI and elevated ADC should be observed in 
patients with hypospermatogenesis because 
of reduced cellular density. The abnormally 
elevated testicular APT SI in patients with 
epididymo-orchitis may be caused by the 
destruction of testes by active inflammation, 
which induces a series of pathological alter-
ations, including microscopic necrosis, and 
an accumulation of testicular metabolites 
rich in mobile proteins and peptides. In ad-
dition, the APT SI is influenced by the chemi-
cal exchange rate between amide and water 
protons; this exchange rate depends mainly 
on the concentration of amide protons and 
the pH value in tissue.23 We hypothesize that 
inflammatory reaction may alter the intracel-
lular environment of testicular cells, thereby 
disrupting the original acid-base balance 
and changing the pH value in the testis to 

Figure 4. Scatter plot of ADC and age. ADC, apparent diffusion coefficient.
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a certain extent. This might accelerate the 
exchange rate between amide and water 
protons, leading to increased APT values. 
Further investigation is required to explore 
the mechanism underlying the changes of 
testicular APT SI in patients with epididy-
mo-orchitis. The different trends of changes 
in APT SI and ADC may help determine the 
cause of hypospermatogenesis. A decreased 
APT SI combined with an increased ADC 
may suggest hypospermatogenesis caused 
by aging or chronic injuries, whereas an in-

creased APT SI combined with an elevated 
ADC is more likely to be associated with ac-
tive or persistent inflammation. This may fur-
ther improve clinical decision-making.

The limitations of this study are as follows. 
First, only a portion of the included volun-
teers (20–50 years old) underwent semen 
analysis to examine spermatogenic function. 
In addition, for volunteers over 50 years old, 
their statements of prior paternity were ac-
cepted as evidence of fertility, which might 
have led to errors in these age groups. Sec-

ond, generally no histopathologic confirma-
tion was available for patients with suspected 
epididymo-orchitis, with all group A patients 
clinically confirmed by seminal plasma bio-
chemistry. Third, the failure rate (23/139) of 
APTw imaging due to artifacts was still con-
siderable and needs to be improved in the 
future. Finally, the heterogeneity in the se-
verity distribution of hypospermatogenesis 
within our cohort (predominantly compris-
ing severe cases), limits the generalizability 
of findings to milder forms of hypospermato-
genesis. Future multicenter studies with larg-
er, balanced samples are warranted to vali-
date our findings. 

In conclusion, according to the above 
preliminary results, the APT SI of normal tes-
tes tended to decrease with increasing age, 
whereas patients with hypospermatogene-
sis caused by epididymo-orchitis exhibited 
much higher APT SI compared with all age 
groups of controls. Thus, when combined 
with the ADC, which generally increases with 
both age and impaired spermatogenic func-
tion, APT SI may provide additional diagnos-
tic information.
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Validation of R2* magnetic resonance imaging for quantifying 
secondary iron overload in pediatric patients

PURPOSE
Non-invasive assessment of iron deposition is the standard of care for guiding chelation therapy 
in patients with iron overload. Several magnetic resonance imaging (MRI)-based techniques have 
been developed. This study compares the MRI-based R2* method with the standard R2-based 
method for quantifying iron levels in the liver and heart in children and young adults with second-
ary iron overload.

METHODS
A single-center prospective study was conducted over 2.5 years involving 14 patients aged 4–22 
years with secondary iron overload. These patients underwent 40 MRI scans using both R2 and R2* 
methods at same time. A total of 36 scans were analyzed, comparing the two methods using linear 
regression analysis and Bland–Altman plots.

RESULTS
The study shows a significant correlation between liver iron concentration measurements obtained 
using the R2* method and those obtained using the R2-based method (adjusted R2 = 0.77128). The 
agreement was even stronger for R2* values in the cardiac septum (adjusted R2 = 0.93483). 

CONCLUSION
The R2* method for assessing iron deposition in the liver and cardiac septum is comparable to the 
R2-based method and is suitable for clinical use. However, due to slight differences in measure-
ments between the two techniques, it is advisable to consistently use one method for monitoring 
treatment in each patient. Further research is needed to refine the calibration equations.

CLINICAL SIGNIFICANCE
This study highlights the MRI-based R2* method as a reliable, non-invasive, and cost-effective alter-
native to the R2-based method for monitoring iron overload in pediatric patients, with no addition-
al costs for institutions or third parties.

KEYWORDS
Iron deposition, magnetic resonance imaging, chelation, liver

You may cite this article as: Ahmad TM, Khdair Ahmad F, Abdolell M, Ahmad O, Rogers MT. Validation of R2* magnetic resonance imaging for quantifying 
secondary iron overload in pediatric patients. Diagn Interv Radiol. 2025;31(4):399-404.

Quantitative assessment of iron deposition in body organs is critical for the clinical 
management of patients with iron overload. Excessive iron in primary and secondary 
hemochromatosis is absorbed through the intestine and accumulates in various body 

parts. The liver is the main storage site for excess iron. However, when the liver storage capac-
ity is exceeded, the iron overflows to other organs–including the reticuloendothelial system–
such as the spleen, bone marrow, cardiac septum, and pancreas, leading to various complica-
tions (e.g., diabetes, cardiomyopathy, and, more commonly, liver fibrosis and cirrhosis). Only 
a small portion of iron is eliminated through the sloughed mucosa, feces, and menstruation. 
There is little correlation between ferritin levels and iron deposition, particularly in the heart.1,2 
Liver iron concentration (LIC) reflects body iron content. Therefore, LIC assessment is used 
as a surrogate to indicate total body iron deposition.2,3 Liver biopsy is the gold standard for 
quantifying LIC. However, it has certain limitations, such as being invasive and inconvenient, 

1The University of Jordan School of Medicine, 
Department of Radiology, Amman, Jordan

2IWK Health Center, Department of Pediatric Imaging, 
Halifax, Canada 

3Dalhousie University Faculty of Medicine, 
Department of Diagnostic Radiology, Halifax, Canada

4Jordan University Hospital, Section of Pediatric 
Gastroenterology, Amman, Jordan

5The University of Jordan School of Medicine, 
Department of Pediatrics, Amman, Jordan

6King Hussein Cancer Center (KHCC), Amman, Jordan 

7Hopp Children’s Cancer Center (KiTZ), Division of 
Pediatric Neuro-oncology, Heidelberg, Germany

Corresponding author: Tahani M. Ahmad

E-mail: tahani1523@yahoo.com

 Tahani M. Ahmad1,2,3

 Fareed Khdair Ahmad4,5

 Mohamed Abdolell3
 Olfat Ahmad6,7

 Matthew T. Rogers2

Received 13 February 2025; revision requested 17 March 
2025; accepted 28 April 2025.

Epub: 03.06.2025

Publication date: 08.07.2025

DOI: 10.4274/dir.2025.253282

https://orcid.org/0000-0001-9885-6090
https://orcid.org/0000-0002-6359-6601
https://orcid.org/0000-0003-1892-9961
https://orcid.org/0000-0003-3764-4304


 

400 • July 2025 • Diagnostic and Interventional Radiology Ahmad et al. 

requiring sedation, and the relatively small 
cross-sectional sampling volume of the he-
patic parenchyma, which can lead to inac-
curate results, particularly if the iron deposi-
tion is not homogeneous.2 Misestimated LIC 
measurements can lead to the progression of 
liver fibrosis and cirrhosis and undesired side 
effects of medications and chelation therapy.

In the last few decades, various non-in-
vasive magnetic resonance imaging 
(MRI)-based techniques–both qualitative 
and quantitative–for assessing LIC have 
emerged, gained popularity, and are now 
used in clinical practice. Although they can-
not provide objective measurements or de-
tect slight iron deposition, qualitative meth-
ods, such as gradient echo (in-phase and 
out-of-phase) sequences, can alert possible 
iron overload. For example, iron deposition 
results in a decreased signal on the in-phase 
sequence. Quantitative methods include 
R2-based and R2*-based relaxometry tech-
niques and the signal intensity ratio (SIR) 
method.4 Relaxometry techniques depend 
on MRI signal shortening with increased iron 
deposition, whereas the SIR method is based 
on the observation of a drop in liver signal 
intensity with increased iron deposition in 
comparison to reference tissues such as the 
paraspinal muscles. Developed by Clark and 
St Pierre5, the United States Food and Drug 
Administration-validated, widely accepted, 
and standardized method is based on R2 
measurement and is commercially known as 
FerriScan® (Resonance Health, Australia). This 
method requires validation with an external 
phantom, involves additional cost, and takes 
several days to return quantitative results 
to the medical team. More importantly, it 
involves a longer scanning time (approx. 15 
min), which makes it susceptible to breath-
ing and motion artifacts. The R2* (R2* = 1/
T2*) method has been proposed as a reliable 
alternative for assessing LIC. This method is 
faster (approx. 15 s), and R2* values can be 
converted to tissue iron content using ap-
propriate calibration curves. 

Research groups have published cali-
bration equations based on the T2*/R2* 
technique; however, there has been little 
independent validation of these calibration 
equations in clinical settings, with no con-
sensus on the ideal acquisition protocol. It 
is noteworthy that LIC measurements vary 
between institutions due to differences in 
acquisition parameters and post-processing 
fitting algorithms. Therefore, internal valida-
tion of these parameters is necessary before 
providing clinical results.

Although images for the R2* relaxometry 
technique are easy to acquire, the need for 
post-processing steps limits their adoption 
in clinical practice.6 Several MRI vendors have 
attempted to promote the use of this meth-
od by providing software packages that help 
analyze the images and convert R2* values 
into clinically relevant LIC values. This is con-
ducted at the scanner console or local work-
station by drawing a few regions of interest 
(ROI) over the right lobe of the liver and car-
diac septum. This software varies according 
to the vendor and the sequences acquired.7 
However, there is limited data on the valida-
tion of these potentially useful products. At 
IWK health, we use a 1.5 T GE magnet with 
STARmap analysis via CardiacVX software 
Wipro GE Healthcare Pvt. Ltd. In this study, we 
aimed to validate the results of this software 
in comparison to the standard FerriScan® 
method to eliminate the need for third-party 
processing. We expect that this will benefit 
our institution, as well as other facilities with 
a similar setup.

Methods

Patient selection and study design

This prospective study is compliant with 
Health Insurance Portability and Accounta-
bility Act standards and the principles of the 
Declaration of Helsinki, and was approved by 
the IWK Institutional Research Ethics Board 
(# 1021517), with approval obtained in April 
2018 and renewed annually until comple-
tion of the study. All patients with known 
secondary iron overload referred to by their 
primary hematologist, gastroenterologist, or 
treating physicians for MRI evaluation of iron 
overload at our institution were recruited 
over 2.5 years and consent was obtained at 
the time of the scan. A total of 40 scans were 
performed for 14 patients between October 
2020 and April 2023. Of these, four scans 
were excluded from the analysis as they were 
considered technically inadequate, either 
due to motion artifacts or lack of specific liver 
or cardiac sequences.

Magnetic resonance imaging studies

FerriScan® studies were performed ac-
cording to the specified protocol. This includ-
ed five sequences of axial spin-echo images 
with variable time to echo (TE) of 6, 9, 12, 15, 
and 18 ms. The field of view (FOV) was 34 cm, 
with a 5-mm slice thickness and 5-mm spac-
ing, covering 11 slices. The non-breath-hold 
(BH) scan duration was 2 min and 28 s for 
each sequence. Other parameters included 
repetition time (TR) = 1,000 ms, matrix = 256 
× 192, bandwidth (BW) = 62.5 kHz, and numm-
ber of excitations (NEX) = 1. A bag of normal 
saline was used as a phantom for imaging to 
provide a reference signal intensity for meas-
urement correction purposes in case of any 
potential machine drift.

A single BH technique was used to ob-
tain non-contrast-enhanced T2* axial gradi-
ent-echo images at the level of the main por-
tal vein, with increasing TE sequences. Noise 
correction was applied, but fat correction 
was not performed. The parameters for this 
sequence were TR = 170 ms, multi-echo TE 
= 0.9–7.7 ms at regular intervals of approx-
imately 0.97 ms, flip angle (FA) = 10°, BW = 
50  kHz, and matrix = 220 × 220. The inhert-
ent phased-array body coil was used as the 
transmitter coil, and a receive-only coil was 
used for signal collection. Furthermore, a 
single mid-ventricular short axis 2D GE (mul-
ti-echo fast gradient-recalled echo) cardiac 
gated slice was imaged at eight TEs ranging 
from 2.09 to 19.9 ms, with increments of 2.53 
ms. The FOV was 40 cm, and the slice thick-
ness was 10 mm (no gap). Other parameters 
included FA = 20°, frequency matrix = 224, 
phase matrix = 128, NEX = 1, and BW = 83.33 
kHz. Fast imaging employing steady-state 
acquisition sequences were used to obtain 
axial, two-chamber, four-chamber, and then 
short-axis views. All scans were performed 
on a single 1.5 T MRI scanner (Signa HD Twin-
Speed, 2002/hardware update in 2012; GE 
Healthcare, Milwaukee, WI, USA).

Image analysis

The FerriScan® sequences were sent to the 
primary company, Resonance Health Center 
in Australia, for quantitative analysis as per 
routine clinical practice. The multi-echo gra-
dient images were transferred to the onsite 
Advantage Workstation (AW, GE HealthCare) 
for diagnostic imaging processing. Three 
small ROIs, each at least 1 cm in diameter, 
were manually drawn in the right lobe of 
the liver on areas that appeared homoge-
nous in signal intensity, devoid of vessels or 
biliary trees, and away from the diaphragm 

Main points

• Magnetic resonance imaging is the stan-
dard clinical practice for assessing tissue 
iron deposition, particularly in children.

• The R2* method is comparable to the stan-
dard R2-based method for quantifying iron 
overload in children.

• Adherence to one method is crucial to avoid 
underestimation or overestimation of iron 
deposition.
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(Supplementary Figure 1a). The mean value 
of these ROIs was used for analysis. The fitted 
curve was evaluated, and truncation was oc-
casionally used to remove late outlier points 
to account for the plateau observed due to 
the low signal-to-noise ratio at later TE val-
ues.7-9 The R2* value was converted to LIC 
using the vendor-provided STARmap analy-
sis via CardiacVX software, which is based on 
Dr. Wood’s calibration formula [Fe (mg/g) = 
0.0254 × R2* + 0.202].10

For cardiac analysis, a homogeneous 
full-thickness ROI was drawn on the cardiac 
septum to avoid the epicardium and blood 
pool (Supplementary Figure 1b). Studies 
have shown that mid-ventricular septal iron 
correlates well with global left ventricular 
iron concentration.7,11

Magnetic resonance imaging-based quan-
tification of liver iron concentration and T2 
relaxometry

The severity of liver iron overload using 
MRI techniques is categorized as follows ac-
cording to the literature:

• Normal: <1.8 mg/g (<32 μmol/g)

• Borderline: 1.8–3.2 mg/g 
 (32–57 μmol/g)

• Mild: 3.2–7.0 mg/g (57–125 μmol/g)

• Moderate: 7.0–15.0 mg/g 
 (125–269 μmol/g) (increased risk of  
 complications)

• Severe: >15.0 mg/g 
 (>269 μmol/g) (high mortality risk)12

The T2* thresholds for iron overload severity

T2* > 20 ms: normal

T2* 10–20 ms: mild iron overload

T2* 5–10 ms: moderate iron overload

T2* < 5 ms: severe iron overloads13,14

Statistical analysis

The T2* values were automatically trans-
formed into reciprocal R2* values for analysis 
to obtain a positive linear correlation: R2* (Hz) 
= 1,000/T2* (ms). The mean R2* value from 
the three hepatic ROIs was used for analysis. 
The R2* was converted to LIC using the ven-
dor-specific software, in line with Dr. Woods’s 
calibration-based formula. The FerriScan® LIC 
was considered the “gold standard” for com-
parison. The agreement between LICs calcu-
lated by the R2* and FerriScan® methods was 
assessed using linear regression analysis and 
Bland–Altman analysis, the latter of which 
characterizes both systematic differences 
(bias) and random fluctuations (variance).

The data followed a normal distribution 
pattern. Due to the limited sample size and 
challenges in collecting enough pediatric 
cases in a reasonable time frame–and as the 
primary focus of the study was to assess the 
images’ characteristics and not the longitu-
dinal changes or patient-specific effect–we 
assumed independence of the images and 
thus used linear regression analysis and 
Bland–Altman testing. 

Results
Overall, 36 MRI scans from 14 patients 

were included in the analysis (Figure 1). Each 

scan included both FerriScan® and STARm-
ap sequences and analyses (Supplementary 
Figure 2). The age range of our cohort was 
4.0–22.0 years, with mean and median ages 
of 14.56 and 17 years, respectively. The group 
consisted of nine male patients and five fe-
male patients (Table 1). However, the female 
group underwent more MRI follow-up scans 
during this period, resulting in an equal dis-
tribution of the MRI studies between male 
and female patients, with each group rep-
resenting 50% of the total scans analyzed. 
Among these patients, two had sideroblastic 
anemia, one had Blackfan–Diamond anemia, 
one had pyruvate kinase deficiency anemia, 
and the remainder had B-thalassemia major 
disease. 

The LIC measured by FerriScan® ranged 
from 2.4 to 39.5 mg/g tissue dry weight (DW), 
with an average of 19.44 mg/g DW. In com-
parison, R2* values ranged from 96.4 to 894.5 
Hz, corresponding to LIC values of 2.6–22.9 
mg/g DW, with an average of 12.9 mg/g DW. 
Cardiac R2* values assessed by FerriScan® 
ranged from 19.0 to 369.0 Hz, whereas car-
diac R2* values assessed locally ranged from 
20.0 to 282.0 Hz (Table 2).

The regression analysis showed a sub-
stantial correlation between LIC values cal-
culated by the R2* method and those meas-
ured by FerriScan®, with an adjusted R2 of 
0.77128. This indicates that approximately 
77% of the LIC values obtained using the Fer-
riScan® method can be predicted or account-
ed for by the values obtained using the R2* 
method. This finding indicates that the R2* 
method is a reliable predictor of LIC values, 
although not a perfect match with FerriScan® 
measurements. The analysis yielded a slope 
of 0.43054 and a y-intercept of 4.539, sug-
gesting a consistent relationship between 
the two measurement techniques.

The Bland–Altman analysis revealed a 
bias of 6.53, meaning FerriScan® values were, 
on average, 6.53 mg/g DW higher than those 
estimated by the R2* method. The standard 
deviation was 7.239, with limits of agreement 
between −7.658 and 20.719. This means that 
in most cases, the difference between the 
two methods would fall within this range. 
The confidence intervals ranged from −3.43 
to −11.8 and from 16.49 to 24.944. The high-
est agreement was observed for LICs below 
12 mg/g DW, as shown in the scattergram 
and regression line in Figure 2a.

The cardiac analysis indicated an excel-
lent correlation between the two methods, 
with an adjusted R2 of 0.93483. This suggests 
that the differences or changes seen in the Figure 1. Flow chart summarizing the study population, with the number of scans performed.
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R2* values (measured using FerriScan®) can 
mostly be predicted using the values meas-
ured locally. As such, the local R2* method is 
almost as good as FerriScan® in measuring 
these values. The slope was 0.763, with an in-
tercept of 11.05, indicating a strong relation-
ship between the two sets of measurements 
(Figure 2b). 

Discussion
This project evaluates the reliability of 

the local R2* method for the assessment 
of the iron overload in the liver and heart 
compared with the gold standard FerriScan® 
method. Our findings demonstrated sub-
stantial agreement between the R2* method 
and FerriScan® in estimating LIC, particularly 
in cases of mild to moderate iron overload 

(LIC < 12 mg/g DW). This is consistent with 
the findings obtained by Meloni et al.16, who 
concluded that signal decay models result 
in clinically acceptable estimations of LIC 
provided the ROIs are correctly drawn and 
the proper calibration curve is used to cor-
rect for any systematic differences in R2* 
estimation.14,15 The agreement between the 
two methods was highest at LICs below 12 
mg/g DW, in line with the findings by Abou 
Zahr et al.17, where the best agreement was 
observed at LICs below 15 mg/g DW in their 
cohort. This suggests that both methods per-
form similarly in the range of mild to moder-
ate liver iron deposition.

In our cohort, FerriScan® values con-
sistently showed higher LICs compared 
with the R2* method, with a positive bias 

of 6.7%. This overestimation of  FerriScan® 
was previously reported in Reeder et al.’s 12 
study. We believe that this difference could 
be partially attributed to the calibration 
equation used in the CardiacVX software, 
which is based on Wood et al.’s10 2005 study. 
Although this equation was confirmed by 
Hankins et al.18 in 2009, Meloni et al.16 later 
demonstrated a 15%-lower scaling coeffi-
cient between R2* and LIC. It is worth noting 
that Dr. Wood’s equation was originally for-
mulated on a single-echo sequence, where-
as our images were based on multi-echo 
sequences. However, this may have had a 
limited contribution, as cross-validation of 
single-center and multicenter R2* relaxom-
etry methods, including both single and 
multi-echo sequences, has been performed 
in earlier studies and has demonstrated no 
significant difference3 Since FerriScan® is 
considered the gold standard, the observed 
overestimation by this method should be 
considered when interpreting results. Al-
though R2* values might underestimate 
iron content compared with FerriScan®, this 
discrepancy could be due to the calibration 
model used by the latter, rather than an in-
herent inaccuracy in the R2* method itself. 
Therefore, while FerriScan® may provide 
more accurate results in the context of our 
study, both methods are valuable for assess-
ing LIC; however, discrepancies in calibra-
tion should be considered.

For validation, we plan to reanalyze the 
measured ROIs using another calibration 
equation, such as Garbowski’s et al.19 2014 
equation, which follows parameters closer 
to ours, to determine whether better agree-
ment can be reached.20 This would require an 
update of the software to set the latter equa-

Table 1. Population characteristics

Total number of eligible cohorts 14

Age range (mean) years 4-22 (14.56)

Male sex (%) 9/14 (64%)

Underlying clinical conditions of 
the cohort

Number of patients Number of the scans 
Included in the analysis

 B-thalassemia major 10 30

Sideroblastic anemia 2 4

Diamond-black fan anemia 1 1

Pyruvate kinase deficiency anemia 1 1

Table 2. Liver and cardiac iron values measured using FerriScan® and R2* methods

Liver iron concentration
mg/g dry tissue weight

Cardiac iron 
deposition R2 Hz

Cardiac iron 
deposition T2 ms

FerriScan® 2.4–39.5
(19.44)

19.0–369.0
(100.11)

2.7–52.80
(20.24)

R2* method 2.6–22.9
(12.9)

20.0–282.0
(87.48)

3.5–50.00
(20.35)

a b

Figure 2. Logistic regression calibration curves illustrating the correlation between FerriScan® readings and R2* STARmap values. The x-axis represents FerriScan® 
readings in mg/g dry tissue, and the y-axis represents R2* STARmap values in mg/g dry tissue. (a) Liver values; (b) cardiac septum values. Both curves demonstrate 
substantial correlation.
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tion as the default one. The wide range of 
agreement between the two methods have 
been previously explained by both Wood et 
al.10 and Clark and St Pierre5, and may be at-
tributed to the spatial variability of iron con-
centration within the liver. Other confound-
ing factors, such as iron particle size, shape, 
and local metabolites (fat and fibrosis), that 
affect signal relaxation might also contribute 
to this wide range.

The cardiac analysis demonstrated a 
substantial agreement between our analy-
sis and that of FerriScan®. The difference in 
measurement is not surprising, as variations 
in R2* values with different ROI sizes and 
measurements have been reported. Thus, we 
opted to use the mean values of three ROIs 
for the analysis.18-20 The intra- and inter-rater, 
as well as inter-scanner reproducibility of R2* 
analysis, was assessed in previous work by 
Hernando et al.3, who further demonstrated 
that the calibration from different studies 
can be translated, improving the utilization 
of R2* mapping. Kirk et al.21 also tested the 
reproducibility of the R2* technique among 
five different international centers on differ-
ent scanners and concluded that the meas-
urement of tissue T2* (heart and liver) can 
be achieved reproducibly between centers 
across the world, provided appropriate ven-
dor-specified sequences are followed, along 
with appropriate software analysis packages 
and calibration curves.1,22 The inter-scanner 
and inter-center reproducibility and transfer-
ability were also evaluated and confirmed in 
multiple other studies.8,9

The strength of our study lies in the pro-
spective collection of cases and the simul-
taneous acquisition of sequences for both 
methods, specifically focusing on pediatric 
patients, which minimizes confounding fac-
tors, such as fatty infiltration and cirrhosis, 
that could contribute to signal alterations.22 

However, the study also has several few lim-
itations. First, the study has a small sample 
size, a common challenge in pediatric re-
search. Second, although Dr. Wood’s 2005 
equation is the first published calibration 
formula and still the most widely used equa-
tion, in future studies, we aim to analyze ROIs 
with a calibration equation more aligned 
with our parameters to potentially improve 
agreement.

In conclusion, this study successfully val-
idated the use of R2* MRI for assessing iron 
overload in the heart and liver of children 
with secondary iron overload. While R2* 
measurements do not perfectly align with 
FerriScan® results, the R2* is a reliable predic-

tor of LIC. This emphasizes the importance 
of using a consistent method for assessment 
and follow-up. Monitoring trends in iron 
concentration is crucial for adjusting clinical 
management. A larger multicenter validation 
of the R2* method is necessary to establish 
its reliability across various settings and pop-
ulations.
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Supplementary Figure 2. A 15-year-old female patient with B-thalassemia major who had multiple transfusions, and chelation therapy: (a) FerriScan® report 
showing an average liver iron concentration (LIC) of 1.8 mg/g dry tissue; (b) R2* analysis calibration curve indicating an LIC of 2.2 mg/g dry tissue.

a b

Supplementary Figure 1. The location of region of interest as placed on (a) the right lobe of the liver, avoiding blood vessels, diaphragm or biliary tree and (b) on 
the cardiac septum.

a b
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