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Evaluating artificial intelligence for a focal nodular hyperplasia 
diagnosis using magnetic resonance imaging: preliminary findings

PURPOSE
This study aimed to evaluate the effectiveness of artificial intelligence (AI) in diagnosing focal nod-
ular hyperplasia (FNH) of the liver using magnetic resonance imaging (MRI) and compare its perfor-
mance with that of radiologists.

METHODS
In the first phase of the study, the MRIs of 60 patients (30 patients with FNH and 30 patients with no 
lesions or lesions other than FNH) were processed using a segmentation program and introduced 
to an AI model. After the learning process, the MRIs of 42 different patients that the AI model had 
no experience with were introduced to the system. In addition, a radiology resident and a radiology 
specialist evaluated patients with the same MR sequences. The sensitivity and specificity values 
were obtained from all three reviews.

RESULTS
The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of 
the AI model were found to be 0.769, 0.966, 0.909, and 0.903, respectively. The sensitivity and speci-
ficity values were higher than those of the radiology resident and lower than those of the radiology 
specialist. The results of the specialist versus the AI model revealed a good agreement level, with a 
kappa (κ) value of 0.777. 

CONCLUSION
For the diagnosis of FNH, the sensitivity, specificity, PPV, and NPV of the AI device were higher than 
those of the radiology resident and lower than those of the radiology specialist. With additional 
studies focused on different specific lesions of the liver, AI models are expected to be able to diag-
nose each liver lesion with high accuracy in the future. 

CLINICAL SIGNIFICANCE
AI is studied to provide assisted or automated interpretation of radiological images with an accu-
rate and reproducible imaging diagnosis. 

KEYWORDS
Artificial intelligence, deep learning, liver lesion, focal nodular hyperplasia, magnetic resonance 
imaging 

You may cite this article as: Kantarcı M, Kızılgöz V, Terzi R, et al. Evaluating artificial intelligence for a focal nodular hyperplasia diagnosis using magnetic 
resonance imaging: preliminary findings. Diagn Interv Radiol. 2025;31(5):405-415.

Focal nodular hyperplasia (FNH) is the second most common benign tumor of the liv-
er after hemangioma. The prevalence of FNH was found to be 0.4% to 3% in autopsy 
series.1 FNH is believed to result from arterial malformations, and 60%–80% of cases 

are asymptomatic and are discovered incidentally.2,3 The imaging characteristics of FNH cor-
respond well with histological properties and are observed as a solitary well-circumscribed 
lobulated mass in a cross-sectional imaging study (Figure 1).4 Magnetic resonance imaging 
(MRI) has a higher sensitivity than ultrasound and computed tomography (CT) imaging and 
a specificity of almost 100%.5 In MRI, a typical FNH is a solitary, well-defined, unencapsulat-
ed lesion with central scar formation.6 Approximately 35%–70% of FNH lesions do not have 
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these imaging features; they might have a 
pseudo capsule mimicking a true capsule, 
show washout-like hepatocellular carcino-
ma (HCC), or have no scar formation.7,8 The 
hepatobiliary phase (HBP) of MRI provides 
important data for the diagnosis of FNH, and 
73%–90% of these lesions are observed with 
iso-intensity or hyperintensity in the HBP.9 
Even though HCC and hepatic adenoma are 
usually hypointense in the HBP, these lesions 
may have upregulated hepatocyte-specific 
membrane transport proteins and, thus, may 
be observed as an iso- or hyperintense lesion 
in HBP images.4

Artificial intelligence (AI) is becoming a 
widespread method to interpret radiological 
images for research purposes, even in daily 
practice. It is expected to provide assisted 
or automated interpretation of radiological 
images with an accurate and reproducible 
imaging diagnosis. After obtaining imag-
es of the patients, AI may quickly interpret 
them and make critical diagnostic decisions 
for numerous patients. This may provide a 
quick and accurate diagnosis of many lesions 
located in different organs or systems in the 
future. Thus, all scientific studies targeted 
at developing AI for use as a diagnostic as-
sistant can be considered a contribution to 
this topic. As a diagnostic tool, AI has been 
used in the detection and characterization 
of diffuse diseases or focal lesions of the liver 
and pancreas in recent studies. It has been 
applied to different imaging techniques, in-
cluding ultrasound, CT, and MRI.10

The aim of the present study was to deter-
mine the effectiveness of AI in detecting the 
presence of FNH lesions of the liver and com-
pare this diagnostic capacity of AI with that 
of radiologists. The sensitivity, specificity, 
positive predictive value (PPV), and negative 
predictive value (NPV) were calculated, con-
sidering the radiological and pathological 
results of the patients as the gold standard. 

Methods

Patients and the study workflow 

This study was approved by the Ethics 
Committee of Erzincan Binali Yıldırım Uni-
versity (clinical trial number: 2023-13/6, 
date: 22.06.2023) and the requirement for 
informed consent was waived by the ethics 
committee due to the retrospective nature of 
the study. The study population constituted 
patients who had undergone MRI, and ab-
dominal MRIs of 30 patients were used in the 
initial phase. In the first phase, the MRIs of 
patients (n = 30) who had been histologically 
diagnosed with FNH were introduced to the 
AI system using a segmentation program. In 
addition, the abdominal MRIs of 30 patients 
with no liver lesions were segmented using 
the same program. A scoring system was 
used to diagnose FNH. Then, 42 patients with 
various lesions, including FNH (n = 13), HCC 
(n = 5), low-grade dysplastic nodules (n = 1), 
hepatic adenoma (n = 3), biliary hamarto-
ma (n = 1), primary hepatic neuroendocrine 
tumor (n = 1), colon cancer metastasis (n = 
2), breast cancer metastasis (n = 2), stomach 
cancer metastasis (n = 1), pancreatic cancer 
metastasis (n = 1), hydatid cyst (n = 1), com-
plex cyst (n = 1), biliary cystadenoma (n = 
2), hemangioma (n = 4), simple cyst (n = 3), 
and a normal liver were reviewed by AI and 
two radiologists (a specialist with 18 years 
of experience and a radiology resident with 
2.5 years of experience) independently in 
randomized order (Figure 2). Following the 
AI interpretations, sensitivity, specificity, the 
PPV, and the NPV were calculated. Then, the 
accuracy of the results from the AI model 

and the two radiologists were compared. 
The radiological diagnosis (stable lesions 
with typical imaging features in follow-up ex-
aminations or typical imaging findings with 
primary tumor) and the histological results 
(obtained by biopsy procedures) were taken 
as the gold standard to reveal the sensitivity 
and specificity values. 

Diagnosing focal nodular hyperplasia

A standardized method was used to 
simplify the interpretation, and for repro-
ducibility and repeatability regarding the 
FNH diagnosis, only the axial plane images, 
including T1-weighted, T2-weighted, and 
T1-weighted enhanced (arterial, portal, and 
venous phase) images, and HBP images were 
evaluated. Typically, FNH is hypointense or 
isointense on T1-weighted images and hy-
perintense or isointense on T2-weighted 
images, showing intense contrast medium 
enhancement in the arterial phase and re-
taining contrast in the portal and venous 
phases.11 The central FNH scar is best seen 
on MRI. The scar is monitored as hypointense 
on a pre-contrast T1-weighted sequence, 
substantially hyperintense on T2-weighted 
images, and becomes hyperintense on HBP 
images because of the accumulation of the 
contrast medium in the fibrous tissue. Most 
FNH lesions are iso- or hyperintense on HBP 
images (Figure 3).7

Magnetic resonance imaging protocol and 
selected sequences	  

All the MRIs were acquired using a 1.5T 
MRI scanner (Magnetom Era, Siemens, Er-
langen, Germany) with a standard abdom-

Main points

•	 The targeted long-term result is automated 
interpretation with an accurate diagnosis 
using artificial intelligence (AI) models for 
liver lesions; this study is part of the AI ed-
ucation program focusing on a specific liver 
lesion.

•	 A new scoring system is established to train 
the AI model to distinguish focal nodular hy-
perplasia (FNH) from other liver lesions.

•	 The AI model used in this research achieved 
sensitivity and specificity values higher than 
those of a radiology resident and lower than 
those of a radiology specialist for the diag-
nosis of FNH. 

Figure 1. Schematic of classic focal nodular hyperplasia, a solitary well-circumscribed lobulated mass 
with central scar tissue. This illustration has been created by the Adobe Photoshop program (Adobe 
Inc., 2021. Adobe Photoshop, https://www.adobe.com/products/photoshop.html) based on the figures 
provided by the Complete Anatomy program (3D4 Medical, 2021; Complete Anatomy; retrieved from 
https://3d4medical.com)

https://3d4medical.com/


 

AI to diagnose FNH • 407

inal coil. The axial sequences, including the 
T1-weighted and T2-weighted images, as 
well as the contrast-enhanced phases, were 
evaluated. The MRIs were segmented using 
dedicated software, ensuring the precise 
identification of focal lesions. All the con-
trast-enhanced T1-weighted images were 
obtained using gadoxetate disodium (Primo-
vist®) through intravenous injection at a dos-
age of 0.1 mmol/kg (maximum dose, 20 mL) 
and a rate of 2 mL/s, followed by saline flush 
(50  mL at the rate of 2  mL/s). Postcontrast 
images were analyzed, including the late ar-
terial phase (15–20s postinjection), portal ve-
nous phase (60–70s postinjection), delayed 
phase (3–5  min postinjection), and HBP (20 
min postinjection). The axial plane T1-and 
T2-weighted, arterial, portal, venous, and 
HBP enhanced T1-weighted MRIs were in-
troduced to the AI model and interpreted by 
the two radiologists through the liver lesion 
diagnostic process in relation to FNH. The 
following technical parameters were applied 
to both the enhanced and non-enhanced 
series: T2 weighted: time of repetition (TR): 
1,200 ms, time of echo (TE): 95 ms, number 
of excitations (NEX): 1, slice thickness: 6 mm; 
T1 weighted: TR: 6.94 ms, TE: 2.39 ms, NEX: 1, 
slice thickness: 3.3 mm.

Segmentation

The segmentation process was performed 
by an anatomist and a radiologist (with 3 and 
27 years of experience, respectively) using 
the same monitor as that used for segmen-
tation of the abdominal MRIs and at the 
same time. The radiologist decided on the 
presence and locations of the liver lesions 
for each patient. The anatomist had learned 
about image maps, anatomical details, and 
liver lesions from an experienced radiologist. 
The anatomist consulted with the radiologist 
at every step. Each patient MR examination 
was also checked at the end of the segmen-
tation session by the experienced radiologist 
for every segmented anatomical part or liver 
lesion. Segmentation of the axial images was 
performed with 3D Slicer software (v5.3.0, 
http://www.slicer.org) manually. The liver 
borders, FNH lesions (if any), lesions other 
than FNH, the main branches of the portal 
veins, and the hepatic veins were segment-
ed on six sequences in the axial plane, as 
described before in the diagnosing FNH sec-
tion. Only the focal lesions were tagged, and 
fibrosis or other diffuse parenchymal signal 
alterations were not segmented. The main 
portal veins and main hepatic veins were 
segmented in each patient. All FNH lesions in 
the liver were segmented if the patient had 

more than one lesion. The FNH lesions were 
segmented based on the lesion borders, and 
scar formation was also segmented in typical 
FNH lesions. The FNH lesion, scar formation 
of the FNH lesion, liver, main portal vein, 
main hepatic veins, and lesions other than 
FNH were tagged with different colors be-
fore being introduced to the AI model. Based 

on the axial slices, three-dimensional (3D) 
reconstruction images were also obtained by 
the segmentation program (Figure 4). After 
the AI training session, a radiology resident 
(with 2.5 years of experience), a radiology 
specialist (with 18 years of experience), and 
the AI model evaluated the random dataset 
that included the FNH and other lesions.

Figure 2. Study workflow. After the segmentation process and training the AI model, a randomized dataset 
was evaluated by AI, a radiology resident, and a radiology specialist independently. AI, artificial intelligence; 
FNH, focal nodular hyperplasia; MRI, magnetic resonance imaging.

Figure 3. Classic focal nodular hyperplasia with radial scar tissue. Axial plane magnetic resonance images 
with T2-weighted (a), T1-weighted pre-contrast (b), arterial phase contrast-enhanced T1-weighted (c), 
portal phase contrast-enhanced T1-weighted (d), venous phase contrast-enhanced T1-weighted (e), and 
hepatobiliary phase (f) images (yellow arrows indicate the lesion in an enhanced T1-weighted axial plane 
image, and the red arrow shows the typical central scar of the lesion). 

a

d
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e

c

f
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Artificial intelligence protocol and data 
preprocessing 

The workflow developed for FNH detec-
tion with AI from MRIs is presented in Figure 
5. The workflow consists of two stages: seg-
mentation and the FNH detection process. 
The process from dataset preparation to FNH 
detection with AI is explained in detail in this 
section.

The MRI data provided were converted 
from nrrd format to .nii.gz format, and a data 
standard was created. For the 3D modeling, 
the data were converted to Medical Seg-
mentation Decathlon format.12 To produce 
a more generalizable result, the five-fold 
cross-validation method was applied instead 
of random split for the algorithms.

Deep learning architectures

Organs such as the liver, veins, and gall-
bladder can be detected in MRIs thanks to 
deep learning architecture such as object 
recognition, semantic segmentation, and 
instance segmentation. In this study, a de-
cision-making process was used to focus on 
the intensity of FNH so that it could be de-
tected by AI. Thus, the use of segmentation 
algorithms was deemed more appropriate. 
Moreover, it was decided to use 3D segmen-
tation algorithms instead of two-dimension-
al (2D) segmentation algorithms to access 
the temporal information between MRI slic-
es. In this study, the nnU-Net deep learning 
algorithm, a deep learning-based semantic 
segmentation model developed with both 
2D and 3D U-Net configurations, was used.13 
We chose to use this algorithm for this study 
because it can automatically configure ap-
propriate preprocessing, network architec-
ture, training parameters, and post-process-
ing processes according to the data in the 
medical imaging.

Artificial intelligence-training and testing

The 3D nnU-Net model training was per-
formed in three categories—the liver, vein, 
and FNH—using model configurations pre-
pared based on the data of 60 patients, 30 
with FNH and 30 without. Model training was 
conducted with the five-fold cross-validation 
method. Thirty nnU-Net models were trained 
in five-fold form over six phases: T1 weight-
ed, T2 weighted, arterial, portal, and HBP. The 
hyperparameters used for model training are 
shown in Table 1. Optimal model selection 
was made according to the highest average 
validation Dice score. The most successful 3D 
nnU-Net model selected was tested on 30 
test patients. 

Artificial intelligence-evaluation metrics

The metrics used to evaluate the seg-
mentation model performance provide a 
key tool for measuring the sensitivity, ac-
curacy, and overall effectiveness of the de-
veloped model. In this study, the Dice score 
(Sørensen–Dice coefficient) metric was used. 
The Dice score is a metric that measures how 
well the region predicted by the model over-
laps with the actual labeled region. This met-
ric, used to evaluate the similarity between 
two clusters, is calculated with the following 
formula:14

In this formula, prediction represents the 
segmentation region predicted by the mod-
el, and ground truth represents the ground 
truth region. The Dice score has a value be-
tween 0 and 1, with a value closer to 1 indi-
cating greater overlap. A high Dice score indi-
cates that the model performs segmentation 
correctly, whereas a low value indicates that 
the model’s predictions are incompatible 
with the actual data.

Artificial intelligence-registration

Six phases were used to decide whether 
a patient had an FNH liver lesion. When six 
deep learning models are developed for six 
phases and used separately, a situation oc-
curs if the lesion can be found in one phase 

Figure 4. Magnetic resonance images after segmentation of the anatomical structures and focal nodular 
hyperplasia (FNH). After segmentation of all of the axial slices, either FNH or anatomical formation of the 
liver has been coded and tagged as a space-occupying structure by the segmentation program. In the right 
upper corner, the left main portal vein (red arrow), FNH (blue arrow), and central FNH scar formation (yellow 
arrow) are tagged with different colors after segmentation.

Figure 5. Artificial intelligence workflow. T1W, T1-weighted; HBP, hepatobiliary phase; ROI, region-of-
interest; FNH, focal nodular hyperplasia.
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and not in another. In this case, deficiencies 
in the evaluation exist in terms of AI. There-
fore, a 3D registration process was used in 
this study. The 3D registration process is 
used to align the position and orientation 
of images in the 3D space. This process is 
generally performed to obtain geometric 
harmony between a reference (base) and 
a moving image. In this study, a reference 
phase and the other five phases were reg-
istered separately. Since the most success-
ful deep learning model was developed on 
the arterial phase, the reference phase was 
determined as the arterial phase. The regis-
tration process shown in Figure 6a has been 
produced automatically in 3D Slicer (Figure 
6). The elastix registration method was used 
in this process.15

Region-of-interest extraction

When performing phase checks for FNH, 
specialist physicians make decisions by fo-
cusing on the surroundings of the FNH re-
gion. However, deep learning models seg-
ment all the relevant locations for the liver, 
vein, and FNH. To solve this, the region-of-in-
terest (ROI) extraction post-processing meth-
od was used. For ROI extraction, as shown in 
Figure 6b, the region segmented by the deep 
learning model as FNH was increased by 30%, 
and only the liver and vein segmentations 
around the FNH label were obtained. Since 
the arterial phase is the reference phase, the 
regions predicted by the deep learning mod-
el in the arterial phase were mapped onto 
the other five registration phases, and ROI 
extraction was completed for the six phases.

Rule-based system

The average pixel intensity was mea-
sured using the signal intensity of the liver, 
vein, and FNH segmentations within the 
ROI regions, six phases apart, and extract-
ed. To make an intensity decision, the liver 
average pixel intensity of each phase was 
compared with the FNH average pixel inten-
sity. To determine the lesion as hypo-, iso-, or 
hyperintense relative to the liver tissue, the 
surrounding liver parenchyma (the adjacent 
30% of the area of the lesion) was considered 
(Figure 7). A comparison table for the inten-
sity decision and the scoring system for each 
phase is shown in Table 1, and the decision re-
garding the presence of FNH is made accord-
ing to the MR intensity obtained. To enable 
AI to determine the presence of FNH, a strict 
pattern must be followed. A lack of informa-
tion in the literature and the absence of any 
widely used or accepted rule to enable AI to 
decide accurately, compelled the researchers 

to find a new pathway. Therefore, a new scor-
ing system was established based on the MR 
signal features of the lesion. The images of 
patients in the training session (the images 
of 30 patients with at least one FNH lesion) 
were used for the preliminary testing to op-
timize the scoring system. According to this 
scoring system, for the unenhanced series, 1 
point was allocated to iso- or hyperintensity 
in T2-weighted images and 1 point to hypo- 

or iso-intensity in T1-weighted images. For 
the dynamic contrast-enhanced series, the 
signal intensity was identified relative to the 
surrounding liver parenchyma. According to 
this rule, hyperintensity in the arterial phase 
and iso- or hyperintensity in the portal, ve-
nous, and HBPs were all allocated 1 point. A 
lesion with scar tissue was considered as 2 
points. In total, 7 or more points were consid-
ered to be FNH according to the morpholog-

Figure 6. Registration process of each magnetic resonance sequence and the region-of-interest extraction. 
HBP, hepatobiliary phase; ROI, region-of-interest; MRI, magnetic resonance image.

Table 1. Model hyperparameters, intensity decision, and the rule-based system of this study

Model hyperparameters

Hyperparameters Values

Epoch number 1,000

Batch size 2

Learning rate Poly learning rate scheduler (initial learning rate: 
0.01)

Optimizer Stochastic gradient descent 

Momentum 0.99

Weight decay 3e-05

Loss function Robust cross entropy loss
Memory efficient soft Dice loss

Intensity decision (SI unit)

Value (liver SI–FNH SI) Decision of intensity

Value < −10 Hypointense

−10< value <10 Isointense

Value >10 Hyperintense

Rule-based system

T2 weighted 0 1 1

T1 weighted 1 1 0

Arterial phase 0 0 2

Portal phase 0 1 2

Venous phase 0 1 2

Hepatobiliary phase −1 1 2

Scar Absence of the scar scored as 0 points, and presence of the scar 
scored as 1 point

Result: 7 or more points were considered focal nodular hyperplasia

SI, signal intensity; FNH, focal nodular hyperplasia.
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ical appearance in the MRIs. If one or more 
lesions in the liver were consistent with FNH 
on the MRIs, the patient was accepted as FNH 
positive by each reviewer.

Statistical analysis

All statistical analyses were calculated 
using IBM SPSS statistics v22.0 for Windows. 
Sensitivity, specificity, the PPV, the NPV, 
and accuracy were calculated using the 
chi-square test, with the radiological and 
histological results considered as the gold 
standard. The area under curve (AUC) values 
were calculated and presented as 95% confi-
dence intervals (CIs). Cohen’s kappa analysis 
was performed to reveal the agreement lev-
els between reviewers, and Koo et al.’s16 clas-
sification method was used to represent the 
agreement levels. According to these agree-
ment levels, values less than 0.50 indicated 
poor agreement, values between 0.50 and 
0.75 showed moderate agreement, values 
between 0.75 and 0.90 revealed good agree-
ment, and values greater than 0.90 demon-
strated excellent agreement.16 A P value < 
0.05 was considered to represent a statisti-
cally significant difference. 

Results
The training of the 30 nnU-Net mod-

els was conducted in the form of five-fold 
cross validation for six phases: T2 weighted, 
pre-contrast (T1 weighted), arterial, portal, 
venous, and HBP. The nnU-Net deep learn-
ing algorithm automatically adjusts model 
configurations according to the data. Figure 
2 shows the Dice score and mean validation 
Dice score for the liver, vein, and FNH classes 
over five-fold means ± standard separately 
for each phase. 

Among the 30 nnU-Net models trained, 
the results were given singularly for each MR 
sequence. The arterial phase images had the 
highest performance in terms of the average 
validation Dice score (0.7998), and this se-
quence was chosen as the best model in the 
category of both FNH class success and high 
average validation Dice score (Table 2).

In this study, 5 of the 13 FNH lesions were 
typical FNH lesions with scar formation. The 
list of patients with the histological and in-
terpretation results of each reviewer are 
presented in Table 3. Two patients had more 
than one FNH lesion in the liver, as seen in 
the dataset presented in Table 3. The dimen-
sions of the FNH lesions measured on the ax-
ial plane are presented in Table 4. The mean 
was 2.78 ± 1.84 for the FNH dimensions.

Figure 7. Surrounding liver parenchyma (the adjacent 30% of the area of the lesion) was considered to 
determine the lesion as hypo-, iso-, or hyperintense relative to the liver tissue.

Table 2. Fold mean results

Sequence Liver Vein FNH EMA Dice Mean val Dice

T2 weighted 0.949 ± 0.002 0.586 ± 0.05 0.254 ± 0.253 0.571 ± 0.08 0.512 ± 0.03

T1 weighted 0.954 ± 0.01 0.734 ± 0.02 0.136 ± 0.160 0.589 ± 0.04 0.560 ± 0.01

Arterial phase 0.955 ± 0.01 0.680 ± 0.02 0.733 ± 0.246 0.780 ± 0.09 0.712 ± 0.05

Venous phase 0.961 ± 0.01 0.746 ± 0.04 0.645 ± 0.221 0.767 ± 0.08 0.671 ± 0.07

Portal phase 0.946 ± 0.04 0.752 ± 0.03 0.608 ± 0.246 0.759 ± 0.09 0.665 ± 0.07

HBP 0.948 ± 0.02 0.629 ± 0.10 0.436 ± 0.262 0.651 ± 0.09 0.633 ± 0.06

FNH, focal nodular hyperplasia; EMA, exponential moving average; Val, validated; HBP, hepatobiliary phase.

Table 3. Reviewer results for each patient (“+” indicates the presence of FNH, and “−” 
represents the absence of FNH in the liver)

Reference diagnosis RD H Resident AI Specialist

1 Normal liver + − − −

2 Hemangioma + − − −

3 Hydatid cyst + − − −

4 PHNT + − − −

5 Simple cyst + − − −

6 Hemangioma + + − −

7 Breast cancer metastasis + − − −

8 FNH + + + +

9 FNH + + − −

10 Stomach cancer metastasis + − − −

11 Hemangioma + + − −

12 Hepatocellular carcinoma + − + −

13 Biliary hamartoma + − − −

14 Complex cyst + − − −

15 Low-grade dysplastic nodule + − − −

16 FNH + + + +

17 Breast cancer metastasis + − − −

18 Colon cancer metastasis + − − −
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The liver interpretations on the MRIs ac-
cording to each reviewer were compared 
with the histopathological results regarding 
the presence of FNH. The sensitivity, specific-
ity, PPV, and NPV obtained from the radiolo-
gy resident, the radiology specialist, and the 
AI model are presented in Table 5. According 
to these results, the diagnostic parameters of 
the AI model were better than those of the 
resident and lower than those of the special-
ist. 

The results of the radiology resident and 
the AI model showed poor agreement (κ = 
0.374), and the results of the radiology res-
ident and the radiology specialist indicated 
good agreement (κ = 0.602). The results of 
the radiology specialist and the AI model 
revealed good agreement (κ = 0.777) (Table 
6). The AUC values with 95% CI were 0.794 
(0.630–0.959) for the radiology resident, 
0.833 (0.682–0.983) for the AI model, and 
0.944 (0.851–1.000) for the radiology special-
ist (Table 7). The accuracy values were 0.833, 
0.905, and 0.952 for the radiology resident, AI 
model, and radiology specialist, respectively.

Discussion
The AI model used in this study had 76.9% 

sensitivity, 96.6% specificity, a 90.9% PPV, 
and a 90.3% NPV for the diagnosis of FNH 
of the liver. The AI results were better than 
those of the radiology resident and lower 
than those of the radiology specialist. Addi-
tionally, the AI results indicated a good level 
of agreement with the specialist. 

FNH is a conservatively managed lesion 
for most patients, and surgery is not required 
in the management of this condition. Only 
patients with pedunculated, exophytic, or 
expanding lesions are considered for sur-
gery.17 Hepatic adenoma, however, is treated 
by surgery because of its well-known compli-
cations, including spontaneous hemorrhage 
and malignant transformation.18 HCC is an-
other lesion that occurs in the differential 
diagnosis of FNH, and HCC may also occur 
in a non-cirrhotic liver.19 The spectrum of pa-
tients that AI will evaluate should comprise 
all these lesions as well as cirrhotic livers that 
may have diagnostic challenges. Another 
important discussion point is distinguishing 
hepatic adenomas from FNH lesions. This 
may not be easy to accomplish using MRIs. 
Most adenomas (reported to be between 
75% and 90%) are hypointense in the HBP, 
whereas FNH is iso- or hyperintense com-
pared with the surrounding liver parenchy-
ma, and these different lesion properties 
make the diagnosis easier in daily practice. 

The uptake and excretion of hepatocyte-spe-
cific contrast agents into the biliary system is 
facilitated by hepatocyte-specific membrane 
transport proteins, which are not present in 
other cells. HCC and hepatic adenoma are 

usually hypointense in the HBP; however, 
these lesions may have upregulated hepato-
cyte-specific membrane transport proteins, 
which make them appear as iso- or hyperin-
tense lesions in HBP images. Approximately 

Table 3. Continued

Reference diagnosis RD H Resident AI Specialist

19 Colon cancer metastasis + − − −

20 Hepatic adenoma + + + +

21 Hemangioma + − + −

22 Simple cyst + − − −

23 Pancreas cancer metastasis + − − −

24 Hepatocellular carcinoma + − − −

25 FNH + − + +

26 FNH + + − +

27 Simple cyst + − − −

28 FNH + + + +

29 Biliary cystadenoma + − − −

30 Biliary cystadenoma + − − −

31 FNH + + + +

32 FNH + − + +

33 FNH + − + +

34 FNH + + − +

35 FNH + − + +

36 FNH + + + +

37 FNH + + + +

38 Hepatocellular carcinoma + − − −

39 Hepatic adenoma + − − −

40 Hepatocellular carcinoma + − − −

41 Hepatocellular carcinoma + − − −

42 Hepatic adenoma + − − −

AI, artificial intelligence; RD, radiological diagnosis (stable in follow-up examinations or typical imaging findings 
with primary tumor), H, histologically confirmed lesions; PHNT, primary hepatic neuroendocrine tumor; FNH, focal 
nodular hyperplasia.

Table 4. Dimensions of the FNH lesions in axial plane 

Patient number* Lesion 1 (TR × AP) Lesion 2 (TR × AP) Lesion 3 (TR × AP)

1 Patient number 8 3.62 × 2.97 cm

2 Patient number 9 1.56 × 1.39 cm

3 Patient number 16 1.47 × 1.42 cm

4 Patient number 25 3.39 × 2.79 cm

5 Patient number 26 0.80 × 0.89 cm

6 Patient number 28 1.98 × 1.59 cm 2.96 × 2.54 cm 6.65 × 7.50 cm

7 Patient number 31 7.17 × 5.49 cm

8 Patient number 32 5.41 × 5.15 cm

9 Patient number 33 3.51 × 3.30 cm

10 Patient number 34 1.28 × 1.49 cm 1.94 × 2.01 cm

11 Patient number 35 2.24 × 1.66 cm

12 Patient number 36 0.91 × 0.86 cm

13 Patient number 37 1.75 × 2.33 cm

*Represents the patient numbers in the study, also shown in Table 3; TR, maximum transvers diameter of the lesion; 
AP, maximum anteroposterior diameter of the lesion. TR, time of repetition; AP, anterioposterior.
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25% of inflammatory hepatic adenomas and 
40–80% of beta-catenin-activated hepatic 
adenomas are reported to appear as iso- or 
hyperintense on HBP images, and this over-
lap makes diagnosis challenging. Moreover, 
beta-catenin-activated hepatic adenomas 
have the highest risk for malignant transfor-
mation (40%).4

This study is a step forward in using AI to 
diagnose one of the most common hepatic 
nodular lesions, FNH. Not only typical but 
also atypical nodular hyperplasia lesions, 
which have been histologically confirmed, 
were evaluated through AI as a reviewer. 
The AI model provided a relatively high sen-
sitivity value along with 96.6% specificity in 
diagnosing FNH in the liver with one or more 
nodular lesions, including non-FNH lesions. 

In the literature, researchers have includ-
ed many parameters in their studies. These 
include the contrast curve, gray-level histo-
gram, and gray-level co-occurrence matrix 
texture properties, as well as risk factors, 
such as the presence of steatosis, known 
primary tumors, or cirrhosis, and MR se-
quences such as dynamic contrast-enhanced 
T1-weighted with T2-weighted images, for 
the classification of focal liver lesions.20 In 
the present study, a simplified approach, 
using only certain MR sequences that were 
unaware of other risk factors or medical con-
ditions, was used to understand the diagnos-
tic success of AI. The nnU-Net deep learning 
algorithm was chosen for this study, which is 
considered to be highly impactful for object 
identification with successful segmentation 
capabilities. This algorithm was designed 
to optimize 2D or 3D image segmentation 
tasks and is usable for any given input geo-
metrical type. This deep learning modality 
optimally segments organs using CT images 
based on the use of differences of densities.21 

In this research, signal intensity was used as 
the indicator of FNH lesions using the same 
algorithm and both 2D and 3D U-Net config-
urations. 

In this study, arterial phase images had 
the highest performance for the average 
validation Dice score. Dice scores were im-
portant for determining the anomaly and 
starting to implement further calculations 
to reveal the lesion characterization regard-
ing the presence of FNH. The ground truth-
based border drawn by the radiologists was 
analyzed along with a prediction based 
on the border of the model. The Dice score 
represents the overall segmentation perfor-
mance and indicates the success of the seg-
mentation through the prediction ability of 

the model. The Dice score ranges from 0 (no 
overlap compared with the segmented bor-
ders of the radiologist) to 1 (perfect overlap 
compared with the segmented borders of 

the radiologist). This method was used in the 
literature for similar purposes, such as the 
segmentation of HCC in the liver.22

Table 5. Sensitivity, specificity, and positive and negative predictive values of the reviewers 
with 95% confidence intervals

Results for the resident

Radiology resident
Radiology resident

Total
Positive Negative

Pathology result
Positive 9 4 13

Negative 3 26 29

Total 12 30 42

Sensitivity: 0.692 (0.388 ± 0.896)
Specificity: 0.897 (0.715 ± 0.972)
Positive predictive value: 0.750 (0.428 ± 0.933)
Negative predictive value: 0.867 (0.683 ± 0.956) 

P < 0.001

Results for artificial intelligence

AI
AI

Total
Positive Negative

Pathology result
Positive 10 3 13

Negative 1 28 29

Total 11 31 42

Sensitivity: 0.769 (0.459 ± 0.938)
Specificity: 0.966 (0.803 ± 0.998)
Positive predictive value: 0.909 (0.571 ± 0.995)
Negative predictive value: 0.903 (0.730 ± 0.974)

P < 0.001

Results for the radiology specialist

Radiology specialist
Radiology specialist

Total
Positive Negative

Pathology result
Positive 12 1 13

Negative 1 28 29

Total 13 29 42

Sensitivity: 0.923 (0.620 ± 0.995)
Specificity: 0.966 (0.803 ± 0.998)
Positive predictive value: 0.923 (0.620 ± 0.995)
Negative predictive value: 0.966 (0.803 ± 0.998)

P < 0.001

AI, artificial intelligence.

Table 6. Kappa values for the comparison of each reviewer

Value Asymptotic 
standard errora

Approximate Tb Approximate 
significance

Resident vs. AI 0.374 0.155 2.428 0.015

Specialist vs. AI 0.777 0.106 5.037 <0.001

Resident vs. specialist 0.602 0.135 3.905 <0.001
a, not assuming a null hypothesis; b, using the asymptotic standard error assuming a null hypothesis. 
AI, artificial intelligence.

 Table 7. Area under the curve for each reviewer’s results

Test result variable (s) Area Standard 
error

P values Asymptotic 95% confidence 
interval

Lower bound Upper bound

Resident 0.794 0.084 0.003 0.630 0.959

AI 0.833 0.077 0.001 0.682 0.983

Specialist 0.944 0.048 0.000 0.851 1.000

AI, artificial intelligence.
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According to the results presented in Table 
2, each imaging phase demonstrates distinct 
characteristics in segmenting different parts 
of the liver. For instance, the HBP exhibited 
the highest overall liver segmentation per-
formance, with a Dice score of 0.948 ± 0.02, 
whereas the portal phase achieved the best 
vein segmentation performance, with a Dice 
score of 0.752 ± 0.03. Similarly, the most ef-
fective segmentation for FNH was observed 
in the arterial phase, yielding a Dice score 
of 0.733 ± 0.246. In summary, based on the 
mean Dice score across phases, the arterial 
phase proved most effective in segmenting 
the three liver components, achieving a Dice 
score of 0.712 ± 0.05. This might be a result 
of the increased signal difference between 
the lesion and the surrounding parenchyma. 
The ability of the model to distinguish the le-
sion borders was considered superior for the 
arterial phase images. Consequently, the ar-
terial phase was chosen as the foundational 
model. Specifically, the first-fold model of the 
arterial phase, which achieved a mean Dice 
score of 0.7998, was selected as the base 
model for FNH detection and segmentation. 
Subsequently, the scoring system was con-
sidered for analyzing the lesion, particularly 
for the diagnosis of FNH. 

There are attempts in the literature to use 
autotomized AI models to diagnose focal 
liver lesions. In Goehler et al.’s23 study, the 
researchers tried to detect liver metastases 
and evaluate changes in tumor size on con-
secutive MR examinations. A convolutional 
neural network (CNN) and Kuhn–Munkres 
algorithm were used for 64 patients with 
neuroendocrine tumors with two consecu-
tive liver MR examinations using gadoxetic 
acid. The results of this study indicated that 
this evaluation system was 91% concordant 
with the radiologists’ decision, and the sen-
sitivity and specificity were 0.85 and 0.92, re-
spectively. In addition, the model was capa-
ble of assessing the interval change in tumor 
burden between two MRI examinations.23 
A computer-assisted diagnosis system, the 
liver artificial neural network (ANN), was an-
alyzed by Zhang et al.24 regarding its feasi-
bility for identifying focal liver lesions. Using 
an ANN technique, this system classified the 
liver lesions into five categories. Their inves-
tigation used 320 MRIs (from 80 patients); 
however, the system was human assisted, 
and a radiologist had to delineate an ROI 
for the lesion. The five hepatic categories 
for the lesions in their study were cavernous 
hemangioma, HCC, hepatic cyst, dysplasia 
in cirrhosis, and metastasis. This liver ANN 
system was developed to assist the radiolo-

gists, giving a second opinion with a training 
accuracy of 100% and a testing accuracy of 
93%.24 For the diagnosis of focal liver le-
sions, Hamm et al.25 performed a study using 
multi-phasic MRIs, and 92% sensitivity, 98% 
specificity, and 92% accuracy were achieved 
with their CNN. In the same study, the model 
displayed a sensitivity of 90% for the diagno-
sis of HCC, whereas the radiologist achieved 
70%.25 Jansen et al.20 utilized a system of au-
tomatic classification to classify focal liver 
lesions using MRIs and the risk factors for 
a more accurate diagnosis. They achieved 
an overall accuracy for focal liver lesions of 
0.77. The sensitivity and specificity values for 
hepatic hemangioma were 84% and 82%, 
respectively, for hepatic cyst, 93% and 93%, 
for hepatic adenoma, 80% and 78%, for HCC, 
73% and 56%, and for metastasis, 62% and 
77%.20 Zhen et al.26 analyzed the efficiency of 
a deep learning-based tool based on the fact 
that dynamic contrast-enhanced MRI pro-
vides the most precise diagnosis of hepatic 
tumors. In their analysis, enhanced and un-
enhanced MRIs, along with relevant patient 
clinical information, were used. The results 
indicated that the deep learning-based sys-
tem differentiated malignant from benign fo-
cal liver lesions well using only unenhanced 
images (AUC: 0.946; 95% CI: 0.914–0.979 vs. 
AUC: 0.951; 95% CI: 0.919–0.982, P = 0.664). 
Moreover, the performance of the deep 
learning-based system was improved when 
combining unenhanced images with clinical 
data to classify malignancies as metastatic 
tumors (AUC = 0.998; 95% CI: 0.989–1.000), 
HCC (AUC: 0.998; 95% CI: 0.989–1.000), HCC 
(AUC: 0.985; 95% CI: 0.960–1.000), and other 
primary malignancies (AUC: 0.963; 95% CI: 
0.896–1.000). Compared with the patholog-
ical examination, the agreement was 91.9%, 
and the sensitivity and specificity values for 
almost every liver lesion category achieved 
the same accuracy as those of experienced 
radiologists.26 A study by Stollmayer et al.27 
used deep learning with 2D and 3D networks 
to diagnose FNH, HCC, and liver metastases 
on hepatocyte-specific contrast-enhanced 
MRIs. In total, 216 MRIs from 69 patients 
were analyzed. Overall, the 2D model per-
formed better, with AUCs of 0.990, 0.966, and 
0.960, respectively, for the investigated liver 
lesions.27 Wang et al.’s28 CNN-based model 
differentiated various focal liver lesions as 
either benign or malignant. Then, detailed 
classification was performed depending on 
tumor types. A total of 557 images were sep-
arated into a training and a testing set, and 
the AUCs for the classifications were 0.969 
and 0.919, respectively. Seven focal liver le-
sions—liver cyst, cavernous hemangioma, 

hepatic abscess, FNH, HCC, intrahepatic chol-
angiocarcinoma, and hepatic metastasis—
were investigated in their research using 
seven MR sequences (T2 weighted, diffusion 
weighted, apparent diffusion coefficient, T1 
weighted, late arterial phase, portal venous 
phase, and delayed phase), and the accuracy 
for performing the seven-way classification 
was 79.6%.28 The present study focused on a 
specific lesion, and it is difficult to compare 
the results with those of other studies in 
which some of the lesions were grouped and 
some were focused on distinguishing benign 
and malignant lesions. 

To the best of our knowledge, this is the 
first study focused solely on the presence 
of FNH of the liver, and the results indicate 
promising results for the future. The sensitivi-
ty and specificity of the AI model were 76.9% 
and 96.6%, respectively, which were lower 
than those of the radiology specialist. The 
AUC value was 0.833 (95% CI: 0.682–0.983) 
and the accuracy was 0.905 for the AI mod-
el for indicating the presence of FNH using 
six MR sequences. These AUC values seem 
to be lower than some values from previous 
studies, and a higher accuracy value was ob-
tained than from some other investigations. 
However, this study cannot be compared 
exactly with the other studies mentioned 
above. Datasets from previous studies in-
cluding various lesions cannot be compared 
with the dataset from this study since this 
research was solely focused on FNH lesions. 
The AI results were better than those of the 
radiology resident; however, they were low-
er than those of the radiology specialist. 
Nonetheless, it was remarkable that a good 
agreement level was indicated between the 
radiology specialist and the AI model accord-
ing to the results of this study. This might be 
caused by the lack of diversity among the 
FNH lesions in the MRIs experienced by the 
AI model in the training session. The radiolo-
gy specialist’s years of experience cannot be 
compared with the AI’s training image data-
set, which only included 30 patients with 
FNH lesions. This gap between AI and the ra-
diology specialist might be compensated for 
by introducing a larger number and greater 
variety of FNH lesions to the AI model. 

Important factors such as feasibility, eth-
ical concerns, precision, safety, and overall 
acceptability influence the application speed 
of auto-diagnosis systems in medicine. Col-
laboration between healthcare professionals 
and AI-based diagnostic systems remains a 
mandatory objective for succeeding in this 
difficult task, and AI can still not replace 
skilled diagnosticians.29
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There are limitations to this study, which 
must be considered when interpreting its 
outcomes. First, the presence of FNH was 
determined with only six MR sequences on 
axial planes to standardize, simplify, and eas-
ily compare the interpretation results. It also 
helped the standardization of the segmen-
tation process, which should have been per-
formed meticulously as part of a long-lasting 
process. However, a standard interpretation 
of the liver MRIs needed all the sequences 
obtained during the imaging procedure. If 
the patient had one or more lesions consis-
tent with FNH, they were accepted as FNH 
positive by each reviewer, and chi-square 
tests were performed using these results. 
The AI model used in the study indicated the 
results regarding the presence or absence of 
FNH as an outcome. To compare the results 
and calculate interobserver reliability accu-
rately, the study was planned in this way. This 
methodological approach might be criticized 
in terms of its appropriateness for indicating 
the sensitivity and specificity values. A le-
sion-based model rather than patient-based 
evaluation results would provide more accu-
rate outcomes. The detection of the lesion 
was based on signal properties and dynamic 
enhancement patterns, but the borders of 
the lesion were underestimated. A morpho-
logical approach using the border attributes 
would be a more realistic approach, similar to 
the routine radiological liver interpretations 
on MRIs. Having more patients with hepatic 
adenomas and HCC to evaluate the ability of 
AI in distinguishing FNH from other lesions 
would be better. Some of the patients in this 
study were used in the AI training process, 
and some were not suitable for the investiga-
tion because of motion artifacts or image dis-
tortions. Moreover, we could only share the 
results of patients confidently diagnosed ei-
ther radiologically or histologically. Although 
a variety of lesions with different histological 
and imaging features were evaluated in this 
study, additional studies with larger sample 
sizes are needed to confirm the results of this 
investigation. Due to the extremely detailed 
and very long-lasting process of segmenta-
tion, the proximal branches of the hepatic 
and portal veins were mapped to introduce 
them to the AI model. It was expected that 
the more distant segments would be per-
ceived by the AI model, as it was part of the 
program. To minimize the AI model’s possi-
ble segmentation and interpretation errors, 
the more distant segments of the vessels 
might also be drawn manually. 

In conclusion, the AI model provided re-
markable sensitivity, specificity, PPV, and 

NPV results regarding the detection of FNH in 
this study. The potential of AI should not be 
underestimated since this current investiga-
tion indicated that AI achieved better results 
than a radiology resident. Through multidis-
ciplinary studies based on the increasing in-
terest of physicians and engineers, AI might 
become a crucial element in diagnostics and 
play a major role in the detection and char-
acterization of liver lesions. Targeted studies 
focused on specific lesions may be combined 
in the same diagnostic tool, using the expe-
rience of all focal lesions of the liver to widen 
the spectrum of lesions recognized by AI. 
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Diffusion kurtosis versus diffusion-weighted magnetic resonance 
imaging in differentiating clear cell renal cell carcinoma and renal 
angiomyolipoma with minimal fat: a comparative study

PURPOSE
To quantitatively compare the diagnostic values of conventional diffusion-weighted imaging and 
diffusion kurtosis imaging (DKI) in differentiating clear cell renal cell carcinoma (ccRCC) and renal 
angiomyolipoma with minimal fat (RAMF). 

METHODS
Sixty-eight patients with ccRCC and 18 patients with RAMF were retrospectively studied. For DKI 
and apparent diffusion coefficient (ADC), respiratory-triggered echo-planar imaging sequences 
were acquired in the axial plane (three b-values: 0, 1000, 2000 s/mm2; one b-value: 2000 s/mm2). 
Mean diffusivity (MD), fractional anisotropy (FA), mean kurtosis (MK), kurtosis anisotropy (KA), radial 
kurtosis (RK), and ADC were evaluated. The diagnostic efficacy of various diffusion parameters in 
predicting ccRCC and RAMF was compared.

RESULTS
The ADC and MD values of ccRCCs were higher than those of RAMFs (P < 0.05), whereas compa-
rable FA, MK, and KA values were observed between ccRCCs and RAMFs (P > 0.05). Moreover, the 
RK values of RAMFs were higher than those of ccRCCs (P < 0.05). Receiver operating characteristic 
(ROC) curve analyses showed that MD values had the highest diagnostic efficacy in differentiating 
ccRCCs from RAMFs. In pairwise comparisons of ROC curves and diagnostic efficacy, DKI parameters 
demonstrated better diagnostic accuracy than ADC in differentiating between ccRCCs and RAMFs 
(P < 0.05).

CONCLUSION
DKI analysis demonstrates superior performance than ADC analysis in differentiating ccRCC and 
RAMF.

CLINICAL SIGNIFICANCE
DKI technology may serve as an additional non-invasive biomarker for the differential diagnosis of 
renal tumor types.

KEYWORDS
Kidney, renal cell carcinoma, diffusion kurtosis imaging, angiomyolipoma, differential diagnosis.

You may cite this article as: Lin Y, Zhu W, Zhu Q. Diffusion kurtosis versus diffusion-weighted magnetic resonance imaging in differentiating clear cell renal 
cell carcinoma and renal angiomyolipoma with minimal fat: a comparative study. Diagn Interv Radiol. 2025;31(5):416-422.

Clear cell renal cell carcinoma (ccRCC) is the predominant subtype of RCC, comprising 
approximately 70% of all RCC cases.1 Angiomyolipomas that are predominantly com-
posed of smooth muscle cells, those with a mixture of all three components (smooth 

muscle, fat, and blood vessels), or those exhibiting prominent cystic changes may be chal-
lenging to differentiate from epithelial neoplasms preoperatively.2

Renal angiomyolipoma with minimal fat (RAMF) is generally considered a benign lesion. 
In contrast, ccRCC is a malignant tumor with the potential for metastasis and life-threatening 
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consequences. The management strategies 
for RAMF and ccRCC may also differ sub-
stantially. For instance, RAMF, being benign, 
often allows for a biopsy followed by regular 
surveillance. However, ccRCC, given its ma-
lignant nature, typically necessitates surgical 
resection.

Advancements in imaging technology 
have substantially transformed the manage-
ment of renal masses by enabling the detec-
tion and characterization of even very small 
lesions. However, conventional computed 
tomography (CT) and magnetic resonance 
imaging (MRI) still face limitations in distin-
guishing atypical malignant from benign 
lesions. Therefore, identifying a simple yet 
accurate method to differentiate renal carci-
nomas from benign lesions remains the criti-
cal objective of this study.

Apparent diffusion coefficient (ADC) as-
sessment has also shown benefits in distin-
guishing renal tumor types. One meta-anal-
ysis of 17 studies demonstrated that ADC 
values can help differentiate benign from 
malignant RCC tumors.3 However, there 
is ongoing concern that ADCs obtained 
from conventional monoexponential diffu-
sion-weighted imaging (DWI) may not accu-
rately reflect true diffusivity because of the 
influence of microcirculation.4,5

The diffusion kurtosis imaging (DKI) 
model, first described in 2005, is believed to 
provide a more complete mathematical rep-
resentation of tissue microstructural com-
plexity than the standard monoexponential 
model.6-8 It attempts to account for diffusion 
variation and capture non-Gaussian diffu-
sion behavior as a reflective marker of tissue 
heterogeneity.9 The aim of the current study 
was to produce a quantitative comparison of 
the potential of various diffusion parameters 
obtained from DWI and DKI in differentiating 
ccRCC and RAMF. 

Methods 

Participants

This retrospective study was approved 
by the institutional review committee of 
Northern Jiangsu People’s Hospital Affiliated 
with Yangzhou University (protocol number: 
20130701, date: 7/1/2013 to 9/1/2022), and 
the requirement for written informed con-
sent was waived. The study covered the pe-
riod from July 1, 2013, to September 1, 2022. 
A total of 117 adult patients who underwent 
routine MRI examinations and DKI assess-
ment followed by partial or radical nephrec-
tomy between July 2013 and September 
2022 were retrospectively enrolled (Figure 1).

The exclusion criteria were as follows: (a) 
lesions without histopathological confirma-
tion of ccRCC or RAMF (n = 13); (b) lesions 
requiring antiangiogenic therapy (n = 6); (c) 
tumor recurrence (n = 7); (d) a low signal-
to-noise ratio (SNR) (n = 5; SNR <7.2 for b = 
2000 s/mm2). This retrospective study was 
approved by our institutional review board, 
with a waiver of the requirement for written 
informed consent.

Magnetic resonance imaging technique

MRI examinations were performed us-
ing a 3.0-T MR scanner (GE Signa EXCITE HD, 
Milwaukee, WI, USA) with a 6-channel array 
body coil and a 24-channel phased-array 
spine coil integrated into the scanner table. 
For DKI, a single-shot echo-planar imaging 
(EPI) sequence was applied in the axial plane 
using respiratory triggering via a respirato-
ry belt, with three b-values (0, 1000, 2000 s/
mm2) and 30 diffusion directions. For ADC, 
respiratory-triggered EPI sequences were ac-
quired in the axial plane (one b-value: 2000 

s/mm2). Other imaging parameters were as 
follows: 24 axial slices covering both kidneys; 
echo time: 73.9 ms; repetition time: 5000 ms; 
number of excitations: 4; matrix: 192 × 192; 
field of view: 400 mm. Array spatial sensitiv-
ity encoding technique, a parallel imaging 
method, was applied with an acceleration 
factor of 4. 

Imaging analysis and statistics 

The acquired images were transferred 
to an offline workstation for processing 
using Automated Image Registration soft-
ware, version 4.6.4. (GE Signa EXCİTE HD, 
GE Healthcare, Milwaukee, WI, USA). Prior to 
the quantification of DKI and ADC, non-rig-
id co-registration and smoothing were per-
formed using a 3 × 3 kernel matrix. All DWIs 
were first co-registered to the b0 image using 
the affine model. Then, registered DWIs with 
b-values of 1000 and 2000 s/mm2 and ADCs 
with a b-value of 2000 s/mm2 were averaged 
over 30 diffusion-encoding directions.

Afterward, the two averaged DWIs were 
co-registered to the b0 image using the aff-
ine model, and the registered averaged DWIs 
were set as a reference volume for further 
registrations. Finally, the initial DWIs with a 
b-value of 2000 s/mm2 were co-registered to 
the corresponding reference volume using a 
non-rigid model. The registered DWIs were 
then spatially smoothed using a Gaussian 
filter with a full width at half-maximum of 
2 mm. With our DKI and ADC protocol, we 
obtained parametric maps related to diffu-
sional kurtosis: mean diffusivity (MD), frac-
tional anisotropy (FA), mean kurtosis (MK), 
kurtosis anisotropy (KA), radial kurtosis (RK), 
and ADC. The assessment of renal tumors 
and region-of-interest (ROI) positioning was 

Figure 1. Patient inclusion and exclusion flowchart. SNR, signal-to-noise ratio; ccRCC, clear cell renal cell 
carcinoma; RAMF, renal angiomyolipoma with minimal fat.

Main points

•	 Diffusion kurtosis imaging parameters 
demonstrated better diagnostic accuracy 
than apparent diffusion coefficient (ADC) in 
differentiating between clear cell renal cell 
carcinomas (ccRCCs) and renal angiomyoli-
pomas with minimal fat (RAMFs).

•	 The ADC and mean diffusivity values of 
ccRCCs were higher than those of RAMFs.

•	 The radial kurtosis values of RAMFs were 
higher than those of ccRCCs.
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conducted by two radiologists with 5 and 10 
years of clinical experience in interpreting 
MRI, respectively. Both observers were blind-
ed to the patients’ clinical information and 
tumor histology. Lesion location, the number 
of layers on which the tumor appeared most 
prominent across different sequences, imag-
ing characteristics of the renal tumors, and 
the ROI plotting method were considered.

The two observers, each with 5 and 10 
years of diagnostic experience, analyzed all 
the parameter maps in conjunction with the 
DKI and ADC images. They were blinded to 
the pathologic diagnosis and reached a con-
sensus on their analysis.

Free-hand ROIs were delineated around 
the most solid portion of each tumor (cover-
ing approximately two-thirds of the solid area) 
on the DKI and ADC maps. This was performed 
on three to five representative slices by the 
same two radiologists using ImageJ software 
(National Institutes of Health, Bethesda, MD, 
USA). The region with lower T2 signal inten-
sity was identified as the most solid part in 
heterogeneous tumors. Strong hyperintensity 
on T2WI or T1WI indicated tissue necrosis or 
hemorrhage, and such regions were exclud-
ed. Mean values for ADC, MD, FA, MK, KA, and 
RK for each ROI were calculated using ImageJ 
software. The readers independently assessed 
images derived from the DKI and ADC exami-
nations during two separate sessions, with an 
interval of more than four weeks between ses-
sions to mitigate potential recall bias.

Statistical analysis

Statistical analysis was conducted using 
SPSS version 23.0 statistical software (SPSS, 
Chicago, IL, USA). Numeric data were ex-
pressed as means and standard deviations 
(±), and categorical data were expressed as 
percentages.  Evaluated DKI and ADC fea-
tures were compared between ccRCC and 
RAMF using the independent-sample t-test. 

A P value <0.05 was considered statistically 
significant.

To assess the diagnostic performance of 
DKI and ADC parameters in differentiating 
ccRCC from RAMF, we calculated the diag-
nostic accuracy for both tumor types. The 
highest Youden index value was used to de-
termine the optimal diagnostic point, and 
the DeLong method10 was applied to com-
pare area under the curves. Intraclass corre-
lation coefficients (ICCs) were used to assess 
interobserver agreement for ADC and DKI 
parameter measurements, with 95% confi-
dence intervals (CIs). ICCs were interpreted 
as follows: ≤ 0.20, slight; 0.21–0.40, fair; 0.41–
0.60, moderate; 0.61–0.80, substantial; and 
0.81–1.00, perfect agreement.

The comparison of ICCs between observ-
ers with 5 and 10 years of experience was 
performed using a self-lifting resampling 
technique with 200 repetitions. This method 
was employed to estimate the mean ICC and 
95% CI for each observer group. Retest relia-
bility was calculated for individual observers 
as well as for the entire group, and compar-
isons were made using the Z-test for ICC. 
A P value <0.05 was considered statistically 
significant.

Results

Population demographics 

A total of 86 patients with pathologically 
confirmed ccRCC and RAMF were includ-
ed, comprising 68 patients (38 men and 30 
women) with ccRCC and 18 patients (12 men 
and 6 women) with RAMF. The mean age at 
diagnosis was slightly lower in patients with 
RAMF (49.8 years; range 39 to 62 years) than 
in those with ccRCC (52.1 years; range 36 to 
76 years). There was no difference in clinical 
manifestations between ccRCC and RAMF, 
such as mean age, sex, flank pain, palpable 

mass, and fever (all P > 0.05), except for he-
maturia (73 vs. 2, P < 0.01).

Apparent diffusion coefficient and diffu-
sion kurtosis imaging parameters of the 
renal tumors

The ADC (Figure 2, Table 1) and MD (Fig-
ure 3, Table 1) values of ccRCCs were higher 
than those of RAMFs (P < 0.05). The RK (Fig-
ure 4) values of RAMFs were higher than 
those of ccRCCs (Figure 5, P < 0.05), where-
as comparable FA, MK, and KA values were 
found between ccRCCs and RAMFs (Figure 6, 
Table 1; P > 0.05). 

Diagnostic performance of multiple param-
eters

Receiver operating characteristic (ROC) 
curve analyses showed that MD (Figure 7, 
Table 2) and RK (Figure 8, Table 2) values had 
higher diagnostic efficacy than ADC values 
in differentiating ccRCCs from RAMFs. MD 
values demonstrated the highest diagnostic 
efficacy. For pairwise comparisons of ROC 
curves and diagnostic performance, ADC 
was inferior to MD and KA (P < 0.05).

The agreement of diffusion parameters 
in the 86 cases, both for individual observers 
and overall, was perfect for all parameters 
(ADC, MD, FA, MK, KA, and RK). Retest reliabil-
ity, assessed by an independent repeat eval-
uation by two observers with 5 and 10 years 
of experience, was shown to be excellent (Ta-
ble 3). In addition, there was no statistically 
significant difference in retest reliability be-
tween the two observers (Table 4).

Discussion
The ADC and MD values of ccRCCs were 

higher than those of RAMFs (P < 0.05), 
whereas comparable FA, MK, and KA values 
were found between ccRCCs and RAMFs (P > 
0.05). Moreover, the RK values of RAMFs were 

Figure 2. Apparent diffusion coefficient (ADC) features of clear cell renal cell carcinoma (ccRCC) (a) and renal angiomyolipoma with minimal fat (RAMF) (b); ADC 
values were higher for ccRCC (0.89) and lower for RAMF (0.53).

a b
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higher than those of ccRCCs (P < 0.05). ROC 
curve analyses showed that MD values had 
the highest diagnostic efficacy in differenti-
ating ccRCCs from RAMFs. For pairwise com-
parisons of ROC curves and diagnostic effica-
cy, ADC was inferior to DKI analysis (P < 0.05).

DKI is a dimensionless measure that quan-
tifies the deviation of the water diffusion dis-

placement profile from the Gaussian distri-
bution of unrestricted diffusion, providing a 
measure of the degree of diffusion hindrance 
or restriction.11 It has been shown to offer 
superior sensitivity over conventional DTI.12 
An appealing aspect of incorporating DKI 
into routine clinical practice is that it can be 
performed in a straightforward manner, as 
the sequence is performed in essentially the 

same manner as a standard DWI sequence,13 
aside from the generally higher b-values re-
quired.

In a recent study, Lanzman et al.14 high-
lighted the potential of DTI for non-invasive 
functional assessment of transplanted kid-
neys. They also demonstrated significant dif-
ferences in FA values of the medulla between 

Table 1. Diffusion kurtosis imaging and apparent diffusion coefficient parameters in clear cell renal cell carcinoma and renal angiomyolipoma 
with minimal fat

Parameters   ccRCC RAMF P values  

ADC 0.81 ± 0.11 0.55 ± 0.18 <0.05

MD 2.13 ± 0.42  1.21 ± 0.26 <0.01

FA 0.17 ± 0.05 0.18 ± 0.04 >0.05

MK 0.92 ± 0.21 0.87 ± 0.16 >0.05

KA 0.99 ± 0.23 0.88 ± 0.19 >0.05

RK 0.66 ± 0.08 0.91 ± 0.24 <0.05

ccRCC, clear cell renal cell carcinoma; RAMF, renal angiomyolipoma with minimal fat; ADC, apparent diffusion coefficient; MD, mean diffusivity; FA, fractional anisotropy; MK, mean 
kurtosis; KA, kurtosis anisotropy; RK, radial kurtosis.

Table 2. Diagnostic test characteristics of diffusion parameters in differentiating clear cell renal cell carcinoma from renal angiomyolipoma 
with minimal fat 

Parameters AUC (95% CI) Cut-off value Sensitivity Specificity Accuracy

ccRCC (n = 68) vs. RAMF (n = 18)  

ADC (×10-3 mm2/s) 0.810 (0.821–0.933) ≥0.72 79.4% (54/68) 66.7% (12/18) 79.1% (68/86)

MD 0.943 (0.889–0.991) ≥1.83 94.1% (64/68) 83.3% (15/18) 94.2% (81/86)

RK  0.863 (0.808–0.921) ≤0.68 86.7% (59/68) 77.8% (14/18) 84.9% (73/86)

AUC, area under the curve; ccRCC, clear cell renal cell carcinoma; RAMF, renal angiomyolipoma with minimal fat; ADC, apparent diffusion coefficient; MD, mean diffusivity; RK, radial 
kurtosis.

Table 3. Intraclass correlation coefficients for measurements of apparent diffusion coefficient, mean diffusivity, fractional anisotropy, mean 
kurtosis, kurtosis anisotropy, and radial kurtosis by total observers

Parameters  Observer ICC

ADC 0.931 (0.911–0.952)

MD 0.951 (0.929–0.991)

FA 0.893 (0.871–0.911)

MK 0.916 (0.911–0.949)

KA 0.926 (0.901–0.963)

RK 0.911 (0.901–0.936)

ADC, apparent diffusion coefficient; MD, mean diffusivity; FA, fractional anisotropy; MK, mean kurtosis; KA, kurtosis anisotropy; RK, radial kurtosis; ICC, Intraclass correlation 
coefficient.

Table 4. Intraclass correlation coefficients for measurements of apparent diffusion coefficient, mean diffusivity, fractional anisotropy, mean 
kurtosis, kurtosis anisotropy, and radial kurtosis by individual observers

Parameters Individual observer (first vs. second) P values

ADC 0.903 (0.881–0.923) vs. 0.933 (0.907–0.968) >0.05

MD 0.933 (0.907–0.963) vs. 0.947 (0.913–0.963) >0.05

FA 0.886 (0.863–0.902) vs. 0.906 (0.882–0.922) >0.05

MK 0.893 (0.886–0.921) vs. 0.921 (0.912–0.952) >0.05

KA 0.907 (0.886–0.938) vs. 0.931 (0.912–0.966) >0.05

RK 0.901 (0.883–0.926) vs. 0.923 (0.911–0.946) >0.05

ADC, apparent diffusion coefficient; MD, mean diffusivity; FA, fractional anisotropy; MK, mean kurtosis; KA, kurtosis anisotropy; RK, radial kurtosis.
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allograft recipients with severely impaired 
renal function and those with moderate or 
mild impairment. Comparing MK values of 
normal kidneys with those of patients with 
various renal diseases may help evaluate the 
clinical significance of renal kurtosis values 
and the role of renal DKI.15 For instance, in 
RCC, DKI may provide additional diagnostic 
information. Since DKI has been proven to 

be more sensitive to tissue microstructure 
than FA measures, DKI of the kidney might 
be useful in evaluating conditions involv-
ing renal tumors.16 Notohamiprodjo et al.17 
reported that higher b-values and a greater 
number of directions improve the accuracy 
of diffusion measurements. In our study, we 
demonstrated that b-values in the range of 
0 to 2000 s/mm2 with 30 diffusion-encoding 

directions are sufficient in abdominal DKI to 
observe the departure of the diffusion signal 
from monoexponential behavior.

In our study, statistically significant differ-
ences were observed in the MD and ADC val-
ues between ccRCC and RAMF. Many authors 
attribute higher MD and ADC to higher cel-
lularity. Tissue-free water content and struc-
tural differences can influence MD and ADC. 
Increases in MD and ADC due to micronecro-
sis or altered viscosity of the medium may 
counterbalance decreased MD and ADC val-
ues in ccRCC.18 ccRCC is rich in lipid content; 
cholesterol, neutral lipids, and phospholipids 
are abundant in pathology.19 

An increase in the number of cells or a de-
crease in cell volume leads to an increase in 
the diffusion limitation of water molecules, 
which results in an increase in RK.20 Necrot-
ic areas within the tumor and surrounding 
edema change the diffusion characteristics, 
usually with lower RK values in the necrotic 
areas and higher RK values in the edema-
tous areas. As illustrated in our study, RAMF 
showed greater RK values than ccRCC, with 
a significant difference consistent with the 
understanding that RAMF has greater viscos-
ity and restricted water diffusion due to the 
presence of hemorrhagic walls or hemosid-
erin deposition.

Figure 3. Mean diffusivity (MD) features of clear cell renal cell carcinoma (ccRCC) (a) and renal angiomyolipoma with minimal fat (RAMF) (b); MD values were higher 
for ccRCC (2.17) and lower for RAMF (1.42).

Figure 4. Radial kurtosis  (RK) features of clear cell renal cell carcinoma (ccRCC) (a) and renal angiomyolipoma with minimal fat (RAMF) (b); RK values were lower for 
ccRCC (0.71) and higher for RAMF (0.97).

Figure 5. Box-and-whisker plots showing the distribution of apparent diffusion coefficient, mean diffusivity, 
and radial kurtosis parameters, with significant differences between clear cell renal cell carcinoma and renal 
angiomyolipoma with minimal fat. ccRCC, clear cell renal cell carcinoma; RAMF, renal angiomyolipoma with 
minimal fat; ADC, apparent diffusion coefficient; MD, mean diffusivity; RK, radial kurtosis.
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The MD and RK parameters showed great-
er discrimination of renal tumor types than 
the ADC parameters, perhaps because the 
latter includes both microcirculation and 
tissue cellularity information.21 These two 
sources of information may affect the ADC 
measurement in opposing ways, decreasing 
sensitivity and specificity.22 Moreover, the ad-
ditional MD and RK parameters provide spe-
cific information on non-Gaussian diffusion 
behavior, offering a more accurate measure-
ment of tissue diffusion.23

Retest reliability was evaluated through 
an independent repeat assessment conduct-
ed by two observers with 5 and 10 years of 
experience, respectively. The results demon-
strated excellent retest reliability. Further-
more, no statistically significant difference in 
retest reliability was observed between the 
two observers. This finding suggests that the 
stability of DKI in evaluating microstructural 
differences in ccRCC and RAMF is not influ-
enced by the observers’ level of experience. 
Such consistency is highly conducive to the 
clinical adoption and broader application of 
DKI technology.

The main limitation of our study is the 
small number of patients in each renal tu-
mor type, especially RAMF. Further studies 
with larger populations are recommended 
to validate our findings. We acknowledge 
additional limitations in the current study. 
As a single-center, retrospective analysis, 
the findings may be influenced by the spe-
cific characteristics of the sample popula-
tion and the inherent biases associated with 
retrospective data collection. Therefore, the 
reliability of our results should be confirmed 
through well-designed prospective studies 
and multicenter investigations.

Notably, our study did not include com-
parisons with other subtypes of RCC or with 
renal oncocytomas. As a result, it would be 
overly speculative to extrapolate our find-
ings to differentiate renal oncocytomas from 
other types of renal tumors. However, papil-
lary and chromophobe RCCs, as well as renal 
oncocytomas, are generally less likely to be 
confused with ccRCC or RAMF on CT and/or 
MRI. ccRCC and RAMF typically exhibit hy-
pervascularity and heterogeneous enhance-
ment, whereas papillary and chromophobe 
RCCs are characterized by hypovascularity. In 
contrast, renal oncocytomas are often identi-
fied by a central stellate scar, homogeneous 
enhancement, and a spoke-wheel pattern of 
enhancement, which are considered charac-
teristic features.

Figure 6. Bar graph showing the distribution of fractional anisotropy, mean kurtosis, and kurtosis 
anisotropy parameters, without significant differences between clear cell renal cell carcinoma and renal 
angiomyolipoma with minimal fat. ccRCC, clear cell renal cell carcinoma; RAMF, renal angiomyolipoma with 
minimal fat; FA, fractional anisotropy; MK, mean kurtosis; KA, kurtosis anisotropy.

Figure 7. Receiver operating characteristic curves showing the diagnostic performance of apparent 
diffusion coefficient and mean diffusivity parameters in differentiating clear cell renal cell carcinoma from 
renal angiomyolipoma with minimal fat. ROC, receiver operating characteristic; ADC, apparent diffusion 
coefficient; MD, mean diffusivity.

Figure 8. Receiver operating characteristic curves showing the diagnostic performance of radial kurtosis 
in differentiating clear cell renal cell carcinoma from renal angiomyolipoma with minimal fat. ROC, receiver 
operating characteristic; RK, radial kurtosis.
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In conclusion, DKI parameters demon-
strated better performance than ADC in 
differentiating ccRCC and RAMF. This new 
technique can potentially be used as anoth-
er non-invasive biomarker for the differential 
diagnosis of renal tumor types.
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Diagnostic performance of magnetic resonance imaging for lateral 
pelvic lymph node metastasis in patients with rectal carcinoma: 
a meta-analysis and systematic review

PURPOSE
Accurate identification of lateral pelvic lymph node (LPLN) metastasis is imperative for guiding 
LPLN dissection to reduce local recurrence in patients with rectal carcinoma. This meta-analysis 
aimed to investigate the diagnostic performance of magnetic resonance imaging (MRI) for LPLN 
metastasis in patients with rectal carcinoma.

METHODS
Embase, PubMed, Web of Science, and the Cochrane Library were searched to identify studies re-
lated to the diagnostic performance of MRI for LPLN metastasis in patients with rectal carcinoma 
through June 2024.

RESULTS
This meta-analysis included 12 studies comprising 1,015 patients. The pooled sensitivity [95% 
confidence interval (CI)] and specificity (95% CI) of MRI for diagnosing LPLN metastasis were 0.66 
(0.53, 0.80) and 0.82 (0.76, 0.88), respectively. The pooled positive likelihood ratio (LR) (95% CI) 
and negative LR (95% CI) were 2.82 (2.14, 3.51) and 0.41 (0.27, 0.55), respectively. The summary 
receiver operating characteristic curve indicated an area under the curve of 0.824. The quality 
of the included studies was acceptable according to the Quality Assessment of Diagnostic Ac-
curacy Studies-2 tool. However, publication bias was present, as indicated by Deeks’ funnel plot 
asymmetry test (P = 0.020). Considering that heterogeneity contributed to publication bias, a 
meta-regression analysis was conducted and revealed that heterogeneity could be influenced by 
sample size, with sample size negatively associated with sensitivity (coefficient: -0.002, P = 0.009) 
and positively associated with negative LR (coefficient: 0.002, P = 0.029).

CONCLUSION
Preoperative MRI demonstrates an acceptable ability to identify LPLN metastasis in patients with 
rectal carcinoma.

CLINICAL SIGNIFICANCE
Clinically, our findings support that preoperative MRI has acceptable diagnostic ability for LPLN me-
tastasis in patients with rectal carcinoma. The preoperative application of MRI may aid in optimizing 
treatment strategies and improving prognosis in this population.

KEYWORDS
Rectal carcinoma, lateral pelvic lymph node metastasis, magnetic resonance imaging, sensitivity, 
specificity
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Lateral pelvic lymph node (LPLN) me-
tastasis is considered one of the major 
causes of local recurrence in patients 

with rectal carcinoma.1 In order to reduce 
local recurrence rates in patients with LPLN 
metastasis, LPLN dissection should be per-
formed,2-4 and accurate diagnosis of LPLN 
metastasis is imperative for guiding this op-
eration.5-8 Currently, imaging methods such 
as computed tomography (CT), endorectal 
ultrasound, and 18F-fluorodeoxyglucose-pos-
itron emission tomography (FDG-PET) are 
used for diagnosing LPLN metastasis, yet 
each has limitations in sensitivity or specifici-
ty.7,9 Therefore, investigating potential meth-
ods for diagnosing LPLN metastasis is essen-
tial to improve the management of patients 
with rectal carcinoma.

Magnetic resonance imaging (MRI), with 
its outstanding soft tissue contrast resolu-
tion, demonstrates good potential for di-
agnosing LPLN metastasis in patients with 
rectal carcinoma.7 Several studies have ex-
plored the diagnostic performance of MRI for 
LPLN metastasis in these patients.10-21 For in-
stance, one previous study found that when 
the short-axis cut-off value was 5 mm, the 
accuracy, sensitivity, and specificity of MRI 
for diagnosing LPLN metastasis were 77.6%, 
68.6%, and 79.7%, respectively; the area 
under the curve (AUC) was 0.74.15 Another 
study applied a 6.8 mm cut-off for the short 
axis and reported that the sensitivity, speci-
ficity, and AUC were 77.8%, 72.1%, and 0.761, 
respectively.20 To support the wider applica-
tion of MRI in patients with rectal carcinoma 
suspected of LPLN metastasis, it is crucial to 
conduct a pooled analysis to evaluate the 
diagnostic performance of MRI for LPLN me-
tastasis in this population. Accordingly, this 
meta-analysis aimed to provide a compre-
hensive evaluation of the diagnostic perfor-
mance of MRI for LPLN metastasis in patients 
with rectal carcinoma.

Methods
The present study is reported according 

to the Preferred Reporting Items for System-
atic Reviews and Meta-Analyses statement 
and published recommendations. Ethics in-
formation and informed consent forms were 
not required, as systematic reviews typically 
involve synthesizing and summarizing exist-
ing literature rather than directly engaging in 
human or animal experiments.

Search scheme

Embase, PubMed, Web of Science, and the 
Cochrane Library were searched to identify 
studies related to the diagnosis of LPLN me-
tastasis using MRI technology in patients with 
rectal carcinoma. The keywords used for the 
search were as follows: “magnetic resonance 
imaging,” “MRI,” “MR,” “rectal cancer,” “rectal 
carcinoma,” and “lateral pelvic lymph node 
metastasis.” The retrieval period was from da-
tabase inception to June 2024. After exclud-
ing duplicate studies, titles and abstracts of 
the remaining studies were reviewed based 
on the eligibility criteria. Subsequently, full-
text articles were assessed for study eligibility. 
KL, PW, YG, and YD independently completed 
this part of the work. In case of disagreement, 
a decision was made after consultation.

Criteria of the study screen

During the screening process, the inclu-
sion criteria were as follows: i) patients were 
diagnosed with rectal carcinoma; ii) patients 
underwent MRI examination for the detec-
tion of LPLN metastasis; iii) studies contained 
complete 2 × 2 contingency tables [includ-
ing true positive (TP), false positive (FP), 
false negative (FN), and true negative (TN)] 
or provided sufficient data to construct 2 × 
2 contingency tables for assessing diagnos-
tic efficacy; iv) studies were published in En-
glish. The exclusion criteria were as follows: 
i) case reports, animal experiments, reviews, 
or meta-analyses; ii) studies lacking or not 
using histopathological examination as the 
reference standard; iii) studies by the same 
authors with overlapping study populations.

Data collection

The first author’s name, publication year, 
study design, sample size, age, gender, and 
MRI-related information were collected. In 
addition, 2 × 2 contingency tables were ob-
tained. If the studies did not report direct 
data on 2 × 2 contingency tables, they were 
calculated using sensitivity, specificity, posi-
tive sample size (PSZ), and negative sample 
size (NSZ). The formulas used were as follows: 

TP = Sensitivity × PSZ; FN = PSZ − TP; TN = 
Specificity × NSZ; FP = NSZ − TN. Data collec-
tion was performed independently by KL, PW, 
YG, and YD. When results were inconsistent, 
they were resolved through joint discussion.

Statistical analysis

STATA statistical software (version 14.0; 
StataCorp, College Station, TX, USA) was 
used for data analyses. Pooled sensitivity, 
pooled specificity, pooled positive likelihood 
ratio (LR), and pooled negative LR, each with 
a 95% confidence interval (CI), were ana-
lyzed. Additionally, the summary receiver 
operating characteristic (SROC) curve was 
generated. Heterogeneity was assessed us-
ing the chi-square test and the I2 test; P < 
0.05 indicated significant heterogeneity for 
the former, and I2 ≥ 50% for the latter. Deeks’ 
funnel plot was used to evaluate publication 
bias through Deeks’ asymmetry test. Ran-
dom-effects models were applied in all syn-
theses. Meta-regression was conducted to 
further explore sources of heterogeneity. The 
quality of the included studies was assessed 
using the Quality Assessment of Diagnostic 
Accuracy Studies-2 tool22 by XL and KL inde-
pendently. Discrepancies in assessment were 
resolved through discussion. A P < 0.05 was 
considered statistically significant.

Results

Study flow

A total of 260 studies were identified 
through database searching. After exclud-
ing 58 duplicates, 202 studies were screened 
based on title and abstract. Subsequently, 
184 studies were excluded, and the remain-
ing 18 studies were assessed through full-
text review. Finally, 6 studies were excluded, 
and a total of 12 studies related to the di-
agnosis of LPLN metastasis using MRI in pa-
tients with rectal carcinoma10-21 were includ-
ed in this meta-analysis (Figure 1).

Features of enrolled studies

This meta-analysis included 4 prospec-
tive studies and 8 retrospective studies. The 
MRI findings were all preoperative in the in-
cluded studies. The MRI modality included 
T2-weighted imaging (T2WI); T1-weighted 
imaging and T2WI; and T2WI and diffu-
sion-weighted imaging; however, Dev et al.16 
did not report this information. The cut-off 
value of the short-axis or long-axis diameter 
of the LPLN used to distinguish positive and 
negative samples ranged from 4 to 10 mm. 
The complete features of all studies are pre-
sented in Table 1.

Main points

•	 The ability of magnetic resonance imaging 
to diagnose lateral pelvic lymph node me-
tastasis was evaluated.

•	 This meta-analysis included 12 studies with 
1,015 patients with rectal carcinoma.

•	 The pooled sensitivity and specificity were 
0.66 and 0.82, respectively.

•	 The pooled positive and negative likelihood 
ratios were 2.82 and 0.41, respectively.

•	 The pooled area under the curve of the sum-
mary receiver operating characteristic curve 
was 0.824.
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Sensitivity and specificity of magnetic 
resonance imaging for diagnosing lateral 
pelvic lymph node  metastasis

Heterogeneity existed in the sensitivity 
data (I2 = 83.0%, P < 0.001). The pooled sensi-
tivity (95% CI) was 0.66 (0.53, 0.80; Figure 2a). 
The specificity data were also heterogeneous 
(I2 = 92.5%, P < 0.001). The pooled specificity 
(95% CI) was 0.82 (0.76, 0.88; Figure 2b).

Positive likelihood ratio  and negative  like-
lihood ratio  of magnetic resonance im-
aging for diagnosing lateral pelvic lymph 
node metastasis 

Data on the positive LR of MRI showed 
no significant heterogeneity (I2 = 29.6%, 

P = 0.155). The pooled positive LR (95% CI) 
was 2.82 (2.14, 3.51; Figure 3a). Heteroge-
neity was present in the negative LR data 
(I2 = 74.1%, P < 0.001). The pooled negative 
LR (95% CI) was 0.41 (0.27, 0.55; Figure 3b).

Summary receiver operating characteris-
tic curve of magnetic resonance imaging  
for diagnosing lateral pelvic lymph node  
metastasis

An SROC curve was constructed to assess 
the overall ability of MRI to diagnose LPLN 
metastasis in patients with rectal carcinoma. 
The AUC of MRI for diagnosing LPLN metas-
tasis was 0.824. The standard error of the 
AUC was 0.023 (Figure 4).

Quality assessment

All studies had a low risk of bias regarding 
the reference standard, as well as follow-up 
and timing. More than 50% of the studies 
had an unclear risk of bias regarding patient 
selection and index test, whereas the remain-
ing studies were assessed as having a low 
risk of bias. All studies had low applicability 
concerns regarding the reference standard. 
More than 50% of the studies had low appli-
cability concerns regarding patient selection, 
and the others were assessed as having un-
clear applicability concerns. Moreover, more 
than 50% of the studies had unclear appli-
cability concerns regarding the index test,  
whereas the remaining studies were as-
sessed as having low applicability concerns 
(Figure 5a). Detailed information on each 
study with high, unclear, or low risk of bias or 
applicability concerns is shown in Figure 5b.

Publication bias and factors related to het-
erogeneity

Publication bias was present among the 
included studies (P = 0.020; Supplementary 
Figure 1). Considering that heterogeneity 
among studies may contribute to publica-
tion bias, a meta-regression analysis was 
conducted to examine factors potentially 
influencing heterogeneity. It was found that 
sample size was negatively associated with 
sensitivity (coefficient: -0.002, P = 0.009). Ad-
ditionally, sample size was positively associ-
ated with negative LR (coefficient: 0.002, P = 
0.029). Study type, cut-off value, and sample 
size were not significantly associated with 
specificity or positive LR (all P > 0.05; Table 2).

Figure 1. Study screen. MRI, magnetic resonance imaging.

Table 1. Features of included studies

Study ID Study type Sample size Age (years) Men (n) MRI findings Modality of MRI Cut-off 
value† (mm)

TP FP FN TN

Matsuoka et al.10 Prospective 51 63.0a 35 Preoperative T2WI 5 10 9 5 27

Akasu et al.11 Prospective 104 58.0b 82 Preoperative T2WI 4 13 12 2 77

Ogawa et al.12 Retrospective 77 (-) (-) Preoperative T1WI and T2WI 5 8 29 2 38

Akiyoshi et al.13 Retrospective 77 61.0b 55 Preoperative T2WI 8 21 7 10 39

Ishibe et al.14 Prospective 84 62.0a 53 Preoperative T1WI and T2WI 10 12 21 4 47

Ogawa et al.15 Retrospective 268 (-) (-) Preoperative T1WI and T2WI 10 14 2 37 215

Dev et al.16 Prospective 43 (-) 21 Preoperative Not mentioned 8 4 3 5 31

Kim et al.17 Retrospective 57 57.0b 33 Preoperative T2WI and DWI 7.5 20 10 3 24

Amano et al.18 Retrospective 184‡ 65.0b 25 Preoperative T1WI and T2WI 6 6 5 11 162

Sekido et al.19 Retrospective 60 60.0b 40 Preoperative T2WI 7 9 6 3 42

Ishizaki et al.20 Retrospective 61 62.0b 37 Preoperative T2WI 6.8 14 12 4 31

Zhang et al.21 Retrospective 87 58.7a 48 Preoperative T2WI 7 14 15 7 51
†Cut-off value refers to the short-axis or long-axis diameter of lateral pelvic lymph nodes used to distinguish between positive and negative samples.
‡ Indicates that 184 was the number of regions, not the number of patients.
For age: superscript aindicates mean age; superscript bindicates median age. 
MRI, magnetic resonance imaging; TP, true positive; FP, false positive; FN, false negative; TN, true negative; T2WI, T2-weighted imaging; T1WI, T1-weighted imaging; DWI, diffusion-
weighted imaging.
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Figure 2. Forest plots of sensitivity and specificity. Pooled sensitivity (a) and pooled specificity (b) of MRI for diagnosing LPLN metastasis in patients with rectal 
carcinoma. MRI, magnetic resonance imaging; LPLN, lateral pelvic lymph node, CI, confidence interval.

a b

Figure 3. Forest plots of positive and negative likelihood ratios (LRs). Pooled positive LR (a) and negative LR (b) of MRI for diagnosing LPLN metastasis in patients 
with rectal carcinoma. MRI, magnetic resonance imaging; LPLN, lateral pelvic lymph node, CI, confidence interval.

a b

Figure 4. Summary receiver operating characteristic curve of the diagnostic performance of MRI. MRI, magnetic resonance imaging; AUC, area under the curve; 
HSROC, hierarchical summary receiver operating characteristic.
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Figure 5. Quality assessment by QUADAS-2 tools. The proportion of studies with high, unclear, and low risk of bias, as well as applicability concerns (a). Detailed 
information for each study with high, unclear, and low risk of bias, as well as applicability concerns (b).

a

b

Table 2. Heterogeneity source analysis via meta-regression

Items Coefficient Standard error 95% CI P value for t-test

Sensitivity

Study type 0.010 0.092 (-0.202, 0.222) 0.916

Cut-off value -0.019 0.024 (-0.073, 0.036) 0.459

Sample size -0.002 0.198 (-0.003, -0.001) 0.009

P value for F-test 0.018

Specificity

Study type -0.043 0.075 (-0.217, 0.130) 0.579

Cut-off value 0.002 0.019 (-0.043, 0.047) 0.924

Sample size 0.001 0.001 (-0.001, 0.002) 0.061

P value for F-test 0.223

Positive LR

Study type -0.273 1.036 (-2.661, 2.116) 0.799

Cut-off value -0.100 0.279 (-0.743, 0.542) 0.728

Sample size 0.035 0.027 (-0.029, 0.098) 0.244

P value for F-test 0.650

Negative LR

Study type -0.007 0.107 (-0.253, 0.240) 0.953

Cut-off value 0.025 0.027 (-0.037, 0.088) 0.380

Sample size 0.002 0.001 (0.001, 0.003) 0.029

P value for F-test 0.040

CI: confidence interval; LR: likelihood ratio.
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Discussion
LPLN metastasis occurs in approximately 

10% to 25% of patients with rectal carcino-
ma, which is associated with increased local 
recurrence rates.4,23 Of note, two previous 
meta-analyses found that the pooled sen-
sitivity (95% CI) of MRI for diagnosing LPLN 
metastasis in patients with rectal carcinoma 
was 0.72 (0.66, 0.78)24 and 0.88 (0.85, 0.91)25; 
the pooled specificity (95% CI) was 0.80 (0.73, 
0.85)24 and 0.85 (0.78, 0.90).25 In the current 
meta-analysis, we found that the pooled 
sensitivity (95% CI) and specificity (95% CI) 
of MRI for diagnosing LPLN metastasis were 
0.66 (0.53, 0.80) and 0.82 (0.76, 0.88), respec-
tively, in patients with rectal carcinoma. The 
pooled sensitivity differed between our me-
ta-analysis and previous meta-analyses.24,25 A 
potential reason may be that the cut-off val-
ue for lymph node size used to identify LPLN 
metastasis varied among studies, which con-
tributed to differences in MRI sensitivity and 
ultimately affected the pooled analysis.

LR refers to the probability ratio of a 
specific test result between diseased and 
non-diseased individuals, and the value of 
LR has important implications.26-28 In general, 
a higher positive LR and a lower negative LR 
suggest superior diagnostic performance of 
a specific test.28,29 The present meta-analysis 
observed that the positive LR and negative 
LR of MRI for diagnosing LPLN metastasis 
were 2.82 and 0.41, respectively, in patients 
with rectal carcinoma. Therefore, our find-
ings suggest that MRI possesses moderate 
diagnostic performance for LPLN metastasis 
in patients with rectal carcinoma.

The receiver operating characteristic 
curve is applied to evaluate the overall di-
agnostic performance of a test.30,31 General-
ly, an AUC value greater than 0.8 indicates 
good overall diagnostic performance.30,32 A 
previous meta-analysis reported that the 
AUC of MRI for diagnosing LPLN metastasis 
was 0.88 in patients with rectal carcinoma.25 
Similarly, in our meta-analysis, the AUC was 
0.82. Hence, our findings indicate that MRI is 
useful for diagnosing LPLN metastasis in pa-
tients with rectal carcinoma.

Publication bias refers to the tendency for 
studies with favorable or statistically signifi-
cant results to be more likely to be published 
than those with non-substantial results, 
which may affect the conclusions of a me-
ta-analysis.33-35 In the current meta-analysis, 
Deeks’ funnel plot asymmetry test showed 
that publication bias existed regarding the 
diagnostic performance of MRI for LPLN me-

tastasis in patients with rectal carcinoma. We 
speculated that a potential contributor to this 
bias might be heterogeneity among the in-
cluded studies.35,36 To further explore the fac-
tors influencing heterogeneity, we conducted 
a meta-regression analysis. It was found that 
heterogeneity could be influenced by sample 
size, as sample size was negatively related to 
sensitivity but positively related to negative 
LR. Due to the presence of publication bias 
and heterogeneity in the enrolled studies, our 
findings should be interpreted with caution. 
Further rigorous studies are needed to verify 
the diagnostic performance of MRI for LPLN 
metastasis in patients with rectal carcinoma.

Several limitations should be noted in 
this meta-analysis. (1) The cut-off value of 
the short-axis or long-axis diameter of the 
LPLN used to distinguish positive and nega-
tive samples ranged from 4 to 10 mm in the 
included studies. Therefore, our meta-analy-
sis could not determine the optimal cut-off 
value of lymph node size for identifying LPLN 
metastasis, which should be further investi-
gated. (2) A comparison of the diagnostic 
performance of MRI with other imaging 
methods, such as CT and 18F-FDG-PET, could 
be further explored. (3) Most of the included 
studies were conducted in Japan, which may 
limit the generalizability of the findings.

In conclusion, preoperative MRI is recom-
mended for identifying LPLN metastasis in 
patients with rectal carcinoma, which may 
further assist in optimizing treatment strate-
gies in this population.

Footnotes
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PURPOSE
The primary objective of this research is to enhance the accuracy and efficiency of information 
extraction from radiology reports. In addressing this objective, the study aims to develop and eval-
uate a deep learning framework for named entity recognition (NER).

METHODS
We used a synthetic dataset of 1,056 Turkish radiology reports created and labeled by the radiol-
ogists in our research team. Due to privacy concerns, actual patient data could not be used; how-
ever, the synthetic reports closely mimic genuine reports in structure and content. We employed 
the four-stage DYGIE++ model for the experiments. First, we performed token encoding using four 
bidirectional encoder representations from transformers (BERT) models: BERTurk, BioBERTurk, Pub-
MedBERT, and XLM-RoBERTa. Second, we introduced adaptive span enumeration, considering the 
word count of a sentence in Turkish. Third, we adopted span graph propagation to generate a mul-
tidirectional graph crucial for coreference resolution. Finally, we used a two-layered feed-forward 
neural network to classify the named entity.

RESULTS
The experiments conducted on the labeled dataset showcase the approach’s effectiveness. The 
study achieved an F1 score of 80.1 for the NER task, with the BioBERTurk model, which is pre-trained 
on Turkish Wikipedia, radiology reports, and biomedical texts, proving to be the most effective of 
the four BERT models used in the experiment. 

CONCLUSION
We show how different dataset labels affect the model’s performance. The results demonstrate the 
model’s ability to handle the intricacies of Turkish radiology reports, providing a detailed analysis 
of precision, recall, and F1 scores for each label. Additionally, this study compares its findings with 
related research in other languages.

CLINICAL SIGNIFICANCE
Our approach provides clinicians with more precise and comprehensive insights to improve patient 
care by extracting relevant information from radiology reports. This innovation in information ex-
traction streamlines the diagnostic process and helps expedite patient treatment decisions.

KEYWORDS
Named entity recognition, radiology reports, bidirectional encoder representations from trans-
formers, Turkish, computed tomography, thorax

Radiology reports are a cornerstone of modern healthcare, capturing intricate diagnos-
tic insights derived from medical images. These unstructured reports encapsulate the 
clinical context, imaging techniques, findings, and interpretations, which are pivotal in 

guiding patient care decisions.1 However, their inherent lack of structure poses challenges for 
downstream applications that require standardized and structured data, including research, 
billing, accreditation, and quality improvement.2 There is a push toward using structured 
formats instead of free-text radiology reports. Although initiatives such as RadReport2 and 
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RadLex3 have helped standardize radiology 
reporting, unstructured formats remain the 
most common format despite the need for 
standardization. Various research methodol-
ogies have been investigated to bridge this 
gap, including rule-based systems, machine 
learning, and deep learning.

Our study focuses on applying deep learn-
ing to extract named entities from radiology 
reports written in Turkish. In addition, we 
developed a new dataset to train the named 
entity recognition (NER) task and considered 
the distinctive characteristics of the Turkish 
language to attain the best possible results. 
For the NER task, we utilized the DYGIE++ 
framework4 and adapted it to the Turkish 
language. The DYGIE++ framework relies on 
a bidirectional encoder representations from 
transformers (BERT)5 model to extract text 
embeddings. Therefore, we used the BioBER-
Turk model,6 a variant of BERT pre-trained 
on Turkish biomedical data. This combina-
tion allows for the extraction of structured 
information, which can be used to enhance 
various medical applications. Our approach 
builds on previous research and aims to im-
prove the overall effectiveness of informa-
tion extraction in radiology reporting.

The potential of deep learning applica-
tions in Turkish radiology reports has yet to 
be fully explored. To remedy this, we worked 
with Ankara Bilkent City Hospital radiologists 
and hand-labeled a substantial dataset of 
1,056 reports. To the best of our knowledge, 
this is the first dataset in Turkish created for 
this purpose. These reports have been ex-
pertly labeled to include observation and 
symptom categories, and they serve as a cru-
cial foundation for our experiments.

In this paper, we provide a detailed ex-
planation of our methodology and show-
case how using DYGIE++ with various BERT 
models has been effective for our NER task of 
extracting observations and symptoms from 
Turkish radiology reports. Although there are 
no studies against which we can compare 
our F1 results (80.1) in Turkish, our results are 

similar to those in other languages. The im-
plications of our study go beyond Turkish ra-
diology reports; the lessons we learned and 
the methodologies we established can be 
applied to multiple languages and medical 
contexts, leading to improved information 
extraction practices. We hope to see a future 
where structured insights can be easily ex-
tracted from unstructured reports, leading to 
a revolution in medical reporting practices.

In the following sections, we will present 
related research and discuss the methodolo-
gy, results, and conclusions that support our 
findings. The methodology section will elab-
orate on the dataset and experimental setup. 
In the results section, we will showcase the 
findings of our experiments conducted using 
varying configurations. In the discussion, we 
will compare our results with other studies in 
the field, including those conducted in lan-
guages other than Turkish. We hope to con-
tribute to the ongoing dialogue on integrat-
ing deep learning into radiology reporting 
and inspire innovation in healthcare.

Methods
We created a labeled dataset of 1,056 ra-

diology reports produced by the radiologists 
in our research team. Due to ethical and pri-
vacy considerations, it was not feasible to 
use actual patient data. Therefore, the radiol-
ogists drew from their experience of com-
posing authentic radiology reports to gen-
erate synthetic reports that resembled the 
structure and content of genuine ones. This 
approach ensured that the dataset retained 
the critical features and complexities of real 
reports while safeguarding patient confiden-
tiality and data privacy. The reports focused 
on computed tomography (CT) scans of the 
thorax area, encompassing the chest, lungs, 
heart, abdomen, and other vital organs. 
Figure 1 shows an example of a labeled re-
port. This dataset can be utilized in various 
medical research projects and assist in de-
veloping diagnostic tools and techniques. 
Table 1 enumerates imaging types and their 
frequencies. We used the expertise of radiol-
ogists to label the data for NER, resulting in 
nine labels: Obs_Present, Obs_Uncertain, 
Obs_Technical, Obs_Anatomy, Obs_Absent, 
Obs_Advice, Symptom_P, Symptom_A, and 
Differential_Diagnosis. Table 2 enumerates 
the labels, their descriptions, and their fre-
quencies.

We established a Doccano platform to 
simplify the labeling of our reports. Docca-
no is an open-source web-based annotation 
tool that provides a collaborative environ-

ment for annotating text elements such as 
named entities. It allows users to upload text 
documents and add annotations to a group 
of words within the document. Users work in 
parallel on separate documents that need to 
be labeled. Due to its user-friendly interface, 
Doccano was particularly valuable in simpli-
fying the labeling process. An export of the 
data to the JavaScript object notation lines 
format became readily available once the 
labeling was complete. We labeled 1,056 re-
ports by randomly dividing them into three 
equal parts for three radiologists to label in 
parallel. Ural Koç, co-author reviewed the 
labeling results and supervised the entire la-
beling process.

We named our task entity recognition us-
ing the DYGIE++ framework. The DYGIE++ 
framework is a span-based model for extract-
ing entities, relations, and event triggers. We 
performed the entity extraction in isolation 
to accomplish our task. Our approach in the 
four stages of the DYGIE++ model is detailed 
as follows:

1. Token encoding: This step uses a BERT 
model to obtain token representations of the 
text. It utilizes a sliding window technique, 
feeding a sentence to the model at each iter-
ation along with 15 surrounding sentences. 
We experimented with four BERT models: 
BERTurk, BioBERTurk, PubMedBERT, and 
XLM-RoBERTa. The BERTurk model was pre-
trained on Turkish text sourced from Wikipe-
dia dumps, and we selected it because the 
model’s Turkish language matched our train-
ing data. The BioBERTurk model was pre-
trained on top of BERTurk with Turkish bio-
medical texts and radiology theses, making 
it the most suitable fit for our application do-
main and language. The PubMedBERT model 
was pre-trained on English text sourced from 
the abstracts and articles of academic bio-
medical publications, and we selected it be-
cause its medical data matched our domain. 
The XLM-RoBERTa model was pre-trained on 
text from Wikipedia dumps containing 100 
languages (including Turkish), and we chose 
it because medical terms tend to remain con-
sistent across multiple languages.

2. Adaptive span enumeration: A span 
is a group of adjacent tokens that can be 
either a single token or a combination of 
many. We created it by concatenating token 
representations. The usage of suffixes in the 
Turkish language results in shorter sentenc-
es despite longer word lengths. For instance, 
the English phrase “the nasogastric tube has 
been pushed forward” translates to “nazo-
gastrik tüp ileri itildi” or “nazogastrik tüp iler-

Main points

•	 Precise data are extracted from radiology re-
ports to address the challenges of retrieving 
information from unstructured reports.

•	 Named entity recognition is used to identify 
observations and symptoms, even in low-re-
source languages such as Turkish.

•	 Diagnostic precision is improved and deci-
sion-making expedited to foster improved 
patient care and healthcare outcomes.
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letildi” in Turkish, consisting of four- or three-
word sentences instead of the seven-word 
sentence in English. Although DYGIE++ was 
originally developed using English, we mod-
ified our model to accommodate Turkish. We 
set the maximum number of tokens per span 
to four instead of the default limit of eight 
used in English experimentally, as we ob-
tained the best performance using this value.

3. Span graph propagation: This step 
generates a multidirectional graph by com-
puting the connections between spans. 
Spans are considered connected if they are 
likely to be related or refer to the same top-
ic (coreference). We were interested in the 
coreference propagation in this step, which 
is crucial for identifying references to an en-

tity throughout the document. Therefore, 
once we had the entity type of one reference, 
we could apply it to all the other references 
in the document.

4. Named entity classification: In the final 
step, a two-layered feed-forward neural net-
work was used as a scoring function to make 
predictions for named entities.

For the experiment, we partitioned the 
1,056 reports in the labeled dataset into three 
subsets: 75% for training, 15% for testing, 
and 10% for development. The training con-
figuration closely followed that of DYGIE++.4 
The training phase spanned 100 epochs and 
focused on NER; therefore, the loss weights 
for relation extraction, coreference resolu-

tion, and event extraction were set to 0, and 
the weight for NER was set to 1. We used the 
AdamW optimizer,7 with a learning rate of 
1e −3 and weight decay of 0.0. The gradient 
norm was set to 5.0 for stable training with 
a slanted triangular learning rate scheduler. 
We used an NVIDIA V100 graphical process-
ing unit as a CUDA device throughout the ex-
periments. The codebase was in Python. We 
sourced our code from the DYGIE++ GitHub 
code repository of4 (github.com/dwadden/
dygiepp), which was built on the AllenNLP 
framework.8 The loss weights are given as 
NER: 0.5, relation extraction: 0.5,  coreference 
resolution: 0.0,  and event extraction: 1.0.

Statistical analysis

As for the statistical analysis, we used the 
micro F1 score as the standard to evaluate 
and compare the performance of our mod-
els. Numeric values are given as a number 
and  frequency (%). Cohen’s kappa statistic 
was used to evaluate agreement. A P value 
<0.05 was considered statistically significant. 
The study did not require ethics committee 
approval or patient consent.

Results
Our setup comprises four experimental 

combinations differentiated by the BERT 
model, as described under “Token encoding” 
in section 2. Table 3 shows each model’s pre-
cision, recall, and F1 score. The best perform-

Table 1. Imaging types and their frequencies in the labeled dataset of radiology reports

Imaging type Number of reports Percentage

Abdominal radiology 363 34.38%

Thorax radiology 224 21.21%

Neuroradiology 187 17.71%

Vascular and thorax radiology 101 9.56%

Musculoskeletal radiology 66 6.25%

Head and neck radiology 45 4.26%

Vascular and thoracoabdominal radiology 25 2.37%

Vascular and neuroradiology 22 2.08%

Vascular and musculoskeletal radiology 15 1.42%

Vascular and abdominal radiology 5 0.47%

Vascular and neck radiology 3 0.28%

Figure 1. Color-coded example of labeled reports.
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ing model was the BioBERTurk model, with 
an F1 score of 80.1. The BERTurk, PubMed-
BERT, and XLM-RoBERTa models scored 79.1, 
75.9, and 78.3, respectively.

Figure 2 is a bar chart that displays each la-
bel’s F1 score for all four BERT models. We re-
port their respective precision, recall, and F1 
scores using tables in Appendices 1-4. These 
tables offer a label-specific perspective, 
highlighting the strengths and weaknesses 
of each model. We can see that although the 
label “Obs_Present” is the most frequent (oc-
curring 50.65% of the time), it does not have 
the highest F1 score among all the models. 
This affects the micro average F1 score be-
cause labels that occur more frequently con-
tribute more weight to the overall F1 score. 
Conversely, “Symptom_A” has a 0.0 F1 score 
for all models because it lacks examples (only 
16 occurrences) for the model to learn. Con-
sequently, its effect on the overall F1 score is 
negligible.

After receiving constructive feedback 
from the peer reviewers, two radiologists 
who were not involved in the initial study 
evaluated the synthetically generated re-
ports using a Likert scale. The Likert scale 

ranged from 1 to 5, where 1 indicated the 
least resemblance to real-world reports and 
5 indicated the closest resemblance. The re-
sponses were analyzed using Cohen’s kap-
pa statistic (Cohen’s kappa score: 0.92, P < 
0.001). The evaluation of radiology reports 
prepared by the study radiologists achieved 
a high inter-observer agreement among the 
independent radiologists. Furthermore, the 
selected categories on the scale indicated 
that the reports closely resembled real-world 
radiology reports (Figure 3). After the peer-re-
view process, 25% of the data were randomly 
re-annotated (UK) to assess intra-annotator 
agreement. Cohen’s kappa statistic was used 
to evaluate the level of agreement, yielding 
a kappa value of 0.997 (P < 0.0001). This re-
sult indicates a high level of agreement and 
is statistically significant.

The co-occurrence chord diagram and 
matrix of the nine labels are shown in Figures 
4, 5 and Appendices 5, 6.

Discussion
Structured reports have a standardized 

language and are consistently organized 
into ordered sections to enable the auto-

mated or semi-automated abstraction of 
reporting data. In recent years, numerous 
researchers have demonstrated a keen inter-
est in extracting information from unstruc-
tured radiology reports, as almost all reports 
are written in this format. In 2010, Soysal et 
al.9 proposed a natural language processing 
(NLP) system that converts radiology reports 
into Turkish. The initial medical information 
extraction system in Turkish, TRIES, follows a 
three-step conversion process. It begins with 
a morphological analysis of every word in the 
sentence, followed by NER and relation ex-
traction. Its purpose is to match the sentence 
with a set of rule templates. An example is 
the sentence “The liver is 14 cm in height,” 
which is analyzed as “Liver vertical tall + NESS 
+ POSS3SG 14 cm + COP,” later transformed 
into “[entity: Liver] [attribute: height] + POS-
S3SG [value: NUMERIC: 14 cm] + COP,” and fi-
nally converted to “Liver.height = 14cm.” The 
TRIES system has achieved results with a 93% 
recall and 98% precision rate. However, this 
method is limited because rule-based sys-
tems fail if a relationship cannot be matched 
to a specific rule.

Little research related to the present 
study has been conducted in the Turkish lan-
guage domain. This is a notable shortcoming 
considering the considerable advancements 
published in the literature, especially in pre-
trained deep learning models. One of the 
most commonly used pre-trained language 
models for creating downstream NLP appli-
cations via fine-tuning is BERT, which con-
siders the entire context of words by look-

Table 2. Label distribution for the dataset of radiology reports

Code Name Description Frequency Percentage

Obs_Present Observations present Presence of radiological features, identifiable pathophysiological 
processes, or diagnostic diseases 12,848 34%

Obs_Absent Absence of observations Absence of radiological features, identifiable pathophysiological 
processes, or diagnostic diseases 3,165 8.38%

Obs_Uncertain Uncertain observations Lack of certainty about a radiological feature, pathophysiological 
process, or diagnostic disease 1,102 2.92%

Obs_Technical Technical observations Technical situation that describes radiological techniques such as 
acquisitions 1,546 4.09%

Obs_Anatomy Anatomical observations Anatomical parts such as “vertebrae” 16,872 44.65%

Obs_Advice Observations of advice Tests and examinations recommended by the radiologist 
regarding the current diagnosis and treatment process 489 1.29%

Symptom_P Presence of a symptom A specific clinical symptom communicated by the clinician to the 
radiologist 668 1.77%

Symptom_A Absence of a symptom Absence of a specific clinical symptom communicated by the 
clinician to the radiologist 16 0.04%

Differential_
Diagnosis Differential diagnosis Differential diagnoses that may occur as a result of the current 

findings 1,084 2.87%

Table 3. Results for the BERTurk, BioBERTurk, PubMedBert, and XLM-RoBERTa models

BERT model Precision Recall F1

BERTurk 78.3 79.9 79.1

BioBERTurk 80.0 80.1 80.1

PubMedBERT 75.0 76.9 75.9

XLM-RoBERTa 79.5 77.0 78.3
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ing both left and right in a sentence. This 
model’s innovation lies in its pre-training 
process, which is trained on large amounts 
of data to perform two tasks. First, masked 
language modeling (MLM) requires masked 
words within sentences to be predicted, 
helping BERT understand the word context 
and semantics. Second, next sentence pre-
diction (NSP) predicts if one sentence follows 
another, enabling BERT to grasp sentence 

relationships. With this bidirectional ap-
proach, MLM and NSP allow BERT to capture 
intricate language relationships. In addition, 
BERT’s architecture allows it to be fine-tuned 
for specific language-related tasks such as 
NER. As our task is NER on Turkish data, we 
experimented with four variations of BERT: 
BERTurk,10 BioBERTurk, PubMedBERT,11 and 
RoBERTa-XLM.12

We found no previous studies related to 
deep learning in the Turkish language; there-
fore, we explored other underrepresented 
languages to gain inspiration to help fill 
this gap. In a recent study, Jantscher et al.13 
investigated methods for NER and relation 
extraction from radiology reports in German. 
To achieve their goal, they fine-tuned a BERT 
model and used active learning for domain 
adaptation and training. Three separate data-
sets were utilized in this study. Reports on 
head CT were used to fine-tune the German-
MedBERT14 model, and reports on magnetic 
resonance imaging (MRI) of the head and 
pediatric X-rays were used for domain adap-
tation and training. The researchers aimed 
to demonstrate that domain adaptation and 
active learning enhance the effectiveness of 
NER and relation extraction tasks. The model 
trained on MRI data performed the best, with 
an F1 score of 86.0 for NER and 80.0 for rela-
tion extraction.

In a similar study,15 researchers aimed to 
extract named entities from Polish radiology 
reports. Using a dataset of 1,200 chest X-ray 
reports, the study focused on sequence la-
beling using the inside–outside–beginning 
annotation schema. This annotation schema 
consists of 44 tags representing everyday 
radiological observations while emphasiz-
ing generalization for potential application 
across clinical domains. The experiments 
involved the use of five BERT models: Pol-

Figure 2. Bar chart of the F1 scores of the BERTurk, BioBERTurk, PubMedBert, and XLM-RoBERTa models.

Figure 3. Evaluation of synthetically generated radiology reports by two independent radiologists  
using a Likert scale (1-5). The analysis showed a high inter-observer agreement (Cohen’s kappa score: 0.92,  
P < 0.001), with the majority of scores indicating a strong resemblance to real-world radiology reports.
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ish-roberta-base-v2,16 Polish-distilroberta,16 
Polish-longformer,16 HerBERT,17 and mLUKE.18 
The mLUKE model is a multilingual variant 
of the LUKE model,19 whereas the rest of the 
models were pre-trained only on Polish data. 
The results demonstrated that mLUKE was 
the most effective model, with an F1 score 
of 80.9. Its multilingual nature enhanced the 
domain-specific medical knowledge base 
across all languages. Certain classes exhib-
ited lower-than-expected scores due to the 
complexity and variability within those cat-
egories. By contrast, others performed well 
despite limited annotated examples.

Another study20 focuses on NER applied 
to chest CT reports in Japanese. The data-
set consists of 118,155 reports, 540 of which 
were annotated by medical experts. Three 
deep learning models (BiLSTM-CRF, BERT, 
and BERT-CRF) were used to train NER. Each 
of the three models was pre-trained on Wiki-
pedia data and CT reports. The labeled data-
set was used to evaluate the models, which 
showed promising results in extracting clin-
ical information from the Japanese chest 
CT reports. The BiLSTM-CRF model had the 
highest micro F1 score, with 95.4 for CT and 
94.3 for Wikipedia. Higher F1 scores were ob-
served across all models when pre-training 
with CT reports instead of only Wikipedia. 
Analysis of the effect of various modifiers on 
performance shows that the “certainty mod-
ifier” entity had a favorable impact, resulting 
in higher F1 scores. Conversely, the “change 
modifier” and “characteristics modifier” enti-
ties reduced performance, leading to lower 
F1 scores.

The results of the present study demon-
strate that, among the different BERT mod-
els, BioBERTurk performed the best. We attri-
bute our model’s improved performance to 
adaptive span enumeration. We ran several 
iterations to determine the optimal value for 
the maximum number of tokens per span 
for the Turkish language. We set it at four in-
stead of the default value of eight in English 
experimentally, as detailed in the Material 
and Methods section under “Adaptive span 
enumeration.” This estimation resulted in a 
1.5-point increase in BioBERTurk’s F1 score. 
We believe this value to be specific to the 
Turkish language, and a similar concept can 
be applied to other languages.

The BERTurk model closely followed 
BioBERTurk in performance (79.1%) due to its 
Turkish language embeddings. This is a BERT 
model that was pre-trained from scratch us-
ing only Turkish text. Therefore, we expected 
it to perform better than multilingual models 

Figure 4. Co-occurrence chord diagram representing the total number of times each label pair appeared 
together across all reports. In this case, repetitions within the same document are also considered.

Figure 5. Co-occurrence chord diagram representing the frequency of unique label pairs. Even if the same 
label pairs appear multiple times, they are counted only once, illustrating the occurrence frequency of these 
unique combinations.
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such as XLM_RoBERTa and English-only mod-
els. The XLM-RoBERTa model performed rea-
sonably well (78.3%), but, as expected, it was 
too generic because it was trained on data 
from 100 languages. In addition, it is a much 
larger model, and given its size, we needed 
a larger dataset for fine-tuning to have a no-
ticeable impact. Finally, PubMedBERT is an 
English-only model that is pre-trained  using 
English-only medical domain texts. Although 
the medical terminology in English and 
Turkish overlaps to a certain degree due to 
the heavy use of Latin in medicine, as men-
tioned before, Turkish is very different from 
English, especially in terms of the heavy use 
of suffixes that can modify medical concepts 
in Latin. For example, “appendix” in English 
can be translated as “Apendiks,” “Apendiksin,” 
or “Apendiksinin,” with the suffix “-in” indicat-
ing possession or a relationship. Similarly, 
“intubation” in English can be expressed as 
“Entübasyon,” “Entübasyonu,” with the suf-
fix “-u” for possession, or “Entübasyonunda,” 
with the locative suffix “-da” to indicate loca-
tion within a procedure, and so on. There can 
be a large number of variations with many 
different suffixes. Due to these profound dif-
ferences between languages, we observed 
a significant drop in performance (80.1% 
vs. 75.9%) when we used PubMedBERT. For 
PubMedBERT,  fine-tuning the model with a 
large number of Turkish medical texts may 
increase its performance. A possible solution 
for PubMedBERT to be considered in future 
studies is the use of adapters.21 This method 
of fine-tuning adds extra layers to the mod-
el while retaining the existing ones, which 
are frozen during training. In this manner, 
the model preserves its medical knowledge 
by not updating the frozen weights and in-
corporates the Turkish context by updating 
the introduced weights. Our results indicate 
that it may be difficult to apply deep learning 
models that have been pre-trained on differ-
ent languages or even multi-lingual models 
in domain specific applications such as med-
icine; however, it is worth using pre-trained 
models in the target language, adjusting hy-
per parameters, and applying domain specif-
ic fine-tuning. 

Our resources, mainly medical data in 
Turkish, are limited due to the low number 
of datasets and studies. In fact, our dataset 
of 1,056 annotated radiology reports is a 
first in the Turkish medical domain. There are 
also restrictions for unlabeled data, both in 
terms of quantity and quality, in the Turkish 
medical domain compared with the English 
domain. These restrictions affect our model 

in several ways. First, we can discuss the do-
main specialization of large language models 
such as BERT. Although we used BioBERTurk 
as a base model that has been fine-tuned for 
the Turkish medical domain, we might ob-
tain better results by further fine-tuning this 
model if we had access to a large number of 
anonymized Turkish radiology reports or re-
lated literature in Turkish. Second, we used 
just 1,056 Turkish radiology reports, which 
were manually created by radiology experts 
to mimic actual patient reports. This number 
can be increased in two ways. One is to in-
volve more experts, which may not be feasi-
ble without vital funding and organization, 
currently beyond our capabilities. The other 
is to use techniques such as data augmenta-
tion,22 which are useful for increasing the size 
of the labeled dataset, although the quality 
would be debatable. Furthermore, these 
medical text data augmentation methods 
are devised for English biomedical texts, and 
applying these directly to Turkish radiology 
reports may not be feasible due to the key 
differences between English and Turkish and 
the agglutinative nature of Turkish, as previ-
ously discussed. 

We note that the four models exhibit dif-
ferent performance levels for each label. For 
instance, XLM-RoBERTa performs best for 
“Obs_Technical,” as technical terms are not 
unique to the Turkish language and were 
pre-trained in multiple languages. Moreover, 
BioBERTurk has excellent results for “Symp-
tom_P,” as it was trained on the relevant Turk-
ish biomedical data. The “Obs_Uncertain” 
label posed challenges for all four models 
because uncertainties usually involve nega-
tion-related terms such as “could not be mea-
sured” or “evaluation is not optimal.” Conse-
quently, most of these predictions tend to be 
misclassified as “Obs_Absent.” The BERTurk 
model demonstrated the best performance 
for this specific class label because it is spe-
cially trained for the Turkish language. How-
ever, the unexpected underperformance of 
BioBERTurk in predicting the “Obs_Uncertain” 
label is noteworthy, given its pre-training on 
Turkish biomedical data. This performance 
discrepancy warrants a closer examination of 
pre-training data specificity.

The F1 score of 89.0 for Polish radiology 
reports in13 closely aligns with our obtained 
score of 80.1. The dataset sizes are similar; 
ours has 1,056 instances, whereas theirs has 
1,200. In addition, as in our study, certain 
classes are high frequency and yield lower 
F1 scores. We believe that the limited linguis-
tic resources in both the Polish and Turkish 

languages specific to radiology reporting 
are the reason for this commonality. The F1 
score reported by Sugimoto et al.20 on Jap-
anese data exceeds ours, and this difference 
can be attributed to the substantial amount 
of fine-tuning data they used, totaling over 
100,000 reports. In our study, we faced con-
straints in conducting extensive fine-tuning 
due to the limited data available. The dis-
crepancy in fine-tuning resources under-
scores the impact of data volume on model 
performance and highlights the importance 
of considering the scale of training data in 
achieving optimal results. Despite these dif-
ferences, we see parallel trends in the out-
comes of certainty labels.

This study has several limitations that 
warrant consideration. First, the dataset used 
in this study was synthetic, created by ra-
diologists to mimic actual Turkish radiology 
reports. This limitation could affect the gen-
eralizability of the findings to real-world ap-
plications. Second, a larger dataset, including 
actual anonymized reports, could enhance 
the robustness and performance of the mod-
els, particularly in identifying less frequent 
entity labels such as “Symptom_A.” Third, al-
though the study focuses on Turkish radiol-
ogy reports, the findings may not be directly 
applicable to other low-resource languages 
without language-specific adaptations. Simi-
lar adjustments would be necessary for other 
languages with unique linguistic features. 
Fourth, despite the strong performance of 
the BioBERTurk model, the study was limited 
to evaluating only four BERT-based models. 
Exploring additional model architectures or 
integrating ensemble approaches could po-
tentially yield improved results. Finally, due 
to resource constraints, fine-tuning was per-
formed with limited training data. Access to 
a larger corpus of Turkish biomedical texts or 
radiology reports could further optimize the 
performance of the deep learning models. 

In our future research, we plan to use the 
mentioned insights to propose a pretrained 
BERT model for biomedical applications 
in Turkish. We also plan to develop a lan-
guage-specific approach to determine opti-
mal token span lengths during adaptive span 
enumeration. These initiatives will enhance 
the accuracy and efficiency of information 
extraction models, as demonstrated in our 
research. Based on recent developments in 
artificial intelligence (AI), mainly in large lan-
guage models, we also plan to experiment 
with  these models, such as GPT-4o and Lla-
ma 3, and with different sized models, and 
compare their performances. 
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In conclusion, our study highlights the 
critical role of language-specific adaptations 
and domain-relevant fine-tuning in enhanc-
ing NER for Turkish radiology reports. The 
introduction of BioBERTurk and the adap-
tive span enumeration mechanism proved 
instrumental in achieving the highest per-
formance among the tested models. By ex-
perimentally determining an optimal span 
length tailored to the Turkish language, we 
demonstrated the necessity of customiz-
ing hyperparameters to accommodate lin-
guistic features such as agglutination and 
complex suffix structures. Furthermore, this 
research is built on the first-ever NER data-
set derived from Turkish radiology reports, 
a resource labeled by radiology experts. This 
dataset not only reflects the unique linguis-
tic and domain-specific challenges of Turk-
ish but also lays the groundwork for future 
advancements in low-resource medical NLP. 
Our work also underscores the challenges 
posed by limited annotated datasets and the 
importance of future efforts in expanding 
high-quality medical text resources. By le-
veraging advances in large language models 
and further fine-tuning with domain-specific 
data, we aim to push the boundaries of infor-
mation extraction in low-resource languag-
es. Ultimately, this research contributes to 
the development of AI tools that streamline 
clinical workflows, improve diagnostic preci-
sion, and enhance patient care. We hope our 
research contributes to continued innova-
tion that enables healthcare practitioners to 
access standardized and structured data to 
improve patient care.
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Appendix 1. Labels results for BERTurk model

Labels Precision Recall F1

Obs present 0.717 0.697 0.706

Obs absent 0.890 0.899 0.894

Obs uncertain 0.559 0.352 0.432

Obs technical 0.708 0.723 0.716

Obs anatomy 0.849 0.885 0.866

Obs advice 0.478 0.550 0.512

Symptom P 0.688 0.579 0.629

Symptom A 0.000 0.000 0.000

Differential diagnosis 0.580 0.797 0.671

Appendix 2. Labels results for BioBERTurk model

Labels Precision Recall F1

Obs present 0.702 0.691 0.697

Obs absent 0.883 0.874 0.879

Obs uncertain 0.560 0.519 0.538

Obs technical 0.787 0.787 0.787

Obs anatomy 0.846 0.876 0.861

Obs advice 0.520 0.650 0.578

Symptom P 0.647 0.579 0.611

Symptom A 0.000 0.000 0.000

Differential diagnosis 0.585 0.814 0.681

Appendix 3. Labels results for PubMedBERT model

Labels Precision Recall F1

Obs present 0.673 0.635 0.653

Obs absent 0.884 0.884 0.884

Obs uncertain 0.500 0.407 0.449

Obs technical 0.708 0.723 0.716

Obs anatomy 0.805 0.866 0.835

Obs advice 0.440 0.550 0.489

Symptom P 0.533 0.421 0.471

Symptom A 0.000 0.000 0.000

Differential diagnosis 0.536 0.763 0.629

Appendix 4. Labels results for XLM-RoBERTa model

Labels Precision Recall F1

Obs present 0.695 0.616 0.653

Obs absent 0.892 0.879 0.886

Obs uncertain 0.606 0.370 0.459

Obs technical 0.867 0.828 0.848

Obs anatomy 0.853 0.876 0.864

Obs advice 0.476 0.500 0.488

Symptom P 0.750 0.474 0.581

Symptom A 0.000 0.000 0.000

Differential diagnosis 0.628 0.831 0.715
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Appendix 5. A co-occurrence matrix showing the total number of times each label pair appeared together across all reports. Repetitions 
within the same document are included in the calculations

Obs_
Absent

Obs_
Technical

Obs_
Anatomy

Obs_
Present

Differential 
diagnosis

Obs_
Advice

Obs_
Uncertain

Symptom_P Symptom_A

Obs_Absent 32694 14895 167727 125985 10489 4715 10774 7010 164

Obs_Technical 14895 6950 81788 62152 5077 2413 5763 3179 83

Obs_Anatomy 167727 81788 918308 708388 56819 26141 60585 35245 851

Obs_Present 125985 62152 708388 543428 43728 20306 46456 26866 697

Differential 
diagnosis 10489 5077 56819 43728 3898 1785 3549 2375 65

Obs_Advice 4715 2413 26141 20306 1785 752 1896 972 20

Obs_Uncertain 10774 5763 60585 46456 3549 1896 4258 2332 48

Symptom_P 7010 3179 35245 26866 2375 972 2332 2190 47

Symptom_A 164 83 851 697 65 20 48 47 2

Appendix 6. A co-occurrence matrix showing the frequency of unique label pairs. Each pair is counted only once, regardless of how many 
times it appears within or across documents

  Obs_
Absent

Obs_
Technical

Obs_
Anatomy

Obs_
Present

Differential 
diagnosis

Obs_
Advice

Obs_
Uncertain

Symptom_P Symptom_A

Obs_Absent 0 332 334 334 316 254 304 246 15

Obs_Technical 332 0 332 332 315 253 303 245 15

Obs_Anatomy 334 332 0 334 316 254 304 246 15

Obs_Present 334 332 334 0 316 254 304 246 15

Differential 
diagnosis 316 315 316 316 0 244 288 234 15

Obs_Advice 254 253 254 254 244 0 232 182 10

Obs_Uncertain 304 303 304 304 288 232 0 223 13

Symptom_P 246 245 246 246 234 182 223 0 14

Symptom_A 15 15 15 15 15 10 13 14 0
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Adherence to the Checklist for Artificial Intelligence in Medical Imaging 
(CLAIM): an umbrella review with a comprehensive two-level analysis

PURPOSE
To comprehensively assess Checklist for Artificial Intelligence in Medical Imaging (CLAIM) adher-
ence in medical imaging artificial intelligence (AI) literature by aggregating data from previous sys-
tematic and non-systematic reviews.

METHODS
A systematic search of PubMed, Scopus, and Google Scholar identified reviews using the CLAIM to 
evaluate medical imaging AI studies. Reviews were analyzed at two levels: review level (33 reviews; 
1,458 studies) and study level (421 unique studies from 15 reviews). The CLAIM adherence metrics 
(scores and compliance rates), baseline characteristics, factors influencing adherence, and critiques 
of the CLAIM were analyzed.

RESULTS
A review-level analysis of 26 reviews (874 studies) found a weighted mean CLAIM score of 25 [stan-
dard deviation (SD): 4] and a median of 26 [interquartile range (IQR): 8; 25th–75th percentiles: 20–28]. 
In a separate review-level analysis involving 18 reviews (993 studies), the weighted mean CLAIM 
compliance was 63% (SD: 11%), with a median of 66% (IQR: 4%; 25th–75th percentiles: 63%–67%). 
A study-level analysis of 421 unique studies published between 1997 and 2024 found a median 
CLAIM score of 26 (IQR: 6; 25th–75th percentiles: 23–29) and a median compliance of 68% (IQR: 16%; 
25th–75th percentiles: 59%–75%). Adherence was independently associated with the journal impact 
factor quartile, publication year, and specific radiology subfields. After guideline publication, CLAIM 
compliance improved (P = 0.004). Multiple readers provided an evaluation in 85% (28/33) of re-
views, but only 11% (3/28) included a reliability analysis. An item-wise evaluation identified 11 un-
derreported items (missing in ≥50% of studies). Among the 10 identified critiques, the most com-
mon were item inapplicability to diverse study types and subjective interpretations of fulfillment.

CONCLUSION
Our two-level analysis revealed considerable reporting gaps, underreported items, factors related 
to adherence, and common CLAIM critiques, providing actionable insights for researchers and jour-
nals to improve transparency, reproducibility, and reporting quality in AI studies.

CLINICAL SIGNIFICANCE
By combining data from systematic and non-systematic reviews on CLAIM adherence, our com-
prehensive findings may serve as targets to help researchers and journals improve transparency, 
reproducibility, and reporting quality in AI studies.
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With the exponential increase in 
artificial intelligence (AI) publica-
tions related to medical imaging,1 

ensuring transparency and reproducibility 
has become crucial for advancing the field 
and integrating AI into clinical practice.2-4 To 
address these needs, various AI-focused re-
porting guidelines have been introduced,5-7 
one of which is the Checklist for Artificial 
Intelligence in Medical Imaging (CLAIM).8 
Published in March 2020, the CLAIM was 
designed to improve reporting clarity and 
scientific communication in medical imag-
ing AI.8 Inspired by the Standards for Report-
ing of Diagnostic Accuracy Studies (STARD) 
guidelines,9 the original 2020 version of the 
CLAIM featured a 42-item checklist to help 
authors and reviewers achieve clear, com-
prehensive, and reproducible reporting in AI 
studies. In May 2024, an updated CLAIM was 
published following a formal Delphi process, 
refining the checklist to 44 items to address 
new challenges and developments while re-
taining the original structure.10 The update 
included refinements to terminology and 
revisions to some items. The CLAIM is part of 
the EQUATOR network, a central hub for re-
porting guidelines.11

Since its release, the CLAIM has gained 
widespread attention across multiple med-
ical specialties involving imaging and AI, 
with over 850 citations in Google Scholar 
as of January 2025. Despite its popularity, 
assessments of CLAIM adherence remain 
highly variable,12-14 often with particular fo-
cus on specific diseases,15-18 techniques,19-21 

or individual journals.22 A comprehensive as-
sessment of CLAIM adherence across these 
diverse studies is notably lacking. Such an 
analysis, previously applied to frameworks 
such as the Radiomics Quality Score (RQS),23 
would reveal the CLAIM’s overall adherence 
patterns, highlight underreported items, 
and provide guidance for future revisions 
beyond the 2024 CLAIM update,10 along 
with the development of new, alternative AI 
checklists. 

This study aims to comprehensively assess 
CLAIM adherence in the medical imaging AI 
literature published to date using a two-lev-
el approach: review level and study level. 
The review-level analysis aggregates data 
from previous systematic and non-system-
atic reviews, whereas the study-level analysis 
examines unique individual papers within 
these reviews, mostly focusing on checklist 
items. Furthermore, factors influencing high 
or low CLAIM adherence are examined at the 
study level. Finally, critiques of the CLAIM 
guidelines are systematically analyzed across 
eligible reviews for both levels.

Methods

Literature search and screening

A literature search was conducted 
through PubMed, Scopus, and Google Schol-
ar to identify reviews on the application of 
the CLAIM8 using the syntax “Checklist for 
Artificial Intelligence in Medical Imaging.” 
The final search was performed on August 
6, 2024. Since the search syntax was simple, 
we did not use advanced database features 
to target specific fields (e.g., title, abstract, 
or keywords). Instead, we used the general 
search box, which typically searches across 
all fields in the database entries.

For Google Scholar, the first 100 results 
were screened based on the filter setting 
“relevance,” whereas all entries were re-
viewed in the other two databases. Google 
Scholar can provide valuable additions to 
systematic reviews, even when screening is 
limited to the top 100 results.24 Because its 
“relevance”-based ranking typically prioritiz-
es the most pertinent articles, this approach 
was chosen to manage the large volume of 
results often retrieved from Google Scholar, 
many of which include duplicates or less rel-
evant entries. Notably, Google Scholar was 
treated as a supplementary source to miti-
gate the risk of missing key papers, comple-
menting the more comprehensive searches 
conducted in PubMed and Scopus, where all 
entries were reviewed.

Three readers (F.K., A.K., and A.S.; all 
3rd- or 4th-year radiology residents) initially 
screened all records to identify review arti-
cles evaluating medical imaging AI studies 
using the CLAIM (2020 version).8 Records 
were excluded if they lacked a CLAIM evalua-
tion (2020 version),8 full-text access, and rel-
evance to medical imaging; relied on self-re-
ported data; or had significant overlap with 
another study. Each reader cross-checked 
another reader’s results.

Duplicates were removed using Zotero 
software. The full-text articles and available 
supplements were downloaded for evalua-
tion by the same three readers, who divid-
ed the workload equally. For articles where 
full-text access was unavailable through our 
institutional libraries, we tried to reach out 
directly to the authors to request access. 

Eligibility

After the initial screening, articles were 
evaluated for eligibility by the same three 
readers under the supervision of a radiology 
specialist experienced in informatics and AI 
(B.K.). For the review-level analysis, reviews 
with adequate adherence data on the 42-
item CLAIM were included; those with in-
complete or unclear data were excluded. For 
the study-level analysis, only reviews with 42-
item CLAIM data for each study (i.e., a com-
pleted checklist for each study) were includ-
ed. Duplicate and retracted studies, along 
with the studies with unclear references to 
their source articles, were removed. Papers 
using a modified 42-item CLAIM with sub-
sections that retained the main framework 
were included in the study-level analysis but 
excluded from the review-level analysis un-
less CLAIM adherence could be evaluated at 
that level.

Analyzing data at the individual study level 
was crucial to gain item-level insights as well 
as several other baseline characteristics, as 
this level of granularity could not have been 
achieved through a review-level-only analy-
sis. Although we acknowledge the potential 
limitations of using a highly selected sample, 
this approach was necessary to address the 
study’s objectives and provide meaningful 
insights at the desired level of detail.

Data extraction

For the review-level analysis, data extrac-
tion was initially performed by a radiology 
specialist experienced in informatics and AI 
(B.K.) and was subsequently confirmed by 
another radiology specialist (M.K.). Extracted 
data included the review’s scope, radiology 

Main points

•	 To our knowledge, no prior research has 
synthesized data from published reviews on 
Checklist for Artificial Intelligence in Medical 
Imaging (CLAIM) adherence, leaving a gap 
in providing a comprehensive overview in-
dependent of disease, technique, or journal.

•	 Our two-level analysis identified significant 
reporting gaps in the medical imaging ar-
tificial intelligence literature, with a third of 
CLAIM items omitted, on average.

•	 Eleven specific CLAIM items were identified 
as being consistently underreported in the 
majority of studies, highlighting critical ar-
eas for improvement.

•	 Factors such as the publication year, journal 
impact quartile, and the radiology subfield 
influenced CLAIM adherence.

•	 Reviews assessing CLAIM adherence exhib-
ited variability in their methodologies, with 
some using scoring and others focusing on 
compliance, leading to inconsistencies in 
evaluation and reporting.
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subfield, number of studies (or evaluations) 
in the reviews, online publication year, num-
ber of readers, reader independence, deci-
sion-making methods, reproducibility anal-
ysis, consideration of non-applicable (n/a) 
items in the adherence evaluation, CLAIM 
adherence evaluation method, and source of 
the CLAIM evaluation.

For the study-level analysis, the three radi-
ology residents independently extracted and 
cross-checked the data. The cross-checking 
was performed by having the readers review 
and validate one another’s work. In cases of 
disagreement, an experienced reader (B.K.) 
was consulted to resolve the issue. Extracted 
information included the journal name, pub-
lication year, publication type, journal scope 
and focus, radiology subfield (expanded 
from the review-level data), journal’s h5-in-
dex (from Google Scholar Metrics), 2023 
impact factor quartile (2024 release; Journal 
Citation Reports, Clarivate Analytics, Web of 
Science Group), and CLAIM adherence by 
item.

Full-text articles, including the text, 
figures, tables, and supplements, were re-
viewed to identify adherence data, includ-
ing item-specific CLAIM data, organized 
according to the original item order, if nec-
essary. For adherence data sourced from 
the reviews, only studies with a clear source 
attribution were included. In cases of multi-
ple rater evaluations, consensus data were 
prioritized; if unavailable, one evaluation 
(the first) was selected. In the study-level 
analysis, only one assessment per study was 
included when multiple pipelines were as-
sessed, whereas all assessments were con-
sidered in the review-level analysis, which 
are referred to as “studies” in this research. 
For studies using a modified CLAIM with 
subsections within a 42-item framework, an 
item was considered reported if ≥50% of its 
subitems were positively evaluated. Partially 
reported items were classified as reported, 
in alignment with the common standard 
checklist format (i.e., reported, not reported, 
and not applicable).

Two radiology specialists with experience 
in informatics and AI (B.K. and İ.M.) evaluated 
the review papers in both the review-level 
and study-level analyses for critiques about 
the CLAIM. The PDFs were then screened 
using Google’s NotebookLM tool, with vari-
ous targeted prompts to identify additional 
critiques and to minimize the risk of missing 
important ones. The results from this addi-
tional screening were double-checked by 
both readers, verified against their sources, 

and integrated with the initial human evalu-
ation findings.

Adherence metrics

This study applied two commonly used 
CLAIM adherence metrics: the CLAIM score 
and CLAIM compliance. The CLAIM score rep-
resents the total number of reported items, 
whereas CLAIM compliance is calculated as 
the percentage of reported items relative to 
the total applicable CLAIM items.

For the study-level analysis, these two 
metrics were calculated directly from the 
extracted item-level data. In the review-lev-
el analysis, metrics were extracted as a 
mean and used as reported when directly 
provided; if not, they were derived from ta-
bles, figures, or supplementary files where 
possible, converted from the median and 
interquartile range (IQR), if necessary, ac-
cording to the methods proposed by Luo 
et al.25 and Wan et al.26, or computed as 
weighted combinations when presented 
by category.

Statistical analysis

Statistical analysis was conducted us-
ing R (main packages: ggstatsplot and 
Hmisc) and JASP (version 0.19.1; Apple 
Silicon). Descriptive statistics, including 
frequency, percentage, mean, standard 
deviation (SD), median, IQR, and 25th–75th 
percentiles, were reported based on vari-
able distribution. In the review-level anal-
ysis, adherence metrics were weighted 
by the number of studies or evaluations 
using the “Hmisc” R package and pre-
sented using both the mean and median 
without considering statistical normal-
ity. For the study-level data, normality 
was tested with the Shapiro–Wilk test, 
and the associated statistical results are 
presented accordingly. In addition, dif-
ferences between continuous variables 
were assessed using the Mann–Whitney 
U test or Student’s t-test based on dis-
tribution. The Kruskal–Wallis test was 
applied to compare multiple categories, 
with Dunn’s post-hoc tests and the Bon-
ferroni correction. Correlations were as-
sessed with Spearman’s rho. Univariable 
and multivariable logistic regression was 
performed to identify the potential fac-
tors related to high and low CLAIM adher-
ence metrics according to the median. No 
multiplicity correction was performed in 
the logistic regression analyses due to the 
exploratory nature of the study. Statistical 
significance was set at P < 0.05.

Results

Literature search

Figure 1 summarizes the eligibility pro-
cess. Finally, 33 eligible reviews encompass-
ing 1,458 study evaluations were included in 
the review-level analysis. For the study-level 
analysis, 15 reviews (13 from the previous 
set and 2 additional reviews) were included, 
covering 421 unique eligible studies. In to-
tal, 35 reviews met the eligibility criteria for 
both levels of analysis (Table 1).12-22,27-50 The 
final dataset used in this study is publicly 
available from the Open Science Framework 
and can be accessed via the following link:  
https://osf.io/rx67y/

Baseline characteristics of papers eligible 
for the review-level analysis

The baseline characteristics of the 33 pa-
pers included in the review-level analysis are 
summarized in Table 2. 

Multiple readers conducted CLAIM evalu-
ations in 85% of reviews (28/33), with most 
assessments (79%, 22/28) performed inde-
pendently and finalized by consensus (82%, 
23/28). A reliability analysis was included in 
only a few multi-reader studies (11%, 3/28). 
One study reported an intraclass correlation 
coefficient (ICC) above 0.87 for inter-observ-
er reliability across task categories.46 Another 
study found an ICC of 0.815 for inter-observ-
er reliability, with varying kappa values for 
individual items.14 A third study reported an 
intra-observer repeatability coefficient of 
0.22, which was lower and better than that of 
other checklists evaluated, except one.31

Figure 2 highlights the consideration of 
item applicability in the included reviews, 
along with the resultant metrics from this 
study. Regarding CLAIM adherence, 55% 
(18/33) of reviews considered the applicabil-
ity of items, allowing for the calculation of a 
CLAIM compliance metric. For approximately 
79% (26/33) of the reviews, appropriate data 
to calculate CLAIM scores were available, al-
though the origin of the scores varied, with 
only 36% (12/33) providing direct reports.

Adherence based on the review-level analysis

Among the 26 reviews with available 
CLAIM scores, encompassing 874 studies, 
the weighted mean CLAIM score was 25 (SD: 
4), and the weighted median was 26 (IQR: 
8; 25th–75th percentiles: 20–28). For the 18 
reviews providing CLAIM compliance data, 
covering 993 studies, the weighted mean 
CLAIM compliance was 63% (SD: 11%), with 

 https://osf.io/rx67y/
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a weighted median of 66% (IQR: 4%; 25th–75th 
percentiles: 63%–67%).

Baseline characteristics of papers eligible 
for the study-level analysis

The baseline characteristics of the papers 
included in the study-level analysis are sum-
marized in Table 3. Publication dates ranged 
from 1997 to 2024.

Adherence based on the study-level analy-
sis

In the study-level analysis of 421 unique 
studies, the median CLAIM score was 26 (IQR: 
6; 25th–75th percentiles: 23–29), and the me-
dian CLAIM compliance was 68% (IQR: 16%; 
25th–75th percentiles: 59%–75%). Notably, 
11% of the studies (47/421) had a CLAIM 
score of <21 (i.e., 50% of 42), whereas 10% 
(40/421) reported a CLAIM compliance of 
<50%.

Figure 3 illustrates the median CLAIM 
scores and compliance by journal and pub-
lication volume. Among the top 10 journals 
by publication volume, Radiology had the 
highest median CLAIM score and compliance 
rate.

Table 4 presents the results from the uni-
variable and multivariable logistic regression 
analyses to identify factors linked to high 
and low CLAIM adherence. In the univari-
able analysis, the publication year, specific 
radiology subfields, journal h5-index, and 
certain impact factor quartiles were asso-
ciated with the CLAIM score or compliance. 
In the multivariable analysis, the publication 
year and impact factor quartile emerged as 
independent predictors of the CLAIM score 
and compliance. Specifically, publishing in a 
first quartile (Q1) journal independently pre-
dicted higher CLAIM scores and compliance, 
whereas second quartile (Q2) journals were 
associated with higher CLAIM compliance. 
Certain radiology subfields were additional 
independent predictors of the CLAIM score.

Figure 4a, b illustrate the correlation be-
tween the publication year and CLAIM ad-
herence. Although the CLAIM score did not 
significantly correlate with the publication 
year (rho: 0.076, P = 0.117), CLAIM compli-
ance showed a weak but significant positive 
correlation (rho: 0.119, P = 0.015). Although 
the CLAIM score did not significantly differ 
between the pre- and post-CLAIM guide-
line publication periods (P = 0.153), CLAIM 
compliance was higher post-publication 
(P = 0.004) (Figure 4c, d). However, neither 
the CLAIM score (rho: −0.027, P = 0.697) 

Figure 1. Identification of eligible studies for the review- and study-level analyses. CLAIM, Checklist for 
Artificial Intelligence in Medical Imaging.

Figure 2. Consideration of item applicability and resultant CLAIM adherence metrics in the review-level 
analysis, emphasizing the methodological variability among reviews evaluating CLAIM adherence. CLAIM, 
Checklist for Artificial Intelligence in Medical Imaging.
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nor compliance (rho: −0.062, P = 0.365) was 
statistically significantly correlated with the 
publication year after the CLAIM guideline 
publication in 2020.

The CLAIM scores and compliance var-
ied significantly across radiology subfields 
(P < 0.001 for both), with post-hoc pairwise 

comparisons showing that the cardiovascu-
lar subfield had consistently distinct results 
compared with others (Figure 5).

The CLAIM scores and compliance also 
differed by impact factor quartile (P < 0.001 
for CLAIM score; P = 0.002 for CLAIM com-
pliance) (Figure 6). The post-hoc analysis re-

vealed that journals in Q1 and Q2 had signif-
icantly higher CLAIM scores than non-Web of 
Science indexed journals or publication plat-
forms. However, CLAIM compliance did not 
show significant pairwise differences across 
quartiles.

Table 1. Reviews included in the analyses, detailing the authors, year, journal abbreviation, radiology subfield, and the number of papers or 
evaluations included in the review- and study-level analyses

Authors (online publication year) Journals Radiology subfield No. of papers or evaluations1 

Review level Study level

Abdulaal et al.15 (2024) Front Radiol Chest 5 5

Alabed et al.19 (2022) Front Cardiovasc Med Cardiovascular 209 n/a

Alipour et al.16 (2023) Diagnostics (Basel) Musculoskeletal 8 n/a

Assadi et al.27 (2022) Medicina (Kaunas) Cardiovascular 5 5

Bedrikovetski et al.28 (2022) Eur J Radiol General or multi-system 24 24

Belue et al.12 (2022) J Am Coll Radiol Genitourinary 53 n/a

Belue and Turkbey29 (2022) Eur Radiol Exp Genitourinary 47 n/a

Bhandari et al.13 (2023) Neuroradiology Neuro 138 n/a

Bleker et al.30 (2022) Life (Basel) Genitourinary 4 4

Cerdá-Alberich et al.31 (2023) Insights Imaging General or multi-system 10 9

Dagher et al.32 (2024) J Neuroimaging Neuro 6 n/a

Hardacre et al.33 (2021) Br J Radiol Cardiovascular 3 3

Hickman et al.34 (2021) Radiology Breast 14 n/a

Hu et al.35 (2022) Neuroradiology Neuro 19 n/a

Hwang et al.36 (2024) Radiol Artif Intell Chest 14 n/a

Jia et al.37 (2022) Eur J Radiol Open Chest 19 7

Karabacak et al.20 (2022) Acta Radiol Neuro 5 n/a

Karabacak et al.38 (2022) Quant Imaging Med Surg Neuro 4 n/a

Kim et al.22 (2023) Korean J Radiol General or multi-system 38 n/a

Kouli et al.21 (2022) Neurooncol Adv Neuro 234 222

Lans et al.39 (2022) Artif Intell Med Musculoskeletal 91 n/a

Le et al.40 (2021) Appl Sci Dental 6 6

O’Shea et al.41 (2021) Eur Radiol General or multi-system 186 n/a

Ozkara et al.18 (2023) Cancers (Basel) Neuro 25 n/a

Raj et al.42 (2024) Indian J Orthop Musculoskeletal 5 n/a

Roberts et al.43 (2021) Nat Mach Intell Chest 37 37

Roest et al.44 (2022) Life (Basel) Genitourinary 8 n/a

Si et al.14 (2021) Eur Radiol Musculoskeletal 36 36

Sivanesan et al.45 (2022) Can Assoc Radiol J General or multi-system 100 n/a

Sushentsev et al.17 (2022) Insights Imaging Genitourinary 5 5

Tsang et al.46 (2023) Jpn J Radiol Pediatric 21 21

Wang et al.48 (2023) Radiother Oncol Neuro 42 n/a

Wang et al.47 (2024) Radiother Oncol Chest 37 n/a

Zhong et al.49 (2022) Insights Imaging Musculoskeletal n/a 28

Zhong et al.50 (2023) J Orthop Surg Res Musculoskeletal n/a 9
1Values represent the total number of studies or evaluations (i.e., pipelines) included in our analysis after applying the eligibility criteria and therefore may not correspond exactly 
to the total number of studies reported in the respective papers. n/a, not available.
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Moreover, the CLAIM scores and compli-
ance were not statistically significantly differ-
ent among different publication types, such 
as journal articles, pre-prints, and conference 
papers (P > 0.05).

The item-wise CLAIM adherence is pre-
sented in Figure 7. Notably, three items were 
mostly n/a in ≥50% of the papers: item#10 

(selection of data subsets, if applicable), 
item#21 (the level at which partitions are dis-
joint, e.g., image, study, patient, institution), 
and item#27 (ensemble techniques, if appli-
cable). 

Considering the applicability of the items, 
the following 11 items were not reported 
in ≥50% of the papers (i.e., compliance of 

<50%): item#12 (de-identification methods), 
item#13 (how missing data were handled), 
item#19 (intended sample size and how it 
was determined), item#29 (statistical meas-
ures of significance and uncertainty, e.g., 
confidence intervals), item#31 (methods for 
explainability or interpretability and how 
they were validated), item#33 (flow of partic-
ipants or cases, using a diagram to indicate 

Figure 3. Tabulated bar charts for the study-level analysis of the median CLAIM score and compliance by journal, sorted by publication frequency (a) and CLAIM 
compliance (b). CLAIM, Checklist for Artificial Intelligence in Medical Imaging.

Figure 4. Study-level analysis of the publication year, CLAIM score, and compliance. Scatterplots with marginal distributions showing the correlation between the 
publication year and CLAIM score (a) and compliance (b). Combined box and violin plots illustrating the CLAIM score (c) and compliance (d) in relation to the release 
of the CLAIM guidelines in 2020. CLAIM, Checklist for Artificial Intelligence in Medical Imaging; CI, confidence interval.

a

a

b

c

d

b
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inclusion and exclusion), item#34 (demo-
graphic and clinical characteristics of cases in 
each partition), item#36 (estimates of diag-
nostic accuracy and their precision), item#37 
(failure analysis of incorrectly classified 
cases), item#40 (registration number and 
name of registry), and item#41 (where the 
full study protocol can be accessed). Figure 
8 further highlights the above-mentioned 11 
items categorized into three domains: data 
handling and description, model evaluation 

and performance, and open science.

The item-wise correlation results for re-
porting status and year are presented in Table 
5, according to pre- and post-publication and 
post publication of the CLAIM. Considering 
the entire period, a positive weak-to-mod-
erate and statistically significant reporting 
trend (rho ≥0.2) was observed for item#19 
(intended sample size and how it was deter-
mined), item#21 (level at which partitions are 

disjoint), item#31 (methods for explainability 
or interpretability and how they were vali-
dated), item#33 (flow of participants or cas-
es, using a diagram to indicate inclusion and 
exclusion), and item#42 (sources of funding 
and other support; role of funders). Moreo-
ver, a negative weak-to-moderate reporting 
trend (rho ≤−0.2) was observed for item#11 
(definitions of data elements, with referenc-
es to common data elements), item#15 (ra-
tionale for choosing the reference standard), 
item#17 (annotation tools), item#18 (meas-
urement of inter- and intra-rater variabili-
ty), and item#39 (implications for practice, 
including the intended use and/or clinical 
role). Considering the post-publication pe-
riod, a positive weak-to-moderate reporting 
trend (rho ≥0.2) was observed in item#10 (se-
lection of data subsets), item#19 (intended 
sample size and how it was determined), and 
item#33 (flow of participants or cases, using 
a diagram to indicate inclusion and exclu-
sion). In addition, a negative weak-to-moder-
ate reporting trend (rho ≤−0.2) was observed 
for item#9 (data pre-processing steps) and 
item#39 (implications for practice, including 
the intended use and/or clinical role).

Critiques in reviews eligible for the entire 
study

In analyzing the 35 reviews that applied 
the CLAIM, we identified 10 key critiques, 
which we organized into 7 categories: ful-
fillment, applicability, feasibility and practi-
cality, structure, interpretation, relative im-
portance, and scoring. The most common 
critique was the inapplicability of certain 
items to all study types. Another frequent 
issue was the subjective nature of deciding 
whether an item was sufficiently reported. 
Table 6 presents all the critiques along with 
their representative source articles.

Discussion

Main findings and related implications

This study comprehensively evaluated 
CLAIM adherence in the medical imaging 
AI literature through a two-level approach: 
review- and study-level analyses. Consider-
ing both analyses, on average, one-third of 
CLAIM items were inadequately reported, 
indicating room for improvement in adher-
ing to reporting guidelines. Since adher-
ence was independently assessed rather 
than self-reported, efforts to improve com-
pliance should focus on improving aware-
ness and engagement among researchers 
in terms of transparent reporting practices 
through guidelines. Notwithstanding their 

Table 2. Baseline characteristics of eligible papers included in the review-level analysis

Characteristic Sub-category Value

Scope, count (%)

Broad (AI, ML, or deep learning) 22 (67%)

Deep learning 9 (27%)

Radiomics 2 (6%)

Radiology subfield, count (%)

Neuro 8 (24%)

Chest 5 (15%)

Genitourinary 5 (15%)

General or multi-system 5 (15%)

Musculoskeletal 4 (12%)

Cardiovascular 3 (9%)

Pediatric 1 (3%)

Breast 1 (3%)

Dental 1 (3%)

Number of papers within reviews, 
median (IQR; 25th–75th percentiles) - 19 (36; 6–42)

Publication year (online), count (%)

2021 6 (18%)

2022 15 (45%)

2023 7 (21%)

2024 5 (15%)

Number of readers, count (%)

Multiple 28 (85%)

Single 4 (12%)

Not clear 1 (3%)

Dependence of reading, count (%)

Independent 22 (67%)

Not clear 6 (18%)

Not applicable 5 (15%)

Final decision of reading, count (%)

Consensus 23 (70%)

Not clear 5 (15%)

Not applicable 5 (15%)

Reliability analysis, count (%)

No 25 (76%)

Not applicable 5 (15%)

Yes 3 (9%)

Source of CLAIM evaluation, count (%)

As reported 12 (36%)

Calculated from table or figure data 15 (45%)

As reported + calculated from table 
or figure 2 (6%)

As reported with median–mean 
conversion 3 (9%)

As reported with a weighted 
combination of different categories 1 (3%)

Percentages may not total 100% due to rounding. IQR, interquartile range; CLAIM, Checklist for Artificial Intelligence 
in Medical Imaging; AI, artificial intelligence; ML, machine learning.
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well-known benefits,51 recent meta-research 
shows that radiology, nuclear medicine, and 
medical imaging journals rarely mandate 
AI-specific guidelines, despite the CLAIM be-
ing the most recommended.52,53 Journals can 
actively endorse and promote the CLAIM8 
and its updates10 to improve reporting qual-
ity and transparency while ensuring proper 
checklist usage with auditing practices.54,55

Our correlation analysis revealed a very 
weak but positive trend between CLAIM 
compliance and publication year. Although 
compliance was higher in the post-publica-
tion period, the trend was not statistically 
significant. Long-term follow-up studies on 
checklists such as STARD have demonstrat-
ed slow but significant improvements in 
research reporting quality over time.56 Al-

though a similar trend was observed in our 
analysis, more time and data are needed to 
better understand this progression and as-
sess the CLAIM’s true impact.

We observed that adherence assess-
ments in reviews often lacked consistency 
due to the absence of standardized meth-
ods. We identified two primary approaches, 
the CLAIM score and CLAIM compliance (%), 
differing by item applicability. To improve 
comparability and fairness in the evalua-
tion of adherence, we strongly recommend 
prioritizing the CLAIM compliance rate over 
the CLAIM score in future evaluations. The 
compliance rate accounts for the applica-
bility of individual items, which can vary 
between studies, thereby providing a more 
accurate and equitable assessment. Moreo-
ver, this approach could be formally recom-
mended or mandated by the developers in 
future versions of the CLAIM to ensure con-
sistent and standardized adherence evalu-
ations.

Publication year, impact factor quartile, 
and radiology subfields were key independ-
ent predictors of high or low CLAIM adher-
ence. Studies in higher-impact journals (Q1 
and Q2) showed stronger adherence, un-
derscoring their role in setting transparent 
reporting standards and enabling rigorous 
peer review. However, it should be acknowl-
edged that high-quality research can also 
be published in lower-impact journals, and 
high-impact journals are not immune to 
poor-quality research. Factors contribut-
ing to stronger adherence in higher-impact 
journals may include stricter editorial and 
peer-review processes, greater visibility of 
reporting guidelines in these journals, and, 
potentially, a higher familiarity of authors 
with these standards. In this respect, en-
couraging CLAIM adoption, particularly in 
lower-impact journals, could help enhance 
reporting transparency and reproducibility. 
It is important to note, however, that these 
observations are based on assumptions and 
warrant further investigation. 

In addition, certain subfields, such as 
cardiovascular imaging, exhibited unique 
adherence patterns, reflecting differences in 
the maturity of AI reporting practices. These 
findings may indicate the need for specif-
ic strategies to improve CLAIM adherence 
across diverse medical imaging subfields 
and ensure consistent reporting standards 
throughout the discipline. Further research 
may be required to investigate whether 
unique adherence patterns in certain sub-
fields, such as cardiovascular imaging, could 

Table 3. Baseline characteristics of eligible papers included in the study-level analysis

Variable Category Value

Radiology subfield, count (%)

Neuro 222 (53%)

Musculoskeletal 73 (17%)

Chest 49 (12%)

General or multi-system 33 (8%)

Pediatric 21 (5%)

Genitourinary 9 (2%)

Cardiovascular 8 (2%)

Dental 6 (1%)

Publication type, count (%)

Journal article 403 (96%)

Preprint 14 (3%)

Conference paper 4 (1%)

Scope of journals, count (%)
Radiology or imaging-related 170 (40%)

No 251 (60%)

Focus of journals, count (%)
AI-focused 14 (3%)

No 407 (97%)

h-5 index of journal, median (IQR; 25th–75th 
percentiles) - 67 (70; 44–113)

Impact factor quartile, count (%)

Q1 222 (53%)

Q2 116 (28%)

Q3 29 (7%)

Q4 17 (4%)

No 37 (9%)

Top 10 most frequent publication 
platform, count (%)

International journal of imaging 
systems and technology 21 (5%)

European radiology 11 (3%)

IEEE access 11 (3%)

Insights into imaging 10 (2%)

PloS one 10 (2%)

Arxiv 9 (2%)

Radiology 9 (2%)

Computerized medical imaging and 
graphics 9 (2%)

Computer methods and programs 
in biomedicine 9 (2%)

Computers in biology and medicine 8 (2%)

IQR, interquartile range; AI, artificial intelligence.
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Figure 5. Box plots for the study-level analysis of the CLAIM score (a) and compliance (b) by radiology subfield, with pairwise comparisons. The Kruskal–Wallis test 
showed statistically significant differences across all categories in both analyses (a, b). Only statistically significant pairwise comparisons are displayed for clarity. MS, 
multi-system; CLAIM, Checklist for Artificial Intelligence in Medical Imaging; CI, confidence interval.

Table 4. Univariable and multivariable analysis of the study-level data to identify factors related to high and low CLAIM adherence

Variable Category1 Univariable analysis Multivariable analysis

CLAIM score CLAIM compliance CLAIM score CLAIM compliance

Estimate P Estimate P Estimate P Estimate P

Publication year - 0.069 0.028 0.092 0.010 0.110 0.007 0.095 0.028

Radiology subfield

Dental −2.590 0.026 −16.748 0.986 −2.672 0.025 −16.669 0.986

Cardiovascular 14.585 0.977 16.384 0.985 15.722 0.984 16.998 0.982

Genitourinary 0.272 0.760 1.070 0.221 0.542 0.639 0.643 0.474

Neuro −0.598 0.149 −0.418 0.265 −0.336 0.483 −0.025 0.953

Chest −1.613 0.001 0.274 0.548 −1.963 <0.001 −0.079 0.876

Pediatric −1.466 0.014 −1.345 0.030 −1.241 0.059 −1.106 0.091

Musculoskeletal −0.267 0.565 −0.155 0.713 −0.361 0.487 −0.075 0.869

Publication type
Print 0.387 0.700 1.014 0.382 - - - -

Preprint −0.916 0.430 1.686 0.188 - - - -

Scope of journals Radiology or imaging-related 0.314 0.123 0.278 0.163 - - - -

Focus of journals AI-focused 0.256 0.652 −0.534 0.346 - - - -

h5 index of journal - 0.005 0.013 0.004 0.027 0.003 0.246 0.001 0.771

Impact factor quartile 
of journal

Q1 1.387 <0.001 0.750 0.040 1.754 0.018 2.577 0.017

Q2 1.154 0.004 0.289 0.456 1.414 0.053 2.152 0.046

Q3 0.386 0.454 −0.302 0.565 0.836 0.296 1.547 0.173

Q4 0.128 0.836 −1.044 0.148 0.277 0.764 1.165 0.350

 P values achieving statistical significance are in bold. CLAIM, Checklist for Artificial Intelligence in Medical Imaging; AI, artificial intelligence.
1Reference categories not shown.

a b
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Figure 6. Box plots for the study-level analysis of the CLAIM score (a) and compliance (b) by impact factor quartile, with pairwise comparisons. The Kruskal–Wallis 
test showed statistically significant differences across all categories in both analyses (a, b). Only statistically significant pairwise comparisons are displayed for clarity. 
CLAIM, Checklist for Artificial Intelligence in Medical Imaging; CI, confidence interval.

a b

be influenced by the contribution of specific 
authors or research groups.

Eleven items were underreported in 
≥50% of studies: de-identification methods 
(item#12), missing data handling (item#13), 
sample size determination (item#19), statis-
tical significance and uncertainty (item#29), 
explainability methods (item#31), partic-
ipant flow (item#33), demographic data 
(item#34), diagnostic accuracy estimates 
(item#36), failure analysis (item#37), regis-
tration details (item#40), and protocol ac-
cess (item#41). This suggests challenges in 
fulfilling the CLAIM requirements, possibly 
due to inadequate knowledge, training, 
resource limitations, or the perceived irrel-
evance of certain items for specific study 
types. Interestingly, several of these items 
reflect broader challenges in AI research, 
such as securing adequate sample sizes, 
addressing uncertainty, enhancing mod-
el explainability to avoid the “black-box” 
problem, and promoting principles of open 
science, even if not explicitly stated. These 
11 items, therefore, warrant particular at-
tention when preparing AI manuscripts to 
improve the overall reporting transparency 
and rigor of AI research in medical imaging.

From the 35 eligible reviews, several key 
critiques were identified, including concerns 

about the inapplicability of certain items to 
all study types and the subjective nature of 
reporting decisions. Although the CLAIM 
2024 update has addressed applicability 
by introducing three checklist options and 
leaving judgment to the evaluators,10 subjec-
tive interpretation still remains a significant 
issue. Notably, our analysis revealed that 
CLAIM evaluations involved multiple read-
ers in 85% of reviews, but only 11% assessed 
evaluation reliability, revealing a critical gap. 
Despite high reported reproducibility, such 
assessments need improved experimental 
settings to thoroughly investigate interpre-
tation-related issues, as previously achieved 
for RQS.57 Additionally, leveraging automat-
ed tools, such as those powered by large 
language models used for RQS,58 might have 
the potential to help reduce subjectivity and 
improve consistency.

Based on the other critiques identified, 
future versions of the CLAIM can also be 
improved by simplifying definitions and im-
proving clarity, removing subjective items 
based on reproducibility studies with rigor-
ous analysis, and providing holistic guidance 
for interpreting manuscripts alongside their 
code. Additional improvements could in-
clude prioritizing items by assigning weights 
through evidence-based voting methods 

and developing user-friendly online tools, 
similar to the METhodological RadiomICs 
Score (METRICS),59 for an adherence assess-
ment that considers item applicability. These 
refinements would help streamline CLAIM 
evaluations and improve their utility for the 
medical imaging community.

Previous studies

To the best of our knowledge, no research 
has yet been conducted to evaluate CLAIM 
adherence by synthesizing data from both 
systematic and non-systematic reviews, 
providing a comprehensive overview of the 
topic. However, similar efforts have been 
made in the field of radiomics research,23,60,61 
particularly with the RQS,62 which is widely 
regarded as the standard for assessing the 
methodological quality of radiomics studies, 
although recent alternatives have emerged.59

In 2023, Spadarella et al.60, who first pub-
lished their research online in 2022, con-
ducted a review-level analysis of 44 reviews. 
They reported a median RQS of 21%. Later, in 
late 2024, Kocak et al.23 deepened the anal-
ysis by performing a study-level analysis of 
1,574 unique papers from 89 reviews, finding 
a median RQS of 31%. In 2025, in another 
very recent coincidental and independent 
study, Barry et al.61 conducted a multi-lev-
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Figure 7. Item-wise analysis of the study-level data, ranked by compliance rates [calculated as follows: reported / (reported + not reported) × 100], considering the 
applicability of items. The compliance rates are based on the actual number of publications that reported or did not report each item. Note that item names have 
been abbreviated.

el meta-analysis of 3,258 RQS assessments 
from 130 systematic reviews as a continu-
ation of the earlier study by Spadarella et 
al.60, reporting an overall mean RQS of 9.4 ± 
6.4 (95% confidence interval, 9.1–9.6) [26.1% 
± 17.8% (25.3%–26.7%)]. It is important to 
note, however, that these RQS scores are not 
directly comparable to CLAIM adherence, as 
the two tools serve different purposes: RQS 
assesses the methodological quality of radi-
omics research, whereas the CLAIM focuses 
on reporting the quality of medical imaging 
AI research. 

Furthermore, our results can be com-
pared with those reported in the studies 
synthesized for this research.12-22,27-50 In the 
review articles evaluated in the review-level 

analysis, the raw CLAIM scores ranged from 
20 to 40, whereas the CLAIM adherence rates 
differed widely between 41% and 81%. This 
considerable variability underscores the in-
consistent adherence to the CLAIM observed 
across the literature, highlighting the critical 
importance of our study in addressing these 
gaps.

Strengths and limitations

This study provides several strengths with 
notable implications for evaluating AI report-
ing quality in medical imaging. First, integrat-
ing data from multiple reviews offers a com-
prehensive assessment, unlike topic-specific 
studies, and provides a generalizable under-
standing of reporting practices. Second, our 

two-step analysis delivers both a broad over-
view and detailed insights, enabling item-
wise evaluation to pinpoint areas needing 
particular improvement. Third, we identified 
factors associated with CLAIM adherence, 
offering actionable insights for enhancing 
reporting standards. Fourth, we presented 
two adherence metrics (the CLAIM score and 
compliance), facilitating comparability with 
other studies and setting a benchmark for fu-
ture research. Finally, our analysis of critiques 
from eligible reviews offers valuable feed-
back to guide future updates to the CLAIM 
guidelines beyond 2024 and new alternative 
AI checklists.10

Our study has several limitations that 
should be carefully considered when inter-
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Table 5. Item-wise correlation between reporting status and online publication year

CLAIM items1 Pre- and post-publication of CLAIM  Post-publication of CLAIM

rho P flag2 rho P flag2

Item#1 (AI methodology and technology type in title) −0.097 0.046 * −0.074 0.281

Item#2 (Structured study summary) 0.034 0.491 0.022 0.748

Item#3 (Background and clinical role of AI) −0.038 0.435 0.071 0.300

Item#4 (Study objectives and hypotheses) −0.131 0.007 ** −0.162 0.018 *

Item#5 (Prospective or retrospective design) 0.092 0.060 0.017 0.806

Item#6 (Study goal, e.g., model creation, feasibility) −0.098 0.045 * 0.046 0.502

Item#7 (Data sources) 0.024 0.626 −0.009 0.899

Item#8 (Eligibility criteria, e.g., inclusion/exclusion) −0.055 0.261 −0.014 0.842

Item#9 (Data pre-processing) −0.086 0.078 −0.217 0.001 **

Item#10 (Data subset selection, if applicable) 0.191 <0.001 *** 0.225 <0.001 ***

Item#11 (Definitions of data elements) −0.220 <0.001 *** −0.057 0.405

Item#12 (De-identification methods) 0.099 0.042 * 0.068 0.322

Item#13 (Handling of missing data) 0.134 0.006 ** 0.110 0.110

Item#14 (Ground truth definition) −0.057 0.240 −0.137 0.045 *

Item#15 (Rationale for reference standard) −0.205 <0.001 *** −0.069 0.312

Item#16 (Source and qualifications of annotators) −0.078 0.111 −0.153 0.025 *

Item#17 (Annotation tools) −0.244 <0.001 *** −0.092 0.180

Item#18 [Variability assessment (inter/intra-rater)] −0.211 <0.001 *** −0.121 0.078

Item#19 (Sample size determination) 0.220 <0.001 *** 0.250 <0.001 ***

Item#20 (Data partitioning method) 0.140 0.004 ** −0.112 0.102

Item#21 (Partition level, e.g., image, patient) 0.345 <0.001 *** 0.116 0.091

Item#22 [Model description (inputs, outputs, layers)] 0.036 0.462 −0.109 0.110

Item#23 (Software and frameworks used) −0.127 0.009 ** −0.134 0.050

Item#24 (Model parameter initialization) −0.124 0.011 * −0.176 0.010 *

Item#25 (Training details, e.g., augmentation, hyperparameters) 0.141 0.004 ** −0.123 0.073

Item#26 (Final model selection) −0.057 0.246 −0.117 0.088

Item#27 (Ensemble techniques, if applicable) 0.186 <0.001 *** 0.167 0.014 *

Item#28 (Model performance metrics) −0.076 0.119 −0.129 0.060

Item#29 (Statistical significance and uncertainty) 0.026 0.594 0.060 0.386

Item#30 (Robustness/sensitivity analysis) 0.022 0.656 0.015 0.831

Item#31 (Explainability methods, e.g., saliency maps) 0.222 <0.001 *** −0.002 0.982

Item#32 (External validation/testing) 0.009 0.846 0.098 0.152

Item#33 (Participant flow diagram) 0.356 <0.001 *** 0.202 0.003 **

Item#34 (Demographic/clinical characteristics by partition) 0.195 <0.001 *** 0.126 0.065

Item#35 (Performance metrics for optimal model) −0.020 0.684 −0.097 0.158

Item#36 (Diagnostic accuracy estimates) 0.101 0.039 * 0.172 0.012 *

Item#37 (Failure analysis) 0.075 0.125 −0.009 0.892

Item#38 [Study limitations (bias, uncertainty, generalizability)] 0.173 <0.001 *** 0.107 0.119

Item#39 (Practice implications and clinical role) −0.270 <0.001 *** −0.298 <0.001 ***

Item#40 (Registration number and registry name) −0.141 0.004 ** −0.093 0.174

Item#41 (Study protocol access) 0.160 0.001 ** −0.075 0.275

Item#42 (Funding sources and funder roles) 0.207 <0.001 *** 0.092 0.178
1 Note that item names have been abbreviated; 2* P < 0.05; ** P < 0.01; *** P < 0.001. CLAIM, Checklist for Artificial Intelligence in Medical Imaging.
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Figure 8. Eleven underreported items (i.e., missing in ≥50% of studies), categorized by relevant domains.

Table 6. Critiques identified in the analysis of the 35 review papers eligible for review- or study-level analyses

Category Critique identified about the CLAIM with representative source articles

Fulfillment
Certain items may be viewed as overly strict or difficult to meet43

Certain items are too technical, requiring advanced engineering or statistical knowledge14

Applicability Some items are not applicable to all study types12-14,30,39

Feasibility and practicality Some items may be impractical or infeasible in real-world settings22

Structure Dividing the checklist into distinct sections sometimes complicates quality assessment39

Interpretation

Deciding if an item is sufficiently reported is subjective13,39,44

Certain items may be viewed as vague or lack clarity in their current form22

Certain items provide limited guidance on holistically interpreting a manuscript alongside its code45

Relative importance Certain items may be more crucial than others but are currently weighted equally13,39

Scoring Lack of standardized score or compliance calculation strategy44

CLAIM, Checklist for Artificial Intelligence in Medical Imaging.
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preting the results. First, this study was not 
registered (e.g., in PROSPERO). This decision 
was due to the unique nature of conduct-
ing a collective review of previous reviews 
of the CLAIM. Given the limited number of 
studies employing a similar strategy, and 
despite our group’s experience with other 
guidelines, the methodology required ad-
aptations based on the challenges and lim-
itations encountered during data collection 
and analysis. These evolving methodologi-
cal adjustments made it difficult to provide 
a fully transparent outline of the approach at 
the outset. Second, this research was limited 
to three databases, PubMed, Scopus, and 
Google Scholar, which we selected based 
on their broad coverage and relevance to 
the field, according to our experience. How-
ever, we acknowledge that the inclusion of 
additional databases, such as Embase and 
Web of Science, could further improve the 
comprehensiveness of the search. Third, the 
assessment of reporting quality was based 
solely on the CLAIM (2020 version). In the fu-
ture, other AI-specific reporting guidelines, 
such as CONSORT-AI and TRIPOD-AI, could 
be considered to provide a more compre-
hensive evaluation of reporting standards.63 
Fourth, many articles were published before 
the CLAIM guidelines were introduced in 
2020. However, the goal of this study was 
to highlight the overall state of reporting 
quality in the field, with some analyses cov-
ering both pre- and post-guideline periods. 
Fifth, our analysis focused solely on report-
ing quality and did not include evaluating 
the studies’ actual impact, such as citation 
counts; there may not yet have been suffi-
cient time for recent studies to have accu-
mulated citations for meaningful compari-
sons. Additionally, the scope of our study is 
limited to exploring other factors that could 
affect the clinical translation of AI, such as 
methodological quality. Evaluating these 
factors may require supplementary tools, 
such as METRICS.59 Sixth, this study was 
conducted after the CLAIM 2024 update.10 
Although the main framework of the orig-
inal CLAIM was preserved,8 earlier findings 
might have better informed the current 
update but could still aid future revisions 
and new guidelines. Seventh, the results 
of this study rely on prior systematic and 
non-systematic reviews as well as the ex-
pertise of the evaluators involved in those 
studies. The potential limited familiarity 
with certain aspects of the CLAIM in those 
articles and inconsistencies may have in-
fluenced the findings of this study. Eighth, 
due to the lack of a standard checkbox for-
mat in the initial CLAIM, consideration of 

item applicability may vary among reviews, 
potentially influencing adherence results, 
although both the CLAIM score and CLAIM 
compliance were assessed in the two-level 
analysis. Ninth, extracting data from sys-
tematic reviews can be subjective and may 
vary depending on the readers’ experience. 
To minimize potential errors, we imple-
mented a rigorous process involving the 
cross-checking of extracted data and resolv-
ing disagreements through consensus or 
by consulting an experienced reader, when 
necessary, at different stages of the study. 
Finally, the number of studies included in 
the study-level analysis was smaller than 
the number of studies represented in the 
review articles analyzed at the review level. 
However, to gain item-level insights, it was 
essential to conduct the analysis at the indi-
vidual study level, as this granularity could 
not have been achieved at the review level. 
The sample size for the study-level analysis 
was determined merely by the availabili-
ty of data in the existing literature, which 
may have introduced some degree of bias. 
Therefore, the findings should be interpret-
ed with this limitation in mind.

In conclusion, this study provides a com-
prehensive evaluation of CLAIM adherence 
in the medical imaging AI literature, reveal-
ing significant variability and highlighting ar-
eas for improvement. Our two-level analysis, 
encompassing review- and study-level data, 
identified substantial reporting gaps, with a 
third of checklist items often omitted. Fac-
tors such as publication year, journal impact 
quartiles, and subfield-specific differences 
emerged as key independent predictors of 
adherence, underscoring the role of high-im-
pact journals and tailored strategies for 
different subfields. The CLAIM compliance 
rate was highlighted as a more objective 
and fairer metric for adherence assessment. 
Additionally, several important critiques of 
the CLAIM were identified, providing valua-
ble insights for researchers and developers. 
We hope these findings serve as actionable 
guidance for the scientific community to 
enhance transparency, reproducibility, and 
reporting quality in AI studies.
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PURPOSE
Established methods for bone age assessment (BAA), such as the Greulich and Pyle atlas, suffer from 
variability due to population differences and observer discrepancies. Although automated BAA of-
fers speed and consistency, limited research exists on its performance across different populations 
using deep learning. This study examines deep learning algorithms on the Turkish population to 
enhance bone age models by understanding demographic influences.

METHODS
We analyzed reports from Bağcılar Hospital’s Health Information Management System between 
April 2012 and September 2023 using “bone age” as a keyword. Patient images were re-evaluated 
by an experienced radiologist and anonymized. A total of 2,730 hand radiographs from Bağcılar 
Hospital (Turkish population), 12,572 from the Radiological Society of North America (RSNA), and 
6,185 from the Radiological Hand Pose Estimation (RHPE) public datasets were collected, along 
with corresponding bone ages and gender information. A random set of 546 radiographs (273 from 
Bağcılar, 273 from public datasets) was initially randomly split for an internal test set with bone age 
stratification; the remaining data were used for training and validation. BAAs were generated using 
a modified InceptionV3 model on 500 × 500-pixel images, selecting the model with the lowest 
mean absolute error (MAE) on the validation set.

RESULTS
Three models were trained and tested based on dataset origin: Bağcılar (Turkish), public (RSNA–
RHPE), and a Combined model. Internal test set predictions of the Combined model estimated bone 
age within less than 6, 12, 18, and 24 months at rates of 44%, 73%, 87%, and 94%, respectively. 
The MAE was 9.2 months in the overall internal test set, 7 months on the public test set, and 11.5 
months on the Bağcılar internal test data. The Bağcılar-only model had an MAE of 12.7 months on 
the Bağcılar internal test data. Despite less training data, there was no significant difference between 
the combined and Bağcılar models on the Bağcılar dataset (P > 0.05). The public model showed an 
MAE of 16.5 months on the Bağcılar dataset, significantly worse than the other models (P < 0.05).

CONCLUSION
We developed an automatic BAA model including the Turkish population, one of the few such stud-
ies using deep learning. Despite challenges from population differences and data heterogeneity, 
these models can be effectively used in various clinical settings. Model accuracy can improve over 
time with cumulative data, and publicly available datasets may further refine them. Our approach 
enables more accurate and efficient BAAs, supporting healthcare professionals where traditional 
methods are time-consuming and variable.

CLINICAL SIGNIFICANCE
The developed automated BAA model for the Turkish population offers a reliable and efficient al-
ternative to traditional methods. By utilizing deep learning with diverse datasets from Bağcılar Hos-
pital and publicly available sources, the model minimizes assessment time and reduces variability. 
This advancement enhances clinical decision-making, supports standardized BAA practices, and 
improves patient care in various healthcare settings.

KEYWORDS
Bone age assessment, deep learning, artificial intelligence, convolutional neural network, Incep-
tionV3
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Children’s growth is characterized 
by non-linear progression, typical-
ly advancing in a sequential man-

ner. Although metrics such as height and 
weight are useful for monitoring growth, 
bone development often provides the clos-
est approximation to chronological age. 
The Greulich and Pyle (GP) and Tanner and 
Whitehouse (TW) methods are commonly 
employed for bone age assessment (BAA).1,2 
However, these methods rely on the exper-
tise of radiologists and are subject to inter-
pretation biases.3 To address this, automatic 
BAA models have been developed, offering 
enhanced accuracy, repeatability, and effi-
ciency.4 Our study aims to evaluate the per-
formance of deep learning algorithms within 
the Turkish population and enhance model 
efficacy at a population level. Additionally, 
we seek to demonstrate that establishing a 
model “from scratch” is feasible for a medi-
um-sized hospital without relying on funds, 
grants, or dedicated commercial software.

 Methods

Ethics approval

Approval was granted by the Non-Inter-
ventional Clinical Research Ethics Commit-
tee of University of Health Sciences Türkiye, 
Bağcılar Training and Research Hospital, 
with the ethics committee decision num-
bered 2023/09/08/051 and dated Septem-
ber 22, 2023. Informed consent was waived 
due to the retrospective nature of the study. 
All procedures in the present study involv-
ing human participants were performed in 
accordance with the ethical standards of the 
institutional and/or national research com-
mittee and with the 1964 Helsinki Declara-

tion and its later amendments or compara-
ble ethical standards.

 Data collection and dataset creation

Wrist and hand radiographs, bone age 
reports, and gender information for pa-
tients aged 0–18 years were collected from 
the Picture Archiving and Communication 
System without interpretational hindrances. 
A total of 2,933 radiographs conforming to 
Turkish standards were acquired from hos-
pital records. Patients aged >18 years, im-
ages with severe artifacts or inappropriate 
field of view, and reports without BAA were 
excluded; 2,730 X-rays were found to be el-
igible (Figure 1). While integrating X-rays 
from Bağcılar into the dataset, evaluations 
by S.Ö. (who had 6 years of radiology ex�-
perience) were compared with the clinical 
reading report. When the difference was ≤6 
months, the report was deemed accurate. In 
cases where the difference was >6 months, 
A.T.C. (who had 32 years of radiology expe-
rience) and S.Ö. reevaluated images togeth�-
er, and a reference standard was obtained 
with a consensus decision. Additionally, 
two different open-source public datasets 
were incorporated [Radiological Society of 
North America (RSNA): https://www.rsna.
org/rsnai/ai-image-challenge/rsna-pediat-
ric-bone-age-challenge-2017 and Radiolog-

ical Hand Pose Estimation (RHPE): https://
www.kaggle.com/datasets/ipythonx/rhpe-
bone-age] with the filtering age range set 
to 0–18 years, resulting in a hybrid dataset 
sourced from various devices, vendors, and 
populations.5,6 After filtering, the RSNA data-
set consisted of 12,572 labeled radiographs, 
while the RHPE dataset included 6,185 labe-
led radiographs, and these datasets were fur-
ther concatenated with the Bağcılar dataset. 
From the combination of all three datasets, 
an internal test dataset (n = 546) was created 
by randomly selecting 10% of Bağcılar data 
(n = 273) and an equal amount of public data 
(n = 273). The remaining data were used to 
create three distinct training and valida-
tion splits (Bağcılar, Public, and Combined), 
maintaining a 9:1 training-to-validation ratio 
(Figure 1). Bone age-based stratification was 
applied during the random splitting of each 
dataset using the train_test_split function 
from the scikit-learn Python library.

 Model structure

In 2017, an RSNA BAA competition was 
held. The structure of the models used by 
the competitors and their error rates were 
published by Halabi et al.5 The winner of the 
competition was a commercial company 
that profited from this work. The authors do 
not have any collaboration, partnership, or 

Main points

•	 Population-specific deep learning model: 
We developed an automated model using 
the YOLOv8m architecture for hand detec-
tion and modified InceptionV3 for bone age 
assessment (BAA) tailored for the Turkish 
population by integrating Bağcılar Hospital, 
Radiological Society of North America, and 
Radiological Hand Pose Estimation datasets.

•	 Improved accuracy with combined data: The 
Combined model achieved a mean absolute 
error of 9.2 months and a 96% correlation 
with the reference standard, outperforming 
our single-source models.

•	 Clinical application and future prospects: 
This provides a consistent and efficient BAA 
tool, reducing radiologists’ workload and 
variability. We aim to enhance accuracy with 
more diverse data and validate the model 
through broader clinical studies.

Figure 1. Flowchart illustrating the data collection process, inclusion and exclusion criteria, and dataset 
splitting methodology for the bone age prediction study. RSNA, Radiological Society of North America; 
RHPE, Radiological Hand Pose Estimation.
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funding agreement with this company. The 
authors’ models were built and trained “from 
scratch” using published architectures. As 
in the competition, a custom InceptionV3 
model proved to be more suitable for this 
study. As a custom preprocessing step to 
improve model performance, a hand-de-
tection model was also added using the 
YOLOv8m architecture. In the hospital’s rou-
tine radiography acquisitions, some of the 
X-rays had a field of view large enough to 
include the elbow, whereas in others, pha-
langes were not included. The goal was to 
crop and adjust only the hand and wrist 
portion using YOLOv8m. Due to the heter-
ogeneous nature of the hospital’s dataset, 
encompassing images from diverse regions, 
a YOLOv8m model was initially trained for 
hand detection. Images were cropped with 
detected bounding boxes of the hand area 
before training the InceptionV3 model. All 
images were resized to 500 × 500 pixels, and 
an InceptionV3-based deep convolutional 
neural network (CNN) was constructed to 
process pixel information. Binary gender 
data (0 for female, 1 for male) were incor-
porated to account for gender effects via 
a densely connected layer with 32 neu-
rons. Gender and pixel information were 
merged into a single network, followed by 
two densely connected layers with recti-
fied linear unit activation, each containing 
1,000 neurons, facilitating complex pattern 
learning. The output layer utilized mean 
absolute error (MAE) loss for regression sim-
plification (Figure 2). A consistent model ar-
chitecture was used throughout the study. 
It was trained and tested on three distinct 
datasets: the Bağcılar dataset, the public 
datasets (RSNA and RHPE), and a combined 
dataset consisting of both. For clarity, refer-
ences to the “Bağcılar model,” “Public mod-
el,” and “Combined model” datasets pertain 
to the data used during model training and 
testing, not to distinct model architectures.

 Model training process

The study utilized Keras 3.02, TensorFlow 
2.15, and Python 3.9 for training, using an 
Nvidia RTX 3090 24GB graphics card. Data 
augmentation techniques, including rota-
tion (up to 20 degrees), horizontal/vertical 
shifting (up to 20%), zooming (up to 20%), 
and horizontal flipping, were applied across 
the entire dataset to encourage the learning 
of patient-specific features. The final model 
was trained using Adam optimization with a 
batch size of 32 for 500 epochs. Learning rate 
adjustments and early stopping mechanisms 
were implemented. Models were trained 
and validated (90% training, 10% validation) 
and tested on an initially separated internal 
testing dataset, which was composed of an 
equally distributed number of images from 
both local and public sources (Figure 1).

 Statistical analysis

Normality analysis was conducted using 
the Kolmogorov–Smirnov test. For compar-
isons between variables showing normal 
distribution, t-tests were employed, while 
one-way analysis of variance (ANOVA) was 
utilized for multiple variable comparisons. 
The Mann–Whitney U test and Kruskal–Wal-
lis analysis were employed for variables that 
were not normally distributed. Post-hoc 
analyses were conducted using Bonferro-
ni-corrected Mann–Whitney U and Tukey 
tests. A significance threshold of P < 0.05 was 
applied. Python version 3.9 was utilized for 
statistical analyses and plot generation.

Results
A total of 21,487 patients were included 

in the study, with a mean bone age of 10.4 
± 3.5 years, and 51% were female. A total 
of 18,757 cases were from public datasets 
(RSNA and RHPE), with a mean bone age of 
10.5 ± 3.4 years and 50% female representa-
tion (Figure 3). The Bağcılar dataset had a 

mean bone age of 9.8 ± 3.9 years, with 38% 
female patients. Table 1 shows demographic 
data and information regarding the referring 
departments and International Classification 
of Diseases-10 (ICD-10) diagnosis codes for 
the Bağcılar dataset. The primary referring 
departments were general pediatrics (48%) 
and pediatric endocrinology (47.5%). The 
majority of cases (81%) were referred with 
preliminary diagnoses under the ICD-10 
main category “endocrine, nutritional, and 
metabolic diseases.”

The performance metrics for the models, 
evaluated in the internal testing dataset, 
showed that the Public model had an MAE 
of 11.3 months, with a mean squared error 
(MSE) of 302.1 and a root MSE (RMSE) of 17.4. 
The Bağcılar model (BM) showed a slightly 
higher MAE of 12.6 months but improved 
MSE and RMSE values of 260.3 and 16.1, re-
spectively. The Combined model demon-
strated the best overall performance, achiev-
ing the lowest MAE of 9.2 months, along with 
an MSE of 170.7 and an RMSE of 13.1, high-
lighting its superior accuracy compared with 
the other models.

Based on the internal testing dataset, the 
BM achieved bone age predictions within 
absolute differences of ≤6, ≤12, ≤18, and 
≤24 months for 31%, 57%, 77%, and 88% 
of cases, respectively, with a Pearson cor-
relation of 93%. The public dataset model 
(PM) achieved predictions within the same 
ranges for 45%, 69%, 81%, and 89% of cases, 
also with a Pearson correlation of 93%. The 
combined dataset model (CM) demonstrat-
ed the best performance, with predictions 
within ≤6, ≤12, ≤18, and ≤24 months for 
44%, 73%, 87%, and 94% of cases, respec-
tively, and a Pearson correlation of 96%, 
highlighting its superior accuracy and clin-
ical utility.

Comparison of bone age predictions from 
the PM, BM, and CM models with the refer-
ence standard in the internal testing dataset 
revealed no statistically significant differenc-
es for any model, as determined by inde-
pendent t-tests (P > 0.05).

The distribution of patients by age group 
and gender across the training, validation, 
and internal testing datasets is presented in 
Table 2. The mean and standard deviation of 
predicted bone ages alongside the reference 
standard for each age group and across mod-
els are shown in Table 3. Analyses of variance 
conducted for each age group between the 
three model assessments, and the reference 
standard revealed significant differences in 
the 0–3, 3–6, 6–9, 9–12, 12–15, and 15–18 

Figure 2. Architecture of the bone age prediction model: Combining sex input (encoded as 0 or 1) through 
a Dense32 layer and image input (500 × 500 × 1 pixels) processed via InceptionV3, followed by two dense 
layers (1,000 neurons each) to predict age in months.
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groups (P < 0.001). Subsequently, a Tukey 
post-hoc analysis was carried out to eluci-
date the differences between models and 
the reference standard for each respective 
age group where significance was observed 
in the ANOVA:

•	 0–3 and 3–6 years: The PM differed signif-
icantly from both the reference standard 
and the other models (P < 0.001). 

•	 6–9 years: Significant differences were ob-
served between the BM and both the ref-
erence standard (P = 0.016) and the CM (P 

= 0.042). The PM also differed significantly 
from the reference standard (P = 0.0003) 
and the CM (P = 0.001). 

•	 9–12 years: Significant differences were 
found between the reference standard 
and the BM (P = 0.034) as well as between 
the BM and PM (P = 0.002). 

•	 12–15 years: The BM differed significantly 
from the reference standard (P = 0.005) 
and the CM (P = 0.002). 

•	 15–18 years: The BM showed significant 
differences compared with the reference 
standard (P = 0.011) and the CM (P = 
0.003). 

These findings are also shown with box-
plots in Figure 4 and indicate that while 
significant differences exist among certain 
models and age groups, the degree of dis-
crepancy varies, emphasizing the variability 
in model performance across age groups. 
Notably, no significant difference was found 
between the reference standard and the CM 
across all age groups.

The MAEs of the models in the Public 
internal testing data were 6.2, 6.9, and 12.5 
months for the PM, CM, and BM, respectively. 
The ANOVA conducted on the absolute error 
differences of the three model predictions in 
the public internal testing dataset revealed a 
statistically significant difference (s = 60.01, P 
< 0.001). Tukey post-hoc analysis of the mod-
el assessments in the Public internal testing 
dataset showed that the BM had a statistical-
ly significantly lower performance compared 
with the PM and CM, with MAE differences of 
6.3 and 5.5 months, respectively (P < 0.05). 
There was no significant difference between 
the PM and CM (P > 0.05) (Table 4).

The MAEs of the models in the Bağcılar 
internal testing dataset were 16.5, 11.4, and 
12.7 months for the PM, CM, and BM respec-
tively. Analyses of variance among the abso-
lute error differences of the three models in 
the Bağcılar internal testing dataset found a 
statistically significant difference (s = 11.19, 
P < 0.001). In the Tukey post-hoc analysis 
conducted among the model assessments 
in the Bağcılar test dataset, the PM showed 
a statistically significantly lower performance 
compared with the BM and CM, with MAE 
differences of 3.8 and 5 months, respectively 
(P < 0.05). However, no significant difference 
was observed between the BM and CM (P > 
0.05) (Table 5).   

Bland–Altman plots were generated to 
display the differences between the BM, PM, 
CM, and the reference standard in months, 

Table 1. Clinical characteristics of patients in the Bağcılar dataset

n %

Gender

	 Male 1,693 62

	 Female 1,037 38

Referring department

	 General pediatrics 1,310 48

	 Pediatric endocrinology 1,296 47.5

	 Orthopedics 40 1.5

	 Other* 84 3

ICD-10 category **

	 Endocrine, nutritional, and metabolic diseases 2,211 81

	 Symptoms, signs, and abnormal clinical and  
	 laboratory findings, not elsewhere classified 164 6

	 Factors influencing health status and contact  
	 with health services 104 3.8

	 Diseases of the blood and blood-forming  
	 organ and certain disorders involving the  
	 immune mechanism

65 2.4

	 Diseases of the respiratory system 46 1.7

	 Diseases of the genitourinary system 43 1.6

	 Diseases of the musculoskeletal system and  
	 connective tissue 33 1.2

	 Other 64 2.3

Average bone age was 9.8 years (standard deviation: 3.9). *Including mainly health board, family medicine, 
emergency department referrals; **ICD-10: International Classification of Diseases, tenth revision.

Table 2. Age and gender distribution of training and validation datasets for each model and 
internal testing dataset

Age groups (years)

Gender Split 0–3 3–6 6–9 9–12 12–15 15–18

Bağcılar model

Female
Train 64 184 363 462 165 131

Val 9 19 46 52 18 13

Male
Train 97 139 143 227 168 68

Val 8 18 9 26 20 8

Public model

Female
Train 273 716 2,242 3,344 1,477 201

Val 33 94 249 347 168 17

Male
Train 251 945 1,265 1,807 3,445 669

Val 27 91 146 208 387 82

Combined model

Female
Train 338 923 2,624 3,785 1,661 321

Val 41 90 276 420 167 41

Male
Train 346 1,065 1,395 2,030 3,615 743

Val 37 128 168 238 405 84

Internal testing set
Female Test 9 30 76 121 46 17

Male Test 21 37 36 57 71 25
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highlighting the variance between the mod-
el assessments and the reference standard 
within the internal testing dataset (Figure 
5). Additionally, scatter plots with linear re-
gression lines were created for each model 
to provide a clearer understanding of their 
performance across different internal testing 
datasets (Figure 6).

Discussion
The accuracy of BAA is largely depend-

ent on the experience of the physician, as 
traditional evaluation is often a subjective 
estimation. Traditional assessment studies 
are typically conducted by experienced phy-
sicians through visual inspection and manu-

al marking. This process requires significant 
time and effort, and different physicians may 
have varying standards when evaluating the 
same radiograph. Therefore, automated as-
sessment approaches for BAA are increasing-
ly gaining interest.

 On average, an experienced radiologist 
spends approximately 1.4 minutes using the 
GP method and 7.9 minutes using the TW 
method to assess a patient.7 Moreover, both 
methods are associated with high intra- and in-
ter-observer variability. The reported range of 
BAA results averages 0.96 years (11.5 months) 
for GP and 0.74 years (8.9 months) for TW.8 In 
some stages of child development, changes 
can be very subtle, especially after the age of 
14 years, and the sensitivity perceivable by the 
human eye through radiological examination 
may be lacking.9 The absence of significant dif-
ferences between the predicted bone age us-
ing our proposed models and those obtained 
using the GP and TW methods enhances the 
reliability of our approach.

 Our model utilized upper extremity ra-
diographs containing hand and wrist re-
gions with bone age reports sourced from 
Bağcılar. The images were taken with dif-
ferent presets and exposures, resulting in 
an inhomogeneous dataset. Some radio-
graphs did not include joints prioritized in 

Table 3. Mean and standard deviation of reference standard and predicted bone ages for different age groups in the internal testing dataset

(Months) Public model predictions Bağcılar model predictions Combined model predictions Reference standard

0–36 46.8 ± 27.3 30.6 ± 11.2 31.6 ± 10.8 29.9 ± 6.4

36–72 71.6 ± 17.6 64.2 ± 19.5 57.8 ± 14.1 60.6 ± 9.8

72–108 105.9 ± 19.9 103.3 ± 18.2 97.3 ± 18.1 96.6 ± 9.2

108–144 131.8 ± 16.1 126.4 ± 15.9 128.5 ± 14.7 130.5 ± 9.1

144–180 162.2 ± 16.5 155.5 ± 19.5 163.2 ± 17.9 162.6 ± 9.2

180–216 194.8 ± 14.4 189.0 ± 16.2 199.8 ± 15.2 198.6 ± 9.3

Table 4. Post-hoc Tukey test for Public internal testing data. In the analysis of mean absolute error (MAE) for Public internal testing data, no 
significant difference was observed between the Combined model (CM) and the Public model (PM)

Post-hoc, Tukey test for Public test data

Group 1 Group 2 MAE difference (months) P value Lower (months) Upper (months) Significant

BM MAE CM MAE −5.50 <0.001 −6.97 −4.03 Yes

BM MAE PM MAE −6.28 <0.001 −7.75 −4.81 Yes

CM MAE PM MAE −0.78 0.43 −2.24 0.68 No

Table 5. Post-hoc Tukey test for Bağcılar internal testing data. In the analysis of mean absolute error (MAE) for Bağcılar internal testing data, 
no significant difference was observed between the Bağcılar model (BM) and the Combined model (CM)

Post-hoc, Tukey test for Bağcılar internal testing data

Group 1 Group 2 Mean difference (months) P value Lower (months) Upper (months) Significant

BM MAE CM MAE −1.24 0.496 −3.84 1.35 No

BM MAE PM MAE 3.77 0.002 1.18 6.37 Yes

CM MAE PM MAE 5.02 <0.001 2.43 7.62 Yes

Figure 3. Bone age distribution across datasets: Histogram plots showing the distribution of bone ages 
(in years) for the Radiological Hand Pose Estimation, Bağcılar, and Radiological Society of North America 
datasets.

RHPE, Radiological Hand Pose Estimation; RSNA, Radiological Society of North America.
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BAA. Others were not captured at the cor-
rect position or angle. In some cases, bones 
were superimposed, and the parent’s hand 
was often visible in infant radiographs. Con-
sidering this data heterogeneity, our model 
better reflects daily clinical practice com-
pared to similar studies. 

In this study, public datasets and data 
from Bağcılar Hospital were used as sourc-
es. Racial differences, imaging parameters, 
and image quality may have influenced the 
results. However, we believe that a model 
trained with these parameters could be more 
consistent than the inter- and intra-observer 

variability associated with the GP and TW 
methods.8 Further prospective studies are 
needed to assess the added value of such 
models in daily clinical practice.

 Recently, many deep learning methods 
have been developed for BAA, and RSNA even 
organized a competition for this purpose.5 

With the developed methods, the timing 
and pattern of ossification centers according 
to age can be extracted from images using 
deep learning techniques for BAA. Thus, this 
process, which is time-consuming and sub-
jective, with differences between evaluators 
and even variations within the evaluator, can 
be carried out on more solid foundations.10 

In recent studies, we see models where var-
ious ensemble techniques are employed, 
combining multiple models into one.11 Liu 
et al.12 suggested that ranking learning may 
be a more suitable approach for the BAA task 
than classification and regression. In their 
study, they achieved accurate BAAs with 
an MAE of approximately 6 months using a 
proposed method based on a rank-mono-
tonic enhanced ranking CNN.12 Li et al.13 de-
veloped a two-stage, fully automatic model Figure 4. Boxplot of bone age predictions for each model across age groups. 

Figure 5. Bland–Altman plots showing the difference between the Bağcılar model, Public model, Combined model, and the reference standard in months, illustrating 
the variance between the reference standard and the model assessment in the internal testing dataset.

a b

c
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that does not require manual annotation. 
They demonstrated MAEs of 5.45 months on 
the RSNA dataset and 3.34 months on a spe-
cific dataset.13 Similarly, our model does not 
involve annotation. It is an end-to-end mod-
el where the bone age is directly assessed by 
using the cropped hand portion of the X-ray 
alongside gender information as input. Since 
our main goal is to show the effect of popula-
tion differences on model performances, we 
preferred a validated method that produced 
the best performance in the RSNA 2017 bone 
age prediction challenge.

 Kim et al.14 developed a model based on 
a completely Korean, healthy population, 
assuming chronological age as the real bone 
age, such as an atlas study. The developed 
deep learning model followed a rigorous 
preprocessing process for estimating chron-

ological age from hand radiographic imag-
es. Background removal and transformation 
networks were applied using manual anno-
tations from an experienced musculoskel-
etal radiologist. ResNet-50 was used as the 
basic architecture for age estimation. Com-
pared with their GP-based model, the Kore-
an model showed a lower MAE (8.2 vs. 10.5 
months; P = 0.002). Additionally, the rate of 
BAAs within 6 months of chronological age 
was higher (44.5% vs. 36.4%; P = 0.04) with 
the Korean model. Similarly, our study is also 
a population-specific model study. In their 
model, many radiographs were not used as 
it was based on a non-patient population, 
such as an atlas. Consequently, there were 
21,036 training sets left, and separate test 
datasets were obtained from two institu-
tions, consisting of 343 and 321 data sets, 
respectively. Manual annotations were used 

in creating the model, which is generally 
time-consuming and cumbersome. Our de-
veloped model demonstrated performance 
comparable with existing models. Utilizing 
heterogeneous datasets plays a critical role 
in enhancing model generalizability by ex-
posing the algorithm to a wider range of 
population and imaging variations. This di-
versity allows the model to better identify 
under-represented patterns and reduces the 
risk of overfitting to specific subsets. The im-
proved performance of the Combined model 
compared with the locally trained BM under-
scores the importance of incorporating data 
from heterogeneous sources in achieving 
better generalization. Furthermore, increas-
ing the diversity of the included population 
and imaging modalities can further enhance 
these models by enabling them to capture 
relevant information from under-represent-

Figure 6. Bone age assessments of the (a) Bağcılar model, (b) Public model, and (c) Combined model on the internal testing dataset in months. Translucent bands 
around the regression line represent confidence intervals.
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ed portions of the data. Greater diversity ul-
timately strengthens model robustness and 
improves its capacity to extract meaningful 
insights. In our model, X-rays requested for 
BAA and previously reported by radiologists 
were used. Even though the demographic 
and diagnostic information was not exten-
sively available in public datasets, models 
developed using these sources performed 
worse on local data, indicating important 
population differences alongside data cura-
tion-related information loss.

Spampinato et al.15 achieved an MAE of 
9.6 months using Bonet and the RSNA data-
set. Larson et al.16 achieved an MAE of 6.24 
months on the RSNA dataset with a deep 
residual network structure based on the GP 
mapping method using ResNet50. Pan et 
al.17 used a U-Net model to segment hand 
mask images from raw X-ray images, em-
ploying a deep active learning technique 
that reduces annotation burden, achieving 
an MAE of 8.59 months on the RSNA dataset. 
In our developed Combined model, the MAE 
value for all data was 9.2 months, 6.9 months 
for the public dataset, and 11.4 months for 
the Bağcılar dataset. The described meth-
ods, similar to our model, do not involve 
annotation. Annotation-based methods 
involve using processed images and add-
ing manual bounding box annotations to 
these images. These strategies can extract 
features from specific regions based on pri-
or knowledge and then generate age esti-
mates. Annotation-based methods, which 
involve additional manual annotations, gen-
erally exhibit better performance and high-
er accuracy compared with annotation-free 
methods. However, manual annotation is 
time-consuming and has made it difficult for 
experimental methods to transition to clini-
cal applications.

Unlike many previous studies that rely 
on homogeneous datasets, our model was 
trained and validated using a heterogene-
ous dataset that includes radiographs from 
both Bağcılar and public datasets (RSNA and 
RHPE). This dataset reflects a wide range of 
imaging conditions, patient demographics, 
and ethnic backgrounds, thereby increasing 
the model’s robustness and generalizability 
to real-world clinical settings. The inclusion 
of such diverse data sources is crucial, as it 
enables the model to handle a broader spec-
trum of clinical scenarios, making it more 
applicable across different populations. 
The results of our study are promising and 
highlight the potential of automated BAA 
models. The Combined model, which inte-
grated data from both Bağcılar and public 

datasets, demonstrated a high Pearson cor-
relation of 96% with the reference stand-
ard, indicating strong predictive accuracy. 
Specifically, the Public model achieved an 
MAE of 11.3 months when tested across all 
test data, while the BM had a higher MAE of 
12.6 months. However, when data from both 
sources were combined, the MAE improved 
to 9.2 months, highlighting the advantage 
of integrating diverse datasets to enhance 
model performance. This improvement 
could be attributed to the increase in the 
number of data and the model’s increased 
focus on significant areas due to heteroge-
neity, enabling the model to account for 
these differences more effectively, resulting 
in more accurate and reliable assessments.

The importance of data diversity is further 
emphasized when examining the model’s 
performance across different age groups. 
The Combined model showed consistent 
accuracy across various age ranges, particu-
larly during the critical growth periods of 
9–12 and 12–15 years. In contrast, the BM 
alone exhibited significant deviations from 
the reference standard in these age groups. 
This consistency across age groups is crucial 
for clinical application, as it ensures that the 
model can be reliably used across a broad 
patient demographic, minimizing the risk of 
misclassification and improving overall pa-
tient care. 

The study has several limitations. Primar-
ily, the limited data quantity has been a key 
factor, particularly with a small number of 
radiographs for children under 3 years and 
a considerably low amount of high-quality 
data. Another limitation is the absence of a 
study demonstrating inter-observer differ-
ences in our Bağcılar dataset. However, there 
are many studies in the literature addressing 
this issue. Additionally, the bone ages in our 
data were determined using manual meth-
ods, such as GP and TW, which, despite hav-
ing their own limitations, are commonly used 
in daily practice. Nevertheless, there was 
no statistically significant difference found 
between the bone ages obtained with our 
Combined model and those obtained with 
clinical methods. Furthermore, the model’s 
performance in older adolescents (aged 
15–18 years) showed higher MAEs compared 
with younger age groups. This could be due 
to the increased complexity of bone matu-
ration patterns in these age ranges, where 
small differences in ossification can lead to 
significant variations in BAA. Addressing this 
issue may require the development of more 
specialized models or the inclusion of addi-
tional features, such as hormonal markers or 

elbow and shoulder X-rays, which could pro-
vide further insights into bone development 
in these populations.

In conclusion, this study presents the de-
velopment of an automatic BAA model using 
data from Bağcılar, RSNA, and RHPE, making 
it one of the few studies to incorporate a 
Turkish population in deep learning-based 
BAA research. Our model is particularly no-
table for its ability to integrate heterogene-
ous data, demonstrating that the inclusion 
of diverse datasets can significantly enhance 
model performance. The proposed models 
offer the advantage of automated analysis 
without any need for annotation.

Despite the challenges posed by popula-
tion-level differences, heterogeneous data, 
and image quality issues, these models can 
be effectively adopted in various clinical en-
vironments, and accuracies can be increased 
over time with prospectively cumulating 
data. By enabling more accurate and effi-
cient BAAs, our approach offers valuable sup-
port to healthcare professionals, particularly 
in settings where traditional methods are 
time-consuming and subject to variability.

Future research should aim to expand 
the dataset, particularly for younger and 
older age groups, to improve the model’s 
accuracy and generalizability. Additionally, 
exploring the incorporation of other clinical 
parameters, such as hormonal levels, could 
provide a more comprehensive assessment 
of bone age, particularly in complex cases. 
Finally, further validation studies, including 
prospective trials and cross-institutional col-
laborations, will be crucial for ensuring the 
widespread adoption and clinical utility of 
automated BAA models.

Footnotes
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Gastrointestinal bleeding detection on digital subtraction angiography 
using convolutional neural networks with and without temporal 
information

PURPOSE
Digital subtraction angiography (DSA) offers a real-time approach to locating lower gastrointes-
tinal (GI) bleeding. However, many sources of bleeding are not easily visible on angiograms. This 
investigation aims to develop a machine learning tool that can locate GI bleeding on DSA prior to 
transarterial embolization.

METHODS
All mesenteric artery angiograms and arterial embolization DSA images obtained in the interven-
tional radiology department between January 1, 2007, and December 31, 2021, were analyzed. 
These images were acquired using fluoroscopy imaging systems (Siemens Healthineers, USA). 
Thirty-nine unique series of bleeding images were augmented to train two-dimensional (2D) and 
three-dimensional (3D) residual neural networks (ResUNet++) for image segmentation. The 2D 
ResUNet++ network was trained on 3,548 images and tested on 394 images, whereas the 3D Re-
sUNet++ network was trained on 316 3D objects and tested on 35 objects. For each case, both 
manually cropped images focused on the GI bleed and uncropped images were evaluated, with a 
superimposition post-processing (SIPP) technique applied to both image types. 

RESULTS
Based on both quantitative and qualitative analyses, the 2D ResUNet++ network significantly 
outperformed the 3D ResUNet++ model. In the qualitative evaluation, the 2D ResUNet++ model 
achieved the highest accuracy across both 128 × 128 and 256 × 256 input resolutions when en-
hanced with the SIPP technique, reaching accuracy rates between 95% and 97%. However, despite 
the improved detection consistency provided by SIPP, a reduction in Dice similarity coefficients was 
observed compared with models without post-processing. Specifically, the 2D ResUNet++ model 
combined with SIPP achieved a Dice accuracy of only 80%. This decline is primarily attributed to 
an increase in false positive predictions introduced by the temporal propagation of segmentation 
masks across frames.

CONCLUSION
Both 2D and 3D ResUNet++ networks can be trained to locate GI bleeding on DSA images prior to 
transarterial embolization. However, further research and refinement are needed before this tech-
nology can be implemented in DSA for real-time prediction. 

CLINICAL SIGNIFICANCE
Automated detection of GI bleeding in DSA may reduce time to embolization, thereby improving 
patient outcomes.

KEYWORDS
Convolutional neural networks, digital subtraction angiography, gastrointestinal bleeding, image 
segmentation, interventional radiology, machine learning
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Gastrointestinal (GI) bleeding involves 
active hemorrhaging from blood ves-
sels within the GI tract. In 5%–10% of 

cases, patients require either surgery or tran-
scatheter arterial embolization.1 To perform 
transcatheter embolization, interventional 
radiologists often use digital subtraction an-
giography (DSA) to image the hemorrhage 
in real time. DSA works by visualizing con-
trast-opacified vessels and subtracting sur-
rounding anatomical structures, such as soft 
tissues and bone, to provide a clearer view 
of the vascular system. The resulting images 
reveal areas where contrast “pools,” indicat-
ing the site of bleeding to the interventional 
radiologist.2 Although DSA offers a real-time 
method for locating bleeding, some sources 
may not be easily visible on angiograms. A 
neural network used as a decision support 
tool may assist radiologists in identifying 
bleeding sites prior to transcatheter arterial 
embolization. 

Convolutional neural networks (CNNs) 
have demonstrated both accuracy and ef-
ficiency in object detection within images.3 
Ronneberger et al.4 pioneered the U-Net 
architecture, an extension of the fully con-
volutional network, which includes a con-
tracting path to capture image context and 
an expanding path to enable precise local-
ization for segmentation. Neural networks 
based on the ResUNet architecture have 
addressed the high computational demands 
of three-dimensional (3D) convolutional 
networks.5 Zhang et al.6 implemented this 
design for road detection using a combi-
nation of upsampling and downsampling 
residual blocks. This model was further de-
veloped by Jha et al.7, who proposed the 
residual neural networks (ResUNet++) archi-
tecture and tested it on a segmentation task 
to identify polyps in two-dimensional (2D) 

colonoscopy images. Given that ResUNet++ 
outperformed both the original ResUNet and 
U-Net models in image segmentation,7 this 
architecture serves as the foundation for our 
model, which aims to segment GI bleeding 
on DSA images. 

This study aims to investigate the utility 
of a deep learning approach for the auto-
mated detection of GI bleeding on DSA im-
ages, specifically by comparing 2D and 3D 
ResUNet++ architectures. We hypothesized 
that both models could identify bleeding 
sites, but that one may outperform the other. 
Our rationale for using a deep learning ap-
proach stems from the temporal variability 
and subtlety of GI bleeds, which may evade 
human detection on sequential angiograph-
ic images. Automated segmentation could 
assist radiologists by identifying bleeding 
pixels in real time, potentially reducing time 
to embolization. This study also evaluates a 
novel temporal consistency algorithm–su-
perimposition post-processing (SIPP)–to 
determine whether incorporating temporal 
bleed memory improves segmentation per-
formance across sequences. We address the 
following research questions. (1) Can deep 
learning accurately identify bleeding on 
DSA? (2) How does a 2D model compare with 
a 3D model in this context? (3) Does tempo-
ral information improve performance when 
integrated through post-processing?

It is also critical to consider the clinical 
impact of GI bleeding segmentation in DSA 
without introducing workflow delays. In 
practice, a supportive model must identify 
bleeding sites faster than the interventional 

radiologist to improve procedural outcomes. 
Earlier identification could reduce contrast 
volume, lower radiation exposure, and short-
en procedure times. 

Methods

Image datasets for training and testing

Mayo Clinic Phoenix approved this 
study as exempt on 01/31/2024 due to its 
retrospective nature (IRB application #: 24-
000309). Between 2007 and 2021, a total of 
96 patients underwent mesenteric artery 
angiography or arterial embolization DSA 
procedures for suspected GI bleeding. Of 
these, 70 patients showed no active extrav-
asation on angiography and were excluded. 
The remaining 26 patients, who demonstrat-
ed confirmed active hemorrhage, were in-
cluded in the study, as shown in Figure 1. No 
images were excluded based on patient age, 
motion artifacts, or image corruption. From 
the 26 patients, 39 unique image series pos-
itive for active hemorrhage were identified 
by an interventional radiologist and selected 
for neural network training. These cases in-
volved hemorrhaging in the small and large 
intestines. On average, each series contained 
11 bleeding images. To avoid inflated model 
performance, data were split at the patient 
level for training and testing. The bleeding 
images were cropped to highlight the hem-
orrhage in higher resolution. The dataset was 
then augmented by replicating each image 
nine times, systematically shifting the bleed 
location to the following regions: upper-left, 
upper-center, upper-right, middle-left, cen-

Main points

•	 Automated image segmentation may play a 
beneficial role in detecting gastrointestinal 
(GI) bleeding in real time in digital subtrac-
tion angiography (DSA) prior to transarterial 
embolization.

•	 The three-dimensional (3D) residual neural 
networks use the temporal resolution from 
the DSA sequence to predict the bleeding 
location.

•	 The two-dimensional neural network out-
performed the 3D neural network in seg-
menting GI bleeding on images.

•	 Increasing image resolution and using a 
graphics processing unit may improve both 
the accuracy of image segmentation and 
the processing speed, respectively.

Figure 1. Criteria and number of patients from initial retrieval to the final study cohort. GI, gastrointestinal.
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ter, middle-right, lower-left, lower-center, 
and lower-right. This approach increased 
the dataset size by 900%. Segmentation 
masks were created manually using Photo-
shop (Adobe Inc., San Jose, CA, USA) with a 
thresholding tool to isolate the bleeding. The 
segmentations displayed bleeding areas in 
white on a solid black background to pro-
duce binary images. The same augmentation 
technique was applied to the segmentation 
masks to ensure proper pixel alignment with 
the original images. Table 1 summarizes the 
number of GI bleeding-positive and-nega-
tive images in the test set after augmenta-
tion.

Although 70 patients had no visible ex-
travasation, including all of their image se-
quences as negative controls would have cre-
ated a heavily imbalanced dataset. Instead, 
non-bleeding frames from within the same 
DSA sequences of the 26 bleeding-positive 
patients were used. These frames provided 
sufficient negative control data for training 
and testing while preserving representative 
angiographic conditions and avoiding over-
representation of non-bleeding cases. More-
over, the model’s task was to identify where 
bleeding occurred, rather than whether 
bleeding was present. In this context, even 
within bleeding-positive images, the major-
ity of pixels are negative for bleeding. 

Both 128 × 128-pixel and 256 × 256-pixel 
images were used to train separate 2D CNNs, 
whereas only 128 × 128-pixel images were 
used to train a 3D CNN for image segmen-
tation. A post-processing technique–super-
imposing all masks within a series into a sin-
gle mask for final image segmentation–was 
applied to both 2D and 3D segmentations. 
In total, these three networks were evaluat-
ed across four distinct testing scenarios: (1) 
uncropped images from the DSA sequence, 
(2) cropped images focusing on the bleed, (3) 
uncropped images with the SIPP technique 
applied, and (4) cropped images with the 
SIPP technique. 

Superimposition post-processing tech-
nique

The SIPP technique algorithm was devel-
oped to address the temporal inconsistency 
of GI bleeding predictions across angio-
graphic image sequences. Bleeding may not 
be clearly visible in every frame. To mitigate 
this, SIPP enforces temporal continuity by 
propagating the presence of bleeding pix-
els forward through the predicted image 
sequence. For each frame in the sequence, 
the model produces a binary segmentation 

mask , where each pixel is labeled either as 
1 (bleeding present) or 0 (no bleeding). The 
mask  is a 2D grid with the 
same height (H) and width (W) as the orig-
inal image and represents the classification 
of each pixel. SIPP modifies these predictions 
by updating each new mask  to include 
any pixel that was previously marked as 
bleeding. This is defined as:

Where  represents a logical OR opera-
tion performed on all pixels between the 
current prediction  and the accumulated 
mask from the previous frame . This rule 
ensures that once a pixel is marked as bleed-
ing, it remains labeled as such in all following 
frames of the DSA. This effectively preserves 
prior bleeding evidence even if the current 
frame is less confident. This simple yet ef-

fective mechanism improves temporal con-
sistency and reduces missed detections due 
to frame-level variability. A flowchart is pro-
vided in Figure 2 to further explain the SIPP 
technique. 

Deep neural network architecture

Both a 3D and a 2D ResUNet++ were con-
structed based on the architecture shown in 
Figure 3. A single DSA frame served as the 
input image for the 2D network, whereas 
the entire DSA series served as the input for 
the 3D network. After entering the network, 
the image passed through a series of con-
volutional layers with a 3 × 3 kernel size and 
increasing numbers of filters (16, 32, 48, and 
64), referred to as the encoding phase. Each 
convolutional layer was followed by batch 
normalization to improve training speed and 

Figure 2. Schematic of the image segmentation pipeline with the optional superimposition post-processing 
technique. Each image sequence (cropped or uncropped) is passed through a ResUNet++ model configured 
as either 2D (128 × 128 or 256 × 256) or 3D (128 × 128) to generate frame-wise predicted masks. If applied, 
the SIPP technique performs a logical OR operation between the current and previous masks to enhance 
temporal consistency in bleeding detection. SIPP, superimposition post-processing; 2D, two-dimensional; 
3D, three-dimensional; ResUNet++, residual neural networks.

Table 1. The number of images positive for gastrointestinal bleeding and the number 
of control images negative for gastrointestinal bleeding were tabulated for each of the 
different models

GI bleed images Control images

2D uncropped 128 × 128 343 95

2D cropped 128 × 128 321 73

2D uncropped 256 × 256 354 84

2D cropped 256 × 256 321 73

3D uncropped 128 × 128 343 281

3D cropped 128 × 128 273 287

2D uncropped 128 × 128 w/SIPP 343 281

2D cropped 128 × 128 w/SIPP 3195 2421

2D uncropped 256 × 256 w/SIPP 354 270

2D cropped 256 × 256 w/SIPP 3196 2420

3D uncropped 128 × 128 w/SIPP 319 241

3D cropped 128 × 128 w/SIPP 273 287

GI, gastrointestinal; SIPP, superimposition post-processing; 2D, two-dimensional; 3D, three-dimensional.
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stability by standardizing the inputs. A rec-
tified linear unit (ReLU) activation function 
was then applied to introduce non-linearity, 
enabling the network to learn complex pat-
terns and shapes. The spatial dimensions of 
the feature maps were reduced through 2D 
max pooling after each convolutional layer, 
allowing the network to retain the most im-
portant features. After the encoding phase, 
the features were upsampled back to the 
original image size using transposed convo-
lutions with a 3 × 3 kernel size and decreas-
ing numbers of filters (64, 48, 32, and 16). 
Each layer was again followed by batch nor-
malization and ReLU activation. At each step 
of the decoding path, the feature maps were 
concatenated with the corresponding fea-
ture maps from the encoding phase, allow-
ing the network to leverage both low-level 
and high-level features for more accurate 
segmentation. The final output layer con-
sisted of a 1 × 1 convolutional layer with a 
single filter and sigmoid activation. The re-
sulting segmentation map assigned each 
pixel a predicted class. Both the 2D and 3D 
ResUNet++ models described in this study 
were deep learning architectures designed 
for semantic segmentation tasks. Although 
implemented as machine learning models 
during training and inference, their structur-
al design–comprising convolutional layers, 
encoding–decoding paths, and feature con-
catenations–was fundamentally that of deep 
learning architectures.

The convolutional ResUNet++ networks 
were implemented using the Keras frame-
work8 with a TensorFlow backend (Google, 
Inc.),9 using Python version 3.9. All experi-
ments were performed on a computer with 
an Intel Core i7-8700 central processing unit 
(CPU) @ 3.20 GHz (Intel). To prevent overfit-
ting, a smaller learning rate of 1.0 × 10-4 was 
used during training to avoid issues such as 
model instability or failure to converge. Data 
augmentation was also applied to artificially 
increase dataset variability, further helping 
to mitigate overfitting. The architecture was 
optimized using the Adam optimizer. A batch 
size of 20 and 20 training epochs were used 
for each experiment to maintain consistency. 
Binary cross-entropy loss was employed to 
optimize the segmentation task.

Quantitative evaluation

The MATLAB software (MathWorks, 
Natick, MA, USA) was used to quantify the 
results from predicted and actual masks by 
measuring mask overlap. A pixel-by-pixel 
analysis identified true positive pixels (TPP), 
true negative pixels (TNP), false positive pix-

els (FPP), and false negative pixels (FNP). TP 
and TN values were calculated by dividing 
TPP and TNP by the respective numbers of 
positive and negative pixels in the ground 
truth. FP and FN values were calculated by 
dividing FPP and FNP by the total number 
of pixels in the ground truth, respectively. 
These scores were computed for each of the 
12 experiments. Dice similarity coefficients 
(DSCs) were calculated to quantitatively 
assess the spatial overlap between the pre-
dicted segmentation masks and the ground 
truth annotations. For each model and imag-
ing configuration, the Dice coefficients were 
computed on a per-sample basis and sum-
marized as mean values with corresponding 
95% confidence intervals (CIs). All Dice analy-
sis was performed as part of the quantitative 
evaluation.

Qualitative evaluation

Although quantitative metrics provided 
objective measures of segmentation accura-
cy, a qualitative evaluation was also conduct-
ed to assess clinical relevance. This evalua-
tion was performed by a single evaluator–a 
medical student–who visually compared the 
predicted segmentation masks with both 
the ground truth masks and the original DSA 
images. Each image was classified as TP, TN, 
FP, or FN using the same definitions applied 
in the quantitative evaluation. To aid in the 
classification process, a MATLAB script was 
used to help identify TN, FP, and FN images. 
A prediction was considered a TP if the white 
pixels in the predicted mask overlapped with 
those in the ground truth mask. This overlap 
was initially assessed visually and subse-
quently verified to ensure at least one pixel 
of overlap, which served as a safeguard to 
minimize human error in classification. This 
minimal overlap threshold was intentional-
ly selected based on the model’s intended 

clinical use: to serve as a real-time assistive 
tool during embolization procedures. In such 
settings, even a small correctly flagged area 
could be sufficient to prompt further inves-
tigation by an interventional radiologist. The 
model is not intended to deliver volumetric 
precision but rather to alert clinicians to po-
tential regions of bleeding. Cases where the 
white pixels of the predicted and ground 
truth masks overlapped but also included 
some FP areas were generally classified as 
TPs, unless the FP region exceeded 10% of 
the image area. All ground truth segmen-
tation masks were manually created using 
a thresholding method and validated by a 
team of fellowship-trained interventional 
radiologists to ensure accuracy before com-
parison.

Statistical analysis

A one-way analysis of variance single-fac-
tor test was conducted in MATLAB to deter-
mine the statistical significance within the TP 
results of the quantitative evaluation. An α 
value of 0.05 was selected, with the null hy-
pothesis stating that there is no statistically 
significant difference among the various net-
works. If the P values obtained from the anal-
ysis were less than α, the null hypothesis was 
rejected, indicating a statistically significant 
difference between the networks. In cas-
es where such a difference was detected, a 
Tukey–Kramer post-hoc test was performed 
to identify which networks exhibited this dis-
parity.

Results

Quantitative evaluation

The accuracy, intersection over union 
(IoU), loss, and precision obtained during 
the initial training and testing of the 2D 128 

Figure 3. Neural network architecture used in both the 2D ResUNet++ and 3D ResUNet++ models. SIPP, 
superimposition post-processing; 2D, two-dimensional; 3D, three-dimensional; ResUNet++, residual neural 
networks.
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× 128 ResUNet++, 2D 256 × 256 ResUNet++, 
and 3D 128 × 128 ResUNet++ models are 
presented in Table 2. The accuracy and preci-
sion scores were comparable across all three 
networks. The 3D 128 × 128 ResUNet++ ex-
hibited the lowest IoU at 0.06.

Depicted in Figure 4 are the accuracy 
scores for the 12 different 2D and 3D Re-
sUNet++ structures based on a DSA frame-
wise basis. These results are summarized in 
Table 3, whereas outcomes of the statistical 
analysis are presented in Table 4. A statistical-
ly significant improvement in the accuracy 
score was observed using the SIPP technique 
for all six different ResUNet++ structures: 
2D uncropped 128 × 128, 2D cropped 128 × 
128, 2D uncropped 256 × 256, 2D cropped 
256 × 256, 3D uncropped 128 × 128, and 
3D cropped 128 × 128 compared with the 
control trial. Notably, there was no statisti-
cal significance between the 2D uncropped 
128 × 128 model and the 2D uncropped 
256 × 256 model, the 2D uncropped 128 × 
128 model and the 3D uncropped 128 × 128 
model, the 2D cropped 128 × 128 model and 
the 2D cropped 256 × 256 model, and the 2D 
uncropped 256 × 256 and the 3D uncropped 
128 × 128 model when the SIPP method was 
not used. The largest mean accuracy values 
were 0.961 and 0.956 for the 2D cropped 128 
× 128 with SIPP model and the 2D cropped 
256 × 256 with SIPP model, respectively. 
There was no statistically significant differ-
ence between the accuracy values for these 
two different networks. Both models had 
a statistically significantly higher accuracy 
than the 3D cropped 128 × 128 model with 
SIPP. The 2D cropped 128 × 128 and the 2D 
cropped 256 × 256 models also maintained 
the highest accuracy for models without 
SIPP, with accuracy scores of 0.853 and 0.812, 
respectively. There was no statistically signif-
icant difference between these two models. 
These models had a statistically significantly 
higher accuracy than the 3D cropped 128 × 
128 model. The 2D uncropped 256 × 256 with 
SIPP model had a statistically significant-
ly higher accuracy than the 2D uncropped 
128 × 128 with SIPP model and the 3D un-
cropped 128 × 128 with SIPP model. Mean-
while, the 2D uncropped 128 × 128 with SIPP 
model had a statistically significantly higher 
accuracy than the 3D uncropped 128 × 128 
with SIPP model.

DSCs for each model configuration, with 
and without SIPP, are summarized in Ta-
ble 5. Compared with their corresponding 
original models, the use of SIPP resulted in 
statistically significant reductions in Dice 
coefficients for the 2D uncropped 128 × 128 

model [from 0.042 (95% CI: 0.0264–0.0575) 
to 0.019 (95% CI: 0.0133–0.0248)] and the 
2D cropped 128 × 128 model [from 0.798 
(95% CI: 0.7720–0.8232) to 0.190 (95% CI: 

0.1839–0.1959)]. Similarly, the 2D cropped 
256 × 256 model exhibited a substantial de-
crease in Dice score when SIPP was applied 
[from 0.797 (95% CI: 0.7708–0.8223) to 0.278 

Figure 4. Bar graph showing differences in the quantitative accuracy of segmentation results for the 
12 testing scenarios. The control represents cases without post-processing, whereas the other cases 
used the superimposition post-processing technique. Error bars indicate one standard deviation. SIPP, 
superimposition post-processing; 2D, two-dimensional; 3D, three-dimensional; ResUNet++, residual neural 
networks.

Table 2. The results from training the 2D ResUNet++ on 128 × 128-pixel and 256 × 256-pixel 
images, as well as the 3D ResUNet++ on 128 × 128-pixel images, are tabulated. The metrics 
of accuracy, intersection-over-union, and precision were included for all three neural 
networks

Method Accuracy IoU Precision

2D 128 × 128 ResUNet++ 0.95 0.62 0.99

2D 256 × 256 ResUNet++ 0.96 0.61 0.98

3D 128 × 128 ResUNet++ 0.96 0.06 0.95

2D, two-dimensional; 3D, three-dimensional; IoU, intersection-over-union; ResUNet++, residual neural networks.

Table 3. The true positive, true negative, false positive, and false negative rates were 
tabulated for the 12 different cases for the quantitative results

True positive True negative False positive False negative

2D uncropped 128 × 128 0.056 0.966 0.034 0.001

2D cropped 128 × 128 0.853 0.996 0.003 0.002

2D uncropped 256 × 256 0.099 0.978 0.022 0.001

2D cropped 256 × 256 0.812 0.997 0.002 0.003

3D uncropped 128 × 128 0.058 0.998 0.002 0.001

3D cropped 128 × 128 0.287 0.999 0.001 0.006

2D uncropped 128 × 128 w/SIPP 0.240 0.919 0.081 0.001

2D cropped 128 × 128 w/SIPP 0.961 0.898 0.098 0

2D uncropped 256 × 256 w/SIPP 0.352 0.972 0.028 0.001

2D cropped 256 × 256 w/SIPP 0.956 0.946 0.051 0.001

3D uncropped 128 × 128 w/SIPP 0.178 0.985 0.015 0.001

3D cropped 128 × 128 w/SIPP 0.573 0.982 0.018 0.003

SIPP, superimposition post-processing; 2D, two-dimensional; 3D, three-dimensional.
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(95% CI: 0.2703–0.2858)]. In contrast, for the 
2D uncropped 256 × 256, 3D uncropped 128 
× 128, and 3D cropped 128 × 128 models, 
although minor changes in Dice coefficients 
were observed, the corresponding 95% CIs 
overlapped. Therefore, these changes are not 
statistically significant based on CI analysis. 
Overall, these results indicate that although 
SIPP altered segmentation performance, its 
effects were not uniformly beneficial across 
all models, and in some cases, it led to con-
siderable declines in segmentation accuracy. 
These results are visually represented in Fig-
ure 5.

Qualitative evaluation

An example image from the 2D cropped 
128 × 128 model, the 2D uncropped 256 × 
256 model, and the 3D cropped 128 × 128 
model is shown in Figure 6. The original im-
age is on the left, the ground truth is in the 
middle, and the predicted image is on the 
right. Each image was reviewed manually for 
quality control to compare the ground truth 
with the predicted image. The results from 
the qualitative evaluation are displayed in 
Table 6 and plotted in Figure 7.

From the highest TP accuracy count to 
the lowest TP count, the twelve networks 
ranked as follows for the qualitative results: 
2D cropped 256 × 256 with SIPP, 2D cropped 
128 × 128 with SIPP, 2D cropped 128 × 128, 
2D cropped 256 × 256, 3D cropped 128 × 
128 with SIPP, 3D cropped 128 × 128, 2D un-
cropped 256 × 256 with SIPP, 2D uncropped 
128 × 128 with SIPP, 3D uncropped 128 × 128 
with SIPP, 2D uncropped 256 × 256, 3D un-
cropped 128 × 128, and 2D uncropped 128 × 
128. The range of TP accuracy was from 0.999 
to 0.122. The models using the SIPP tech-
nique had higher accuracy rates than their 
control counterparts. The ranking order was 
similar to the TP accuracies from the quan-
titative section. The main differences in the 
qualitative list compared with the quantita-
tive list are that 2D cropped 256 × 256 with 
SIPP marginally outperformed 2D cropped 
128 × 128 with SIPP, and 3D cropped 128 × 
128 marginally outperformed 2D uncropped 
256 × 256 with SIPP.

Discussion
The widely used U-Net architecture for 

medical image segmentation is leveraged in 
this study through the ResUNet++ variant. 
ResUNet preserves input dimensions and 
minimizes information loss, as described by 
Yousef et al.10, whereas U-Net++ incorporates 
nested skip connections to enhance seman-

tic segmentation, as detailed by Zhou et al.11 
The effectiveness of ResUNet++ has been 
validated by Jha et al.7, supporting its use 
in segmentation tasks. This study evaluates 
segmentation accuracy using standard anal-
yses similar to those employed in cone-beam 
CT acquisitions for prostate treatments.12

Using 2D ResUNet++ for DSA images of-
fers distinct advantages over 3D ResUNet++. 
Although 3D ResUNet++ benefits from in-
corporating temporal information across 
image sequences, it did not outperform the 
2D model. For uncropped DSA images, 3D 
ResUNet++ performed similarly to 2D Re-
sUNet++, likely because downscaling the 
original 1064 × 1064-pixel images to 128 × 
128 or 256 × 256 pixels led to a loss of crucial 

spatial detail. This limitation was addressed 
by manually cropping the images to focus 
specifically on bleeding regions, allowing 
the bleed to occupy approximately 5% of 
the image area and substantially improving 
training and testing resolution. This process 
improved segmentation accuracy for both 
2D and 3D ResUNet++ models, emphasizing 
the importance of image resolution for accu-
rate GI bleeding localization and favoring 2D 
model performance. These quantitative find-
ings were further supported by qualitative 
assessments. 

The Keras framework8 was used to evalu-
ate accuracy, IoU, loss, and precision metrics 
during the training of both 2D and 3D Re-
sUNet++ models on cropped images. Across 

Table 4. A one-way analysis of variance with a Tukey–Kramer post-hoc test was conducted, 
and the resulting P values were tabulated to compare different models. The significance 
level (α) was set at 0.05. Statistical differences in segmentation accuracy were observed for 
models with P values less than α
Model 1 Model 2 P value

2D uncropped 128 × 128 2D uncropped 128 × 128 w/SIPP <0.001

2D cropped 128 × 128 2D cropped 128 × 128 w/SIPP <0.001

2D uncropped 256 × 256 2D uncropped 256 × 256 w/SIPP <0.001

2D cropped 256 × 256 2D cropped 256 × 256 w/SIPP <0.001

3D uncropped 128 × 128 3D uncropped 128 × 128 w/SIPP <0.001

3D cropped 128 × 128 3D cropped 128 × 128 w/SIPP <0.001

2D uncropped 128 × 128 2D uncropped 256 × 256 0.098 

2D uncropped 128 × 128 3D uncropped 128 × 128 1.000

2D cropped 128 × 128 2D cropped 256 × 256 0.192

2D uncropped 256 × 256 3D uncropped 128 × 128 0.143

2D cropped 128 × 128 w/SIPP 2D cropped 256 × 256 w/SIPP 0.995

2D cropped 256 × 256 w/SIPP 3D cropped 128 × 128 w/SIPP <0.001

2D cropped 128 × 128 w/SIPP 3D cropped 128 × 128 w/SIPP <0.001

2D cropped 256 × 256 3D cropped 128 × 128 <0.001

2D cropped 128 × 128 3D cropped 128 × 128 <0.001

2D uncropped 256 × 256 w/SIPP 2D uncropped 128 × 128 w/SIPP <0.001

2D uncropped 256 × 256 w/SIPP 3D uncropped 128 × 128 w/SIPP <0.001

2D uncropped 128 × 128 w/SIPP 3D uncropped 128 × 128 w/SIPP 0.001

SIPP, superimposition post-processing; 2D, two-dimensional; 3D, three-dimensional.

Table 5. Mean Dice similarity coefficients and corresponding 95% confidence intervals 
are reported for each model configuration, comparing results with and without 
superimposition post-processing. Statistically significant differences, identified by non-
overlapping confidence intervals, are indicated in bold

Model Original mean (95% CI) SIPP mean (95% CI)

2D uncropped 128 × 128 0.042 [0.0264, 0.0575] 0.019 [0.0133, 0.0248]

2D cropped 128 × 128 0.798 [0.7720, 0.8232] 0.190 [0.1839, 0.1959]

2D uncropped 256 × 256 0.069 [0.0493, 0.0893] 0.065 [0.0533, 0.0757]

2D cropped 256 × 256 0.797 [0.7708, 0.8223] 0.278 [0.2703, 0.2858]

3D uncropped 128 × 128 0.054 [0.0381, 0.0694] 0.064 [0.0479, 0.0795]

3D cropped 128 × 128 0.334 [0.2955, 0.3731] 0.281 [0.2523, 0.3104]

CI, confidence interval; SIPP, superimposition post-processing.
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all metrics, the 2D ResUNet++ outperformed 
its 3D counterpart. Higher IoU indicates su-
perior segmentation, and although 3D Re-
sUNet++ had a lower IoU, its performance 
improved following the application of the 
SIPP technique. SIPP accumulates bleed-
ing-positive pixels across sequential frames, 
enhancing temporal consistency. Originally 
applied to 3D ResUNet++ to address inter-
mittent bleeding visibility, SIPP also im-
proved segmentation performance for 2D 
ResUNet++ models. However, quantitative 
analysis revealed that SIPP increased FP rates, 
as errors persisted across frames, whereas FN 
rates remained relatively unaffected by post-
processing. The increase in FP rates resulting 
from the SIPP technique also contributed 
to a decrease in DSCs across most models. 
Since the Dice coefficient is sensitive to both 
FPs and FNs, the propagation of errors across 
sequential frames reduced overall spatial 
overlap precision, despite improvements 
in bleeding pixel continuity. This tradeoff 
highlights an important limitation of SIPP: 
although it enhances temporal consistency 
and bleed detection sensitivity, it may com-
promise segmentation specificity, as reflect-
ed in Dice score reductions.

Since transarterial embolization is per-
formed in real time under fluoroscopy, 
model inference speed is critical. Doubling 
image resolution from 128 × 128 to 256 × 
256 pixels nearly quadrupled the model run-
time. Interestingly, there was no statistically 
significant difference in runtime between 
2D ResUNet++ trained on 256 × 256 imag-
es and 3D ResUNet++ trained on 128 × 128 
images, indicating that 3D models also de-
mand substantial computational resources. 
Prior studies using graphics processing unit 
(GPU) hardware have demonstrated that 512 
× 512-pixel images can be segmented in less 
than 1 second,4 suggesting that GPU accel-
eration could greatly enhance model perfor-
mance and enable the training of higher-res-
olution 3D networks. Although training on 
a GPU would have considerably expedited 
model development, cost constraints and 
limited institutional access to dedicated GPU 
hardware necessitated CPU-based training in 
this study. For future real-time deployment, 
GPU acceleration will be critical to support 
high-throughput inference and maintain 
clinical usability.

Ground truth segmentation quality great-
ly impacts machine learning model perfor-
mance. To ensure reliable labeling, ground 
truth masks underwent rigorous validation. 
A chart review was conducted to confirm 
each bleeding episode’s anatomical site, with 

Figure 6. Results for the 2D and 3D ResUNet++ models: (a) original image tested on the 2D cropped 128 
× 128 model; (b) ground truth; (c) predicted image; (d) image tested on the 2D uncropped 256 × 256 
model; (e) corresponding ground truth; (f) predicted image; (g) image tested on the 3D cropped 128 × 128 
model; (h) ground truth; (i) predicted image. Red arrows in (a), (d), and (g) point toward the GI bleed. GI, 
gastrointestinal; 2D, two-dimensional; 3D, three-dimensional; ResUNet++, residual neural networks.

a

d

g

b

e

h

c

f

i

Figure 5. Mean Dice similarity coefficients and 95% confidence intervals for twelve different 2D and 3D 
ResUNet++ segmentation models, evaluated with and without SIPP. Bars indicate the mean DSC values, and 
error bars represent the corresponding 95% confidence intervals. Dice coefficients range from 0 (no overlap) 
to 1 (perfect overlap). SIPP, superimposition post-processing; 2D, two-dimensional; 3D, three-dimensional; 
ResUNet++, residual neural networks; DSC, Dice similarity coefficients.



 

472 • September 2025 • Diagnostic and Interventional Radiology Smetanick et al.

ambiguities resolved in consultation with fel-
lowship-trained interventional radiologists. 
Manual image thresholding using MATLAB 
assigned white pixel values (255) to bleeding 
regions and black (0) to background areas, 
creating binary masks. Although manual seg-
mentation is labor-intensive, it remains the 
gold standard for validation, as emphasized 
by Yepes-Calderon et al.13 Potential operator 
bias was minimized by having a single indi-
vidual perform all segmentations. Data aug-
mentation techniques, including cropping 
and translation, as described by Shorten et 
al.,14 expanded the training dataset. Cropping 
enhanced effective resolution, and system-
atic translations increased the dataset size 
by 900%. Due to image series grouping for 
3D training, fewer images were available for 
the 3D models compared with the 2D mod-
els. Further research is needed to assess how 
expanded 3D datasets could impact model 
performance.

When comparing Tables 2 and 4, an appar-
ent contradiction emerges because models 
such as 2D cropped 128 × 128 with SIPP and 
2D cropped 256 × 256 with SIPP show high 
true positive rates (TPRs) and true negative 
rates (TNRs) in Table 2 yet exhibit a notable 
decrease in DSCs in Table 4. This discrepan-
cy stems from fundamental differences in 
how these metrics are calculated. TPRs and 
TNRs incorporate TNs, which dominate pix-
el-based segmentation tasks and can inflate 
performance metrics, particularly when back-
ground regions vastly outnumber bleeding 
pixels. In contrast, the Dice coefficient is a 
spatial overlap metric that does not consid-
er TNs and is highly sensitive to both FPs and 
FNs. Since the SIPP technique propagates 
predictions across frames, it can increase FPs 
and lead to reduced Dice scores despite sta-
ble or improved TPRs and TNRs. This tradeoff 
underscores a central tension in medical 
image segmentation: balancing sensitivity 
and temporal consistency with spatial spec-
ificity. Given the model’s intended role as an 
assistive tool during real-time embolization, 
the slight increase in FPs introduced by SIPP 
may be clinically acceptable if it ensures that 
critical bleeding regions are not missed. Both 
methods were incorporated in this study for 
transparency. 

In Table 6, some models display a TNR of 
1.0 while still reporting a nonzero FPR. This 
discrepancy stems from differences in de-
nominator definitions: TPs and TNs were cal-
culated relative to the number of positive and 
negative pixels in the ground truth, whereas 
FPs and FNs were normalized over the total 
number of pixels in the image. As a result, 

even a small number of FPPs yields a measur-
able FPR despite a perfect TNR. This normal-
ization strategy was chosen to consistently 
reflect prediction error impacts across imag-
es of varying sizes and class balances.

Recent studies have further demonstrated 
the potential of machine learning for DSA-
based bleeding detection. Barash et al.15 uti-
lized a CNN to classify DSA images as either 
normal or containing active bleeding, achiev-
ing an area under the curve of 85.0% and 
an accuracy of 77.43%. Similarly, Liu et al.16 
introduced a method using parametric color 
imaging to enhance DSA sequences and bet-
ter localize bleeding points. Additionally, Min 

et al.17 developed a two-stage deep learning 
model, “InterNet,” to detect active abdominal 
arterial bleeding on emergency DSA images. 
Their model considerably improved workflow 
efficiency, reducing radiologist interpretation 
time from 84.88 to 43.78 seconds. This high-
lights the potential of artificial intelligence 
tools to expedite bleeding detection during 
high-stakes procedures. Compared with 
these classification-based approaches, the 
present study focuses on semantic segmen-
tation to directly identify and localize bleed-
ing regions at the pixel level. Furthermore, 
our study introduces the SIPP technique to 
enhance temporal consistency.

Table 6. The true positive, true negative, false positive, and false negative rates were 
tabulated for the 12 different cases in the qualitative results

True positive 
rate

True negative 
rate

False positive 
rate

False negative 
rate

2D uncropped 128 × 128 0.122 1 0.402 0.285

2D cropped 128 × 128 0.969 1 0.003 0.023

2D uncropped 256 × 256 0.22 1 0.338 0.292

2D cropped 256 × 256 0.953 1 0 0.038

3D uncropped 128 × 128 0.163 1 0.149 0.311

3D cropped 128 × 128 0.597 1 0.014 0.182

2D uncropped 128 × 128 w/SIPP 0.408 1 0.325 0

2D cropped 128 × 128 w/SIPP 0.997 1 0.002 0

2D uncropped 256 × 256 w/SIPP 0.571 1 0.244 0

2D cropped 256 × 256 w/SIPP 0.999 1 0 0

3D uncropped 128 × 128 w/SIPP 0.276 1 0.234 0.179

3D cropped 128 × 128 w/SIPP 0.853 1 0.018 0.054

SIPP, superimposition post-processing.

Figure 7. Bar graph showing differences in the qualitative accuracy of segmentation results for the 12 
testing scenarios. The “control” represents cases without post-processing, whereas the other cases used 
the SIPP technique. SIPP, superimposition post-processing; 2D, two-dimensional; 3D, three-dimensional; 
ResUNet++, residual neural networks.
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Limitations

Several limitations must be acknowl-
edged. First, the sample size was relatively 
small (26 patients), limiting statistical pow-
er and generalizability. Second, no external 
validation set from a separate institution was 
used, raising concerns about model robust-
ness across different imaging protocols and 
vendors. Third, training was performed on a 
CPU rather than a GPU, which constrained 
image resolution, limited model complexity, 
slowed inference speeds, and necessitated 
manual cropping of bleeding regions to pre-
serve resolution for training. Although neces-
sary under computational constraints, manu-
al cropping introduces potential bias and is 
not feasible for clinical deployment. In future 
work, GPU-accelerated training and infer-
ence will be pursued to allow the processing 
of entire uncropped DSA images at full res-
olution. Alternatively, a sliding window ap-
proach could be implemented, whereby the 
model systematically analyzes overlapping 
regions of the full image to detect bleeding 
without manual preselection. Fourth, the 
dataset included only bleeding-positive cas-
es, limiting the ability to fully assess FPRs and 
overall specificity. Future studies can address 
these limitations by expanding datasets, in-
corporating external validation cohorts, uti-
lizing GPU acceleration, and including nega-
tive control cases to better assess real-world 
model performance.

In conclusion, this study investigated the 
use of 2D ResUNet++ and 3D ResUNet++ 
neural network models to segment GI bleed-
ing in DSA prior to transarterial embolization. 
Most notably, the 2D ResUNet++ outper-
formed the 3D ResUNet++ model. In qual-
itative analysis, the 2D ResUNet++ model 
achieved the highest accuracy, ranging from 
95% to 97%, when enhanced with the SIPP 
technique. The highest DSC observed was 

80% for the same model. Both quantitative 
and qualitative analyses highlight the po-
tential feasibility of this model for real-time 
bleeding segmentation in the interventional 
radiology suite. Furthermore, training and 
testing with more 3D data are recommended 
to further refine the performance of the 3D 
ResUNet++ model. Incorporating GPU accel-
eration is also advised for faster processing. 
Future studies should evaluate the impact of 
these tools on DSA images in real time.

Footnotes
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PURPOSE
This study aims to evaluate the effectiveness of the Kaiser score (KS) system in assessing breast 
lesions with uncertain malignant potential (B3).

METHODS
Breast magnetic resonance imaging (MRI) scans from a total of 76 patients with histologically prov-
en B3 lesions were included in this study. The KS was recorded for each MRI scan. The patients were 
classified based on biopsy results, and upgraded lesions were identified. Statistical analysis was 
conducted to evaluate the association between high KS values and upgraded lesions. 

RESULTS
The mean age of the 76 patients was calculated as 49.6 ± 10.1. A significant association was ob-
served between the KS system and the prediction of malignancy upgrade (P < 0.001). Furthermore, 
among the descriptors, spiculation, margin, and upgrading prediction demonstrated a statistically 
significant difference (P < 0.001). Additionally, the specificity improved when the accepted KS cut-
off value was set at seven instead of five. A significant association was also observed between the 
KS system and the papilloma upgrade rate within the B3 lesion subgroups (P < 0.001).

CONCLUSION
Breast radiology plays a crucial role in the diagnosis of B3 lesions. Our findings suggest that the KS 
system holds promise as a tool for predicting the upgrade potential of B3 lesions.

CLINICAL SIGNIFICANCE
This study demonstrated that the KS system may assist in predicting the upgrade potential of B3 
breast lesions. It also demonstrated that spiculation and margin descriptors within the KS system 
possess a high positive predictive value for upgrade prediction. Additionally, we believe that the KS 
system can help prevent unnecessary surgeries in patients with B3 lesions.

KEYWORDS
B3 breast lesion, Kaiser score system, breast magnetic resonance imaging, breast, magnetic reso-
nance imaging

You may cite this article as: Çelik Yabul F, Otçu Temur H, Atasoy B, Balsak S, Alkan A, Yıldız Ş. The role of the Kaiser score system in uncertain malignant 
potential (B3) breast lesions: a pilot study. Diagn Interv Radiol. 2025;31(5):474-479.

Uncertain malignant potential lesions (B3) of the breast can be classified as atypical duc-
tal hyperplasia (ADH), radial scar, papillary lesions, lobular neoplasia (LN), and flat ep-
ithelial hyperplasia (FEH). These lesions are commonly characterized by an increased 

lifetime risk of breast cancer in women.1-3 Due to the heterogeneity of high-risk lesion groups, 
upgrade rates for high-risk breast lesions have varied in the literature, ranging from 6% to 
32%.4-6

The management of B3 lesions is determined by pathological findings, patient age, risk 
factors, and the type of biopsy performed. Radiological-pathological discordance remains 
one of the key criteria for excision.7-9
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The Kaiser score (KS) system is a deci-
sion-making tool in parallel with the Breast 
Imaging-Reporting and Data System (BI-
RADS) classification, considering the mor-
phological and dynamic features in breast 
magnetic resonance imaging (MRI).10,11 Diet-
zel and Baltzer10 developed a clinical decision 
tool originally referred to as the Tree flow-
chart and later renamed the KS after Werner 
A. Kaiser’s contributions to its development. 
Additionally, they published an essay that 
included a practical guide for the interpre-
tation of breast MRI examinations using the 
KS.10 Their contribution has been further ex-
tended with a recently published article in 
which they emphasized that the KS served 
as an evidence-based decision-making tool 
to objectively differentiate between benign 
and malignant breast lesions.12

This study aims to evaluate the upgrade 
potential of high-risk breast lesions and to 
determine the role of the KS in avoiding po-
tentially unnecessary surgical excisions.

Methods
This retrospective study was approved 

according to the principles of the Declara-
tion of Helsinki by the Ethics Committee of 
the Bezmialem Vakıf University (approv-
al no: E-54022451-050.01.04-3208, date: 
20.10.2021), and all participants signed a 
written informed consent form. 

Patient selection

Patients’ core biopsy-proven B3 lesions, col-
lected between 2016 and 2021, were retrieved 
from the archives. Initially, 130 patients were 
reviewed. Among these, only 81 had MRI scans 
available in the system. Of the 81 patients, 5 
were excluded due to the absence of patho-
logical contrast enhancement on MRI. Patients 
with excision results or a follow-up period of 
at least 2 years (24–72 months) were included 
in this study. Based on these criteria, a total of 
76 patients were considered eligible for this 
study. The age, risk status, and complaints of 
the patients were recorded.

Magnetic resonance imaging acquisition 
and image interpretation

All breast MRI scans were conducted 
using a 1.5 T scanner (Siemens Magnetom 
Avanto Fit, Siemens Healthineers; Erlangen, 
Germany) with a bilateral 16-channel breast 
coil in the prone position. Apparent diffu-
sion coefficient (ADC) maps, subtraction, 
and maximum intensity projection images 
were acquired. Axial T2-weighted fat-sup-
pressed imaging [repetition time (TR)/echo 
time (TE): 4560/59 ms; slice thickness: 4 mm, 
matrix: 340 × 512], axial T1-weighted imag-
ing (TR/TE: 571/11 ms; slice thickness: 4 mm, 
matrix: 340 × 512), one precontrast and five 
postcontrast 3D T1 turbo spin-echo imaging 
(TR/TE: 5.16/2.38 ms; flip angle: 100, slice 
thickness: 1 mm), and diffusion-weighted 
imaging (b-values: 0–800 s/mm2) series were 
obtained. The gadolinium-based contrast 
agent was administered at 0.1 mmol/kg us-
ing a mechanical power injector, followed by 
a 15–20 cm3 saline flush.

Two breast radiologists evaluated all the 
images using the Siemens Syngo Via (Er-
langen, Germany) workstation. They were 
blinded to clinical data and histopathology 
results. The KS was assigned via the online 
version to the patients after reaching con-
sensus. Descriptors evaluated in the KS were 
spiculation, dynamic enhancement curves, 
margins, internal enhancement, and edema 
around the lesion. Using the KS, the patients 
were scored from 1 to 11. A score of 5–7 
was categorized as BI-RADS 4, and a score 
of 8–11 was categorized as BI-RADS 5 and 
considered positive. Optional moderators 
were noted, such as evidence of microcalci-
fication overlapping the area of contrast and 
ADC values. The cut-off value was >1.4 ×10-3 

mm2/s as recommended in the KS.

Histopathological evaluation

The patients’ diagnoses were obtained 
using one of the following methods: tru-cut 
biopsy under ultrasonographic guidance (n 
= 59), vacuum-assisted biopsy (VAB) under 
mammographic guidance (n = 10), or biopsy 
under MRI guidance (n = 7). On average, 3–4 

samples were obtained for tru-cut biopsies 
using a 14-gauge needle. The results of core 
biopsy, surgical excision, or follow-up evalu-
ations were analyzed. Cases with an upgrade 
to ductal carcinoma in situ (DCIS) following 
excision, including those with progression 
detected during follow-up, were considered 
positive.

Statistical analysis

Statistical analysis was performed using 
SPSS software (IBM Corp. Released 2021. IBM 
SPSS Statistics for Windows, Version 28.0. 
Armonk, NY, USA). In addition to descrip-
tive statistics [mean ± standard deviation 
for continuous variables, frequencies with 
percentages for categorical variables, and 
area under the receiver operating character-
istic (ROC) curve (AUC) with standard error], 
the Shapiro–Wilk test was used to assess 
the distribution of the data. Comparisons 
of KS descriptors and upgrade rates were 
performed using Fisher’s exact test and the 
Fisher–Freeman–Halton test. ROC analysis 
was performed using MedCalc version 12 to 
assess the overall diagnostic performance of 
KS in predicting progression, and the optimal 
cut-off value was determined using Youden’s 
J index. Differences in KS and upgrade rates 
among high-risk lesion subgroups (ADH, ra-
dial scar, atypical papillomas, LCIS, LN, and 
FEH) were evaluated. Sensitivity, specificity, 
positive predictive value (PPV), and negative 
predictive value (NPV) were calculated. A 
type 1 error rate of α = 0.05 was considered 
statistically significant.

Results
A total of 76 patients were evaluated. Thir-

ty patients were classified as high-risk due to 
a personal history of breast cancer (n = 8) or 
a family history of breast cancer in immedi-
ate relatives (n = 22). Clinical findings such 
as pain (n = 12), palpable mass (n = 7), and 
bloody nipple discharge (n = 6) were present 
in 33% of the patients. The mean age of the 
patients was calculated as 49.6 ± 10.1. 

The histopathological distribution of le-
sions is presented in Table 1. Among the 76 

Main points

•	 The Kaiser score (KS) system may help pre-
dict uncertain malignant potential (B3) 
breast lesions upgrade.

•	 Spiculation and margin identifiers in the KS 
system have a high positive predictive value 
in upgrade prediction.

•	 Unnecessary surgeries can be avoided in 
cases diagnosed with B3 lesions by using 
the KS system.

Table 1. Histopathological distribution of the B3 lesions

Histopathologic results n (%)

Papilloma 36 (47.4%)

Flat epithelial hyperplasia 18 (23.7%)

Radial scar 12 (15.8%)

Lobular neoplasia 5 (6.6%)

Atypic ductal hyperplasia 5 (6.6%)

Total 76
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B3 lesions, papilloma was the most common 
diagnosis (47.4%), followed by FEH (23.7%), 
radial scar (15.8%), LN (6.6%), and ADH 
(6.6%).

In the follow-up cases (n = 40), no pro-
gression was observed. During follow-up, 
the lesions remained stable in 33 patients 
(82.5%) and regressed in size in 7 patients 
(17.5%). Surgical excision was performed in 
36 patients (47.3%), and DCIS was detected 
in 12 of 76 patients following excision. No 
upgrade to invasive cancer was identified. 
The overall upgrade rate in patients with B3 
lesions was 16%.

Based on MRI results, non-mass enhance-
ment was observed in 34 cases (44.7%), 
whereas mass enhancement was observed 
in 42 cases (55.2%). There was no statistical-
ly significant difference between upgraded 
lesions and MRI enhancement patterns (P > 
0.050).

In the evaluation of optional moderators 
(suspicious microcalcifications and high 
ADC values), seven patients had microcalci-
fications overlapping with the contrast-en-
hanced area on MRI. Based on the KS, two 

points were added to these patients. An up-
grade was detected in four of them.

No high ADC values were identified in the 
evaluation of lesions that would warrant a 
four-point reduction in the KS. All lesion ADC 
values were below 1.4 × 10-3 mm2/s. The KS 
and MRI findings for the upgraded lesions 
are presented in Table 2. 

A positive KS was a significant predictor 
of lesion upgrade status (P < 0.001). In pa-
tients with a KS exceeding 5, the sensitivity 
and specificity for predicting an upgrade 
were 81.25% and 83.33%, respectively. The 
NPV, PPV, and overall accuracy were 94.34%, 
56.52%, and 82.89%, respectively (Table 3).

When the KS cut-off value was set at 7, 
the sensitivity, specificity, and accuracy for 
predicting an upgrade were 68.75%, 98.3%, 
and 80.2%, respectively, with an AUC of 0.86 
and a standard error of 0.07 (95% confidence 
interval: 0.76–0.93, P < 0.001). Additionally, a 
cut-off value of >6 was identified (Figure 1).

Evaluation of MRI findings showed that 
spiculation was a significant predictor of 
lesion upgrade (P < 0.001). Furthermore, 
the subgroups of B3 lesions were analyzed. 

Among these subgroups, the KS was a signif-
icant predictor of the upgrade rate for papil-
loma (P < 0.001).

Discussion
B3 of the breast are commonly encoun-

tered in needle biopsies. Due to the potential 
for malignancy, the management of these 
lesions following needle biopsy remains 
controversial, with no universally accepted 
standard recommendation. Although surgi-
cal biopsy is widely recommended for ADH, 
the management of other B3 lesions should 
be determined on a patient basis through a 
multidisciplinary approach. Criteria for surgi-
cal excision may include sampling adequacy 
(e.g., needle gauge, number of samples, and 
accurate targeting), lesion size, and radiolo-
gy–pathology concordance.7-9

The literature has studied the role of MRI 
in managing high-risk lesions. Londero et 
al.13 reported that the absence of enhance-
ment on breast MRI effectively eliminated 
the risk of invasive cancer and served as a re-
liable indicator for excluding surgery in B3 le-
sions. Similarly, in our study, no progress was 
seen during follow-up in cases that were di-

Table 2. MRI findings of the upgraded lesions

No Kaiser score Spiculation Margin Contrast Edema Internal enhancement Pathology

1 3 Negative Irregular Type 1 Negative Homogeneous FEH

2 3 Negative Circumscribed Type 1 Negative Homogeneous ADH

3 7 Positive Irregular Type 2 Negative Homogeneous ADH

4 7 Positive Irregular Type 2 Negative Homogeneous LN

5 7 Positive Irregular Type 2 Negative Homogeneous LN

6 2 Negative Circumscribed Type 2 Negative Homogeneous LN

7 11 Positive Irregular Type 3 Positive Homogeneous Papilloma

8 5 Negative Circumscribed Type 2 Negative Homogeneous Papilloma

9 8 Negative Irregular Type 3 Negative Inhomogeneous Papilloma

10 8 Negative Irregular Type 3 Negative Inhomogeneous Radial scar

11 8 Negative Irregular Type 3 Negative Inhomogeneous Radial scar

12 7 Positive Irregular Type 2 Negative Homogeneous Papilloma

13 11 Positive Irregular Type 3 Positive Inhomogeneous Papilloma

14 9 Positive Irregular Type 3 Negative Inhomogeneous Papilloma

15 5 Negative Circumscribed Type 2 Negative Homogeneous FEH

16 11 Positive Irregular Type 3 Positive Inhomogeneous Papilloma

MRI, magnetic resonans imaging; FEH, flat epithelial hyperplasia; ADH, atypical ductal hyperplasia; LN, lobular neoplasia.

Table 3. Kaiser score positivity and upgrade ratio

Upgrade (+) Upgrade (−) Total

Kaiser (+) 13 10 23

Kaiser (−) 3 50 53

Total 16 60 76



 

Kaiser score system • 477

agnosed as B3 lesions but were not included 
in the study because MRI did not show any 
contrast enhancement.

The KS system is a decision-making tool 
that integrates five morphology and kinetic 
criteria, along with two optional modifiers 
(microcalcifications and ADC values), to dif-
ferentiate benign from malignant breast tu-
mors. The KS system offers a standardized ap-
proach to breast MRI evaluation, enhancing 
its utility in clinical practice. In recent years, 
there has been a rapid increase in studies 
employing this flowchart.14-20 Studies have 
demonstrated that inter-reader agreement is 
high and that the KS enhances the diagnostic 
performance of MRI.14-18 Wang et al.19 has also 
showed that the KS is a useful diagnostic tool 
that helps radiologists with different levels of 
breast MRI experiences make more accurate 
diagnoses. According to Zhang et al.20, KS is 
a better way to diagnose breast lesions than 
BI-RADS, whether the lesions show non-mass 
enhancement or are evaluated on their own. 
Furthermore, Wengert et al.21 gave useful 
supporting data and pushed for the use of 
KS to eliminate BI-RADS 4 mammography 
calcifications. However, no studies to date 
have specifically evaluated the application of 
KS in B3 lesions.

In our study, the upgrade rates were com-
parable with those reported in the literature. 
However, the excision rates were higher than 
those documented in previous studies.4-6 This 
can be attributed to the large proportion of 
high-risk patients and the limited availability 
of VAB in our country.

There were three false-negative cases 
in our study. Two cases (LN and FEH) were 
upgraded to low-grade DCIS following exci-
sion (Figure 2). It is well-established that MRI 
has low specificity for detecting low-grade 
DCIS,22 which may explain these false-neg-
ative results. In one of these cases (ADH), 
microcalcifications led to an increased score, 
highlighting the importance of incorporat-
ing optional moderators in the KS system.

We observed false-positive results in 10 
cases. Four patients had papillomas, and 
three had radial scars. In the false-posi-
tive papilloma cases, the type 2 contrast 
enhancement pattern contributed to the 
increased scores (Figure 3). The literature 
indicates that papillomas are a heteroge-
neous group that may exhibit varying en-
hancement patterns,23 which we believe 
contributes to the higher false-positive rate. 
Additionally, contour irregularity and spicu-
lation positivity increased the scores in cases 
of radial scars. Radial scars were present in 

six of the patients with false-positive results. 
Radial scars are inherently characterized by 
irregular contours.24 In the KS system, scoring 
begins at six points due to the spiculation 
positivity commonly observed in radial scars, 
leading to false-positive outcomes.

Evaluation of the KS descriptors revealed 
that 11 patients exhibited positive spicula-
tion and contour irregularity. The KS values 
of all 11 cases ranged from 6 to 11, and 8 of 
them were upgraded (Figure 4). These find-

ings show that spiculation positivity and 
contour irregularity are significantly associat-
ed with lesion upgrade.

Our study identified three cases with 
edema, all of which underwent an upgrade. 
Recent studies have shown that peritumoral 
edema is associated with poor prognosis.25 
Consequently, the presence of edema may 
have a high positive value for predicting B3 
lesions upgrade.

Figure 1. Sensitivity and specificity ratio of KS 7. KS, Kaiser score; AUC, area under the receiver operating 
characteristic curve.

Figure 2. False-negative case, MIP series (a) early postcontrast series (b), non-mass enhancement, root sign 
absent, type 2, circumscribed lesion, Kaiser score 2, and BI-RADS 2/3. MIP, maximum intensity projection; 
BI-RADS, Breast Imaging-Reporting and Data System.

Figure 3. True-positive case, MIP series (a), early postcontrast series (b) mass, inhomogeneous enhancement, 
root sign absent, type 3, Kaiser score 8, and BI-RADS 5. MIP, maximum intensity projection; BI-RADS, Breast 
Imaging-Reporting and Data System

a

a

b

b

b
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Additionally, the internal enhancement 
pattern may significantly influence the pre-
diction of lesion upgrade. The inhomoge-
neous enhancing pattern increased the le-
sion score from 4 to 8. Significantly, three of 
these lesions are confirmed true positives.

The acceptance of a 5 KS value for dif-
ferentiating malignant from benign tumors 
resulted in an accuracy of 82.89%. Neverthe-
less, when the cut-off value was set at 7, the 
specificity (98.3%) improved without signifi-
cantly reducing accuracy.

The limitations of our study include the 
heterogeneity of B3 lesion pathologies. 
The study included a small number of ADH 
lesions because their exclusion would not 
have made a statistical difference. The high 
number of papillomas may be due to the 
broad MRI indication, which aimed to reduce 
the risk of papillomatosis and detect cancer 
in the ipsilateral breast.26 Furthermore, our 
study is single-centered and retrospective 
in design. Additionally, two breast radiolo-
gists conducted the KS assessment; however, 
another limitation is the absence of statisti-
cal analysis for inter-reader agreement. This 
study can be conducted prospectively on 
specific B3 lesion subgroups.

In conclusion, we speculate that increas-
ing the KS threshold value in future studies 
with larger sample sizes could help avoid 
unnecessary surgeries. In conclusion, the KS 
system demonstrates the ability to predict 
B3 lesion upgrade accurately.
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H E A D  A N D  N E C K  I M A G I N G
L E T T E R  T O  T H E  E D I T O R

Letter to editor: dual-energy computed tomography-based volumetric 
thyroid iodine quantification: correlation with thyroid hormonal status, 
pathologic diagnosis, and phantom validation

You may cite this article as: Erdemir AG. Letter to editor: dual-energy computed tomography-based volumetric thyroid iodine quantification: correlation with 
thyroid hormonal status, pathologic diagnosis, and phantom validation. Diagn Interv Radiol. 2025;31(5):480-481.

Dear Editor,

I read with great interest the article by Lee1, which presents a promising  non-invasive  
method for quantifying intrathyroidal iodine concentration using dual-energy computed to-
mography (DECT). Their study demonstrates that DECT-derived iodine maps can effectively 
distinguish between thyroid functional states and detect diffuse thyroid disease without the 
need for contrast enhancement. This approach holds particular promise in the peri-radioac-
tive iodine (RAI) therapy setting, especially when applied both before and after treatment to 
monitor iodine organification.

However, a key translational challenge remains: The optimal timing of DECT imaging in 
relation to RAI therapy and contrast exposure is still poorly defined. As noted in the American 
College of Radiology Manual on Contrast Media2, iodinated contrast agents are contraindi-
cated during active RAI treatment phases due to the risk of competitive inhibition. Although 
the guideline recommends a conservative delay of several months, emerging evidence sug-
gests that the kinetics of iodine organification and clearance may not support such prolonged 
avoidance windows.

Nimmons et al.3 conducted a prospective study assessing urinary iodine clearance after 
intravenous contrast administration. In their cohort, the median time to return to baseline 
urinary iodine levels was 43 days, with 75% of patients normalizing within 59 days and 90% 
within 74 days. This study not only highlights the interindividual variability in iodine kinetics 
but also raises the question of whether personalized biomarkers–such as serial urinary iodine 
levels or DECT-based iodine density–could better guide the safe reinitiation of RAI planning.

Given this, DECT could potentially evolve from a diagnostic modality into a monitoring 
tool for individualized iodine readiness. It may be employed to quantify residual iodine load 
following contrast exposure to help determine the optimal timing for RAI therapy, to longitu-
dinally track thyroidal iodine washout without relying on urinary measurements, to identify 
iodine-induced dysregulation–such as prolonged retention or the Wolff-Chaikoff effect–in 
elderly patients or those with renal impairment, and to implement contrast-deferred DECT 
protocols that help avoid unnecessary delays in oncologic management.

Still, standardization is needed. Future DECT protocols should be prospectively validated 
against urinary iodine and RAI uptake metrics. Additionally, combining DECT with functional 
nuclear imaging (e.g., single photon emission computed tomography/computed tomogra-
phy) may enhance clinical decision-making by simultaneously capturing iodine content and 
tracer uptake. These integrations could ultimately reduce uncertainty in post-contrast scenar-
ios where thyroid nodules are incidentally discovered.

In conclusion, the work of Lee1 offers a valuable step forward, but its clinical integration–
particularly in the nuanced post-contrast period–demands further clarification. DECT’s capac-
ity to measure thyroidal iodine in vivo opens a pathway toward more tailored and efficient RAI 
planning, provided it is used with informed caution and in concert with evolving evidence on 
iodine kinetics.
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PURPOSE
Peripheral arterial disease (PAD) is increasingly prevalent, particularly among the aging popula-
tion. Retrograde tibiopedal access (RTPA) has emerged as a useful endovascular treatment for PAD. 
However, there is limited research examining factors that influence the efficacy of RTPA. To investigate 
factors affecting the access, crossing, and recanalization success rates of RTPA for infrapopliteal PAD 
treatment.

METHODS
A retrospective study was conducted on 720 patients who underwent endovascular treatment for 
PAD. Of these, 104 patients (mean age: 65.5 ± 16.2; 89 men) with 131 RTPA trials were included in 
the final evaluation. The disease and its duration, Rutherford score, smoking status, access site, and 
its occlusion status, access, crossing, and recanalization success were noted. Data were analyzed us-
ing Pearson’s chi-square and Mann–Whitney U tests and multivariate logistic regression to evaluate 
the impact of various factors on success rates.

RESULTS
The access success rate was 82.6%, the crossing success rate was 95.4%, and the recanalization 
success rate was 74%. Access success was significantly higher when the dorsal pedal artery (DPA) 
was the access artery compared with the posterior tibial artery (91.3% vs. 74.2%, P = 0.009).  Access 
success was notably lower in patients with thromboangiitis obliterans compared with patients with 
diabetes mellitus (DM) and non-DM atherosclerosis (68.6% vs. 90.3% and 80.3%, P = 0.019). Recanal-
ization success was higher when the puncture site was non-occluded (76.7% vs. 53.5%, P = 0.023).

CONCLUSION
The study suggests that RTPA is a generally effective and safe technique for infrapopliteal PAD treat-
ment. The most favorable outcomes are observed in individuals with DM who have a non-occluded 
DPA at the puncture site. Recanalization success is only affected by the patency of the artery at the 
puncture site.

CLINICAL SIGNIFICANCE
These findings offer targeted guidance for clinicians and highlight areas requiring further investi-
gation.

KEYWORDS
Angiography, atherosclerosis, diabetes, retrograde tibiopedal access, thromboangiitis obliterans

You may cite this article as: Gündoğmuş CA, Özen Atalay H, Samadli V, Oğuzkurt L. Factors effecting the success of retrograde tibiopedal access and 
recanalization in infrapopliteal artery occlusions. Diagn Interv Radiol. 2025;31(5):482-488.

Peripheral arterial disease (PAD) is a cardiovascular disorder distinguished by a stenosis 
or occlusion of peripheral arteries, typically impacting the lower extremities.1,2 Recent 
studies highlight that PAD is a burgeoning concern in contemporary hospital admis-

sions, particularly among the aging population.3-5 It has been estimated that up to 20% of 
individuals aged 80 and above suffer from PAD, reflecting a substantial clinical and public 
health concern.6
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Among the therapeutic options for PAD, 
endovascular interventions have been 
steadily rising in prominence.7,8 These mini-
mally invasive procedures serve as an alter-
native to open surgical approaches, often 
offering advantages in terms of shorter hos-
pital stays, reduced morbidity, and quicker 
recovery times. Endovascular treatments 
have become an initial treatment modality 
of choice for many clinicians dealing with 
patients with PAD, especially those at high 
surgical risk or those who have failed other 
treatment options.9

One of the more recent advances in the 
realm of endovascular interventions for PAD 
is the utilization of retrograde tibiopedal ac-
cess (RTPA). This method has proven particu-
larly useful in cases where antegrade access 
is not feasible or the occluded segment of the 
artery is not easily traversable through stan-
dard methods.2,10 The technique can facilitate 
the crossing of long intraluminal complex 
lesions and may provide additional options 
for limb salvage in otherwise challenging 
scenarios. Despite the growing body of evi-
dence supporting the benefits of RTPA, there 
is a notable paucity of research exploring the 
variables that influence its efficacy.10-13 Most 
studies have primarily focused on technical 
success and safety profiles, with limited at-
tention to how patient-specific factors and 
the anatomical characteristics of occlusions 
may affect the procedure’s outcome. Further-
more, there is no clear data on the effect of 
the occluded access artery on recanalization 
success, while the success of RTPA in treating 
infrapopliteal arteries is not well established.

Therefore, the present study aims to 
address this gap by investigating various 

factors that may have an impact on the ef-
fectiveness of RTPA, such as patient demo-
graphics, underlying diseases, and the access 
artery and its condition. By contributing to 
this underexplored area of research, more 
targeted guidance for clinicians is offered, 
thereby potentially improving patient out-
comes in the management of PAD.

Methods
The present retrospective study was 

conducted in accordance with the ethical 
standards outlined by the World Medical As-
sociation in the Declaration of Helsinki. Ap-
proval for the study was obtained from the 
Ethics Committee of Koç University Ethical 
Board (reference number/date: 2023.131.
IRB.043/12.04.2023). Prior to the procedure, 
written informed consent was obtained from 
all patients.

Of the 720 patients who had endovas-
cular treatment for PAD in a tertiary referral 
center between November 2015 and Febru-
ary 2023, 129 patients with 158 RTPA trials 
were included in this retrospective study. A 
total of 26 patients were excluded from the 
study, with 13 patients undergoing RTPA for 
the treatment of acute thromboembolism 
on top of chronic atherosclerotic occlusions, 
and the remaining 13 patients undergoing 
RTPA specifically for occluded suprapopli-
teal arteries (Figure 1). A total of 131 access 
trials in 104 patients (89 men and 15 women; 
mean age: 65.5 ± 16.2) with infrapopliteal 
artery disease were evaluated using proce-
dural images and reports. Patients’ diagno-
ses, disease duration, Rutherford scores, and 
smoking status were collected from the hos-
pital records.

Retrograde tibiopedal access technique

All endovascular treatment procedures 
were performed either with sedation or with 
ultrasound (US)-guided sciatic nerve block-
age in addition to local anesthesia. The ac-
cess sites, including the femoral and ipsilat-
eral ankle, were prepared in a sterile fashion 
prior to the procedure in all patients. All pa-
tients in whom there was an attempt to use 
RTPA were first approached in an antegrade 
way via ipsilateral common femoral or super-
ficial femoral artery access. If the infrapopli-
teal artery occlusion could not be crossed 
by way of an antegrade approach, RTPA was 
performed. The patients were placed in a 
supine position on the angiography table. 
To obtain access to the dorsal pedal artery 
(DPA), the foot was held in a neutral position 
with minimum flexion. On the other hand, 
access to the posterior tibial artery (PTA) was 
achieved by rotating the foot laterally and 
gently bending the knee. All RTPA’s were 
conducted under US guidance by a single 
interventional radiologist with over 20 years 
of expertise in performing procedures that 
necessitate image-guided vascular access.

A transverse placement of a linear 9–15 
MHz transducer (Logiq S8, GE HealthCare 
Technologies, Inc., Chicago, Illinois) was 
performed to visualize and identify the 
most suitable access site for the target ar-
tery (Figure 2). Subsequently, a small skin 
wheal was induced using 1 mL of 1% prilo-
caine (Citanest 10 mg/mL, AstraZeneca). In 
this procedure, a 4-cm 21G micropuncture 
needle (Micropuncture Introducer Set, Cook 
Medical) is carefully inserted into the artery’s 
anterior wall, ensuring avoidance of the pos-
terior wall, before a 200-cm-long, 0.018-inch 

Main points

•	 There is very limited data on the effect of 
the occluded access artery on recanalization 
success. 

•	 Retrograde tibiopedal access (RTPA) suc-
cess in treating infrapopliteal arteries is not 
well-established. 

•	 The access success rate was 100% in 30 cas-
es in which the access artery was patent.

•	 The target vessel at the puncture site was 
occluded in 101 (77.1%) RTPA trials. The ac-
cess success rate was 82.6% (109/131), the 
crossing success rate was 95.4% (104/109), 
and the recanalization success rate was 74% 
(77/104).

•	 The most favorable outcomes were ob-
served in individuals with diabetes mellitus 
who had a non-occluded dorsal pedal artery 
at the puncture site.

Figure 1. Flowchart of patient selection. PAD, peripheral arterial disease; RTPA, retrograde tibiopedal access.
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hydrophilic tip guidewire (V-18 ControlWire, 
Boston Scientific) is then advanced (Fig-
ure 3). Since the targeted arterial segments 
might be occluded, the verification of arteri-
al access relies on other factors, including di-
rect sonographic observation of the needle 
within the middle section of the occlusion, 
tactile feedback obtained from the guide-
wire, and fluoroscopic or sonographic visu-
alization of the guidewire. A 90-cm support 
catheter with a straight tip and a diameter 
of 2.6 F (CXI, Cook Medical) was inserted in 
cases requiring additional support. Follow-
ing the successful crossing of the guidewire 
through the obstruction, the support cathe-
ter, or a low-profile balloon catheter was ad-
vanced. To ensure accurate placement within 
the patent lumen, a contrast injection was 
administered. Subsequently, the procedure 
involves the utilization of bareback pre-dil-
atations utilizing balloons with a diameter 
ranging from 2 to 3 mm. This facilitates the 
advancement of a guidewire in an antegrade 
manner through the occluded segments. In 
most cases, the use of a snare or flossing was 
not needed following pre-dilatations. Never-
theless, methodologies such as Controlled 
Antegrade and Retrograde subintimal Track-
ing (CART) can be employed if deemed re-
quired. The subsequent course of treatment 
involved the continuation of standard endo-
vascular procedures in an antegrade manner. 
This included the use of routine angiograph-
ic imaging, administration of standard med-
ication dosages, angioplasty using balloons 
ranging from 1.5 to 3 mm for the infrapopli-
teal and required inframalleolar arteries, and 
angioplasty using either plain or drug-elut-
ing balloons (Figure 4). The placement of an 
introducer sheath in the RTPA site was avoid-
ed, and a temporary hemostasis measure in 
the form of a 4F dilator in the 21G introduc-
er set was placed at the RTPA site following 
pre-dilatation.

Technical success parameters

The evaluation of technical success pa-
rameters included the following criteria. The 
ability to achieve percutaneous access to a 
distal artery, and successful insertion of a 
support or a balloon catheter over a wire was 
considered as achieving access success. The 
ability to pass the wire to the proximal pat-
ent segment of the occlusion was regarded 
as crossing success. Finally, the successful res-
toration of flow in the occluded segment as 
confirmed by angiography was defined as re-
canalization success. The puncture site com-
plications were assessed via US prior to dis-
charge and on the 7th-day clinical follow-up.

Figure 2. Ultrasound visualization of the occluded posterior tibial artery (PTA) with a linear high-frequency 
transducer placed transversely in a 46-year-old male patient with thromboangiitis obliterans. (a) The PTA 
(arrow) is seen at the center of the image between the posterior tibial veins. (b) The posterior tibial veins 
are compressed because of pressure applied with the transducer, whereas the PTA (arrow) cannot be 
compressed. (c) In color Doppler imaging, the venous flow can be observed, but there is no arterial flow, 
which reveals the presence of occlusion.

Figure 3. Retrograde tibiopedal access procedure. Using real-time ultrasound (US) imaging, a 21G needle is 
inserted, and the posterior wall or veins are carefully observed. Transvers (a) and longitudinal (b) US images 
indicate 0.018-inch guidewire (arrowheads) with a hydrophilic tip being inserted into the distally occluded 
posterior tibial artery. Using US to visualize the needle and the guidewire’s tactile feedback, the arterial 
access is confirmed.

Figure 4. Initial angiogram of the patient and successful recanalization of infrapopliteal arteries. (a) The 
angiogram indicates corkscrew-shaped collaterals (arrowheads) compatible with thromboangiitis 
obliterans. (b) The occluded segment of the posterior tibial artery (PTA) is crossed with the anterograde 
approach (arrow) using a 014-inch guidewire. (c) When the anterograde crossing is unsuccessful, retrograde 
tibiopedal access (RTPA) is performed, and a 0.018-inch guidewire (arrowhead) is advanced within the 
occluded PTA lumen. (d) Balloon angioplasty is performed with an over-the-wire 2-mm balloon (between 
arrows). (e) The final angiogram demonstrates patent tibial artery flow (curved arrow) and successful 
recanalization with RTPA.
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Statistical analysis

Categorical variables were presented as 
counts and percentages. Successful and un-
successful RTPA and recanalization attempts 
were compared in terms of patients’ gen-
der, diagnoses, and smoking status using 
Pearson’s chi-square test. A Mann–Whitney 
U test was performed to compare contin-
uous data, such as age, disease duration, 
and Rutherford’s score, between successful 
and unsuccessful access and recanalization 
attempts. Multivariate logistic regression 
analyses were used to calculate the effects 
of confounders on RTPA and recanalization 
success. Two logistic regression statistical 
models were employed to analyze the access 
and recanalization success rates of RTPA. In 
Model A, the effects of all confounders were 
evaluated. Confounders that did not have a 
significant effect on the regression model 
were removed from Model B to obtain opti-
mal results.

A confidence level of 95% was selected, 
and P < 0.05 was considered statistically sig-
nificant. The data analysis was preformed us-
ing IBM SPSS Statistics 22 software.

Results
A total of 87% of the patients had chron-

ic limb-threatening ischemia. The remaining 
had severe claudication. Fifty-seven (54.8%) 
patients had diabetes mellitus (DM), 26 
(25%) had thromboangiitis obliterans (TAO), 
and 21 (20.2%) had non-DM atherosclero-
sis. Fifty-seven (54.8%) patients were active 
smokers. The DPA, or distal anterior tibial 
artery, was the access artery in 69 (52.3%) 
RTPA trials, whereas the PTA was the access 
artery in 62 (47.7%). The target vessel at the 
puncture site was occluded in 101 (77.1%) 
RTPA trials. The access success rate was 
82.6% (109/131), the crossing success rate 
was 95.4% (104/109), and the recanalization 
success rate was 74% (77/104). Five crossing 
failures were due to extravasation of the wire 
in three cases and the inability to traverse the 
occlusion in two cases. The access success 
rate was 100% in 30 cases in which the access 
artery was patent.

A snare was used in four cases from the 
antegrade access to create an intraluminal 
through-and-through guidewire. The CART 
process was required in two cases and was 
performed  successfully in one. Reverse CART 
was never used.

Patients’ age, gender, smoking status, 
Rutherford scores, and disease duration 
were not found to be different between suc-

cessful and failed RTPA trials. Access was sig-
nificantly more successful when the access 
artery was DPA when compared with PTA 
(91.3%, 74.2%, P = 0.009, respectively). The 
access success rate was significantly lower 
in patients with TAO compared with those 
with DM and non-DM atherosclerosis (68.6%, 
90.3%, and 80.3%, P = 0.019, respectively) 
(Table 1). On the other hand, the recanaliza-
tion success rate was found to be associated 
with only the occlusion of the entry site. The 
recanalization success rate was higher when 
the puncture site was non-occluded (76.7%, 
53.5%, P = 0.023) (Table 2).

In the study, two logistic regression statis-
tical models were employed to analyze the 
access and recanalization success rates of 
RTPA. A 1.025-fold increase in access success 
was associated with each unit increase in age 
for Model A, as measured by an odds ratio 
(OR) of 1.025 and a 95% confidence interval 
(CI) ranging from 1.011 to 1.040. Further-
more, compared with PTA access, DPA access 
increased the successful access rate by 3.185 
times, as indicated by an OR of 3.185 and a 
95% CI of 1.120 to 9.057. Model B followed 
a comparable structure, wherein a 1.033-fold 
increase in access success was observed for 
every unit increase in age (OR: 1.033, 95% 
CI: 1.020–1.045). Moreover, DPA access in-

creased access success rates by 2.773 times 
compared with PTA access in this model, 
with an OR of 2.773 and a 95% CI ranging 
from 1.028 to 7.482 (Table 3). The non-oc-
cluded access artery increased recanalization 
success rates by 2,760 times compared with 
cases with an occluded access artery, with an 
OR of 2.773 and a 95% CI ranging from 1.117 
to 6.817. 

Vasospasm at the puncture site was seen 
in 11 (10.5%) patients. A self-limiting he-
matoma was seen in two (1.9%) patients. A 
pseudoaneurysm, or arteriovenous fistula, 
was not seen in any patients.

Discussion
The findings of this study reveal insights 

into the outcomes of RTPA trials in patients 
with infrapopliteal artery involvement but 
different underlying conditions. Most prom-
inent of all, the access success rate was 
highest among patients with DM who had 
a non-occluded DPA at the puncture site. 
However, the recanalization success rate was 
broadly influenced only by the occlusion sta-
tus of the puncture site, regardless of other 
patient-specific factors or underlying condi-
tions.

Table 1. Comparison of patient-related factors in successful and unsuccessful retrograde 
tibiopedal access attempts

Successful RTPA Unsuccessful RTPA P

Sex

Male 90 19

Female 19 3 0.471a

Age* 68 (26–93) 64.5 (39–89) 0.344b

Current smoking status

Smoker 58 (84.1) 11 (15.9)

Non-smoker 51 (82.3) 11 (17.7) 0.783c

Access artery

DPA 63 (91.3) 6 (8.7)

PTA 46 (74.2) 16 (25.8) 0.009c

Access site

Occluded 80 (79.2) 21 (20.8)

Non-occluded 29 (96.7) 1 (3.3) 0.025c

Diagnosis

DM 65 (90.3) 7 (9.7)

TAO 24 (68.6) 11 (31.4)

AS 20 (80.3) 4 (16.7) 0.019c

Disease duration* 15 (2–40) 20 (8–30) 0.391b

Rutherford score* 5 (3–6) 4 (3–6) 0.508b

*, Median (min-max); a, Fisher’s exact test; b, Mann–Whitney U test; c, Pearson’s chi-square test. RTPA, retrograde 
tibiopedal access; DPA, dorsal pedal artery; PTA, posterior tibial artery; DM, diabetes mellitus; TAO, thromboangiitis 
obliterans; AS, non-diabetic atherosclerosis.
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The study found that a high percentage of 
patients (87%) had chronic limb-threatening 
ischemia, suggesting that this intervention is 
often considered for severe cases and as limb 
salvage. Over half of the patients had DM, 
aligning with the high prevalence of vascular 
complications in this patient group. Nota-
bly, a significant number of patients (54.8%) 
were active smokers, further accentuating 
the comorbid factors often seen in patients 
with vascular disease. This observation aligns 
with prior research that has demonstrated a 
notable prevalence of smoking among indi-
viduals with PAD.12,14

This study shows an overall access suc-

cess rate of 82.6%, a crossing success rate of 
95.4%, and a recanalization success rate of 
74%, indicating that RTPA is generally a reli-
able technique. The study by Montero-Baker 
et al.12 examined the application of RTPA in 
the treatment of 51 infrapopliteal segment 
occlusions. The authors reported that the 
overall success rate of this approach was 
86.3%, which is slightly higher than the suc-
cess rate observed in the present study. How-
ever, in Montero-Baker’s study, the puncture 
artery was patent in RTPA, and the guidance 
was performed using a C-arm, not US.

Access success varied significantly among 
different underlying conditions. To the best 
of our knowledge, this study is the first to 

examine the predictive value of the diagno-
sis of DM or TAO, access sites, including DPA 
and PTA, and access artery occlusion status 
in relation to the technical success achieved 
in the occlusion of an infrapopliteal artery 
through RTPA. Notably, patients with TAO 
had a significantly lower success rate in com-
parison with those with DM and non-DM 
atherosclerosis. This could indicate that the 
etiological factors underlying TAO may pres-
ent unique challenges to successful vascular 
access, warranting further investigation.

Interestingly, the DPA was a more success-
ful access route compared with the PTA, with 
success rates of 91.3% and 74.2%, respective-
ly. In a previous study conducted by Grözing-
er et al.11, which examined the parameters 
influencing the recanalization success of the 
superficial femoral artery and infrapopliteal 
artery using RTPA, the impact of the access 
artery on technical success did not yield any 
statistically significant results. Furthermore, 
the study by Grözinger et al.11 categorized 
the access artery into two categories: infrap-
opliteal arteries and superficial femoral-pop-
liteal arteries. In the present study, the access 
artery was evaluated in terms of two cate-
gories, DPA and PTA, which are both located 
below the knee (around the ankle), and this 
provides a more precise anatomical delinea-
tion. The study’s results imply that clinicians 
should carefully evaluate the selection of the 
access artery as a crucial element in the plan-
ning of these operations.

The recanalization success rate was 
shown to be influenced by the occlusion 
status of the entry site, notwithstanding the 
high success rate seen in terms of access. 
The results indicated that recanalization was 
more effective in cases where the puncture 
site was patent, hence supporting the signifi-
cance of maintaining vascular patency at the 
puncture site and the selection of the access 
artery to achieve good outcomes.

Table 2. Comparison of patient-related factors in successful and unsuccessful recanalization 
attempts

Successful 
recanalization

Unsuccessful 
recanalization

P

Sex

Male 90 19

Female 19 3 0.471a

Age* 68 (30–93) 65.5 (26–91) 0.420b

Current smoking status

Smoker 41 (59.4) 28 (40.6)

Non-smoker 36 (58.1) 26 (41.9) 0.875a

Access artery

DPA 45 (65.2) 24 (34.8)

PTA 32 (51.6) 30 (48.4) 0.114a

Access site

Occluded 54 (53.5) 47 (46.5)

Non-occluded 23 (76.7) 7 (23.3) 0.023a

Diagnosis

DM 43 (59.7) 29 (40.3)

TAO 16 (45.7) 19 (54.3)

AS 18 (75) 6 (25) 0.078a

Disease duration* 15 (2–40) 19 (3–30) 0.804b

Rutherford score* 5 (3–6) 5 (3–6) 0.860b

*, Median (min-max); a, Fisher’s exact test; b, Mann–Whitney U test; c, DPA, dorsal pedal artery; PTA, posterior tibial 
artery; DM, diabetes mellitus; TAO, thromboangiitis obliterans; AS, non-diabetic atherosclerosis.

Table 3. Logistic regression analysis of factors affecting success of retrograde tibiopedal access attempts

Model A Model B

OR %95 CI
Lower

%95 CI
Upper

P OR %95 CI
Lower

%95 CI
Upper

P

Age 1.025 1.011 1.040 0.001 1.033 1.020 1.045 0.000

Access artery (DPA) 3.185 1.120 9.057 0.030 2.773 1.028 7.482 0.044

Access site (non-occluded) 2.962 0.620 14.149 0.174 3.401 0.762 15.185 0.109

Sex (male) 2.898 0.718 11.696 0.135

Diagnosis (ref: TAO) 0.462

Diagnosis (DM) 2.292 0.617 8.516 0.216

Diagnosis (AS) 1.386 0.371 5.185 0.628

DPA, dorsal pedal artery; TAO, thromboangiitis obliterans; DM, diabetes mellitus; AS, non-diabetic atherosclerosis; OR, odds ratio; CI, confidence interval.
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The research findings indicated that there 
were no statistically significant variations in 
outcomes when considering factors such as 
patients’ age, gender, smoking status, Ruth-
erford score, and disease duration. The study 
conducted by Okuno et al.1 examined the 
potential impact of gender, age, and current 
smoking status on the risk of restenosis fol-
lowing endovascular therapy. The results 
indicated that none of these factors demon-
strated a statistically significant association 
with the risk of restenosis. Another study 
conducted by Grözinger et al.11 did not yield 
any statistically significant evidence, indicat-
ing that the Rutherford score has an impact 
on the technical success of endovascular 
treatments with RTPA. Similarly, the present 
study suggested that these factors lack sta-
tistical significance in relation to technical 
success. This observation suggests that the 
efficacy of the technique may not be greatly 
impacted by these variables.

The present investigation documented a 
rather modest incidence of complications, 
with vasospasm observed in 10.5% of the 
patient cohort and a self-resolving hema-
toma in 1.9% of cases. No major compli-
cations were noted related to RTPA. In the 
multicenter prospective study performed 
by Walker et al.13 involving 197 patients, in 
which the researchers included all occlusions 
in the infra-inguinal region, no major compli-
cations related to RTPA were observed; the 
overall rate of minor complications remained 
below 6% and consisted of local pain, infec-
tion, ecchymosis, bleeding, and acute vessel 
dissection. In another study conducted by 
Goltz et al.10, significant complications were 
not detected. However, minor complications 
consisting of hematoma and vasospasm 
were observed in 12.5% of the patients, 
aligning closely with the findings of the pres-
ent study. Significantly, the absence of more 
serious complications such as pseudoaneu-
rysms and arteriovenous fistulas suggests 
that RTPA is generally safe when performed 
with proficiency and accuracy.

The present study is subject to certain 
limitations, including the limited number of 
participants, the retrospective methodol-
ogy, and the single institution setting. Fur-
thermore, the restricted sample size may 
potentially limit the generalizability of its 
findings to wider groups. Further research 
is warranted to validate these findings and 
to explore the enduring effects of RTPA, in-
cluding the inclusion of a broader range of 

patients. Since the technical aspects and de-
terminants of successful RTPA were the main 
objective of this study, patency periods and 
long-term patency rates were not included in 
the results. However, the success of a method 
cannot be measured by its technical success 
alone. Due to the study group’s heterogene-
ity, any assessments of the clinical severity 
of PAD, such as the WIfi Classification,15 were 
excluded from the analysis. However, the pri-
mary goal of the study was to compare the 
success of RTPA in various diseases and clini-
cal circumstances to guide clinicians toward 
the best decision when contemplating RTPA.

One further limitation of the study per-
tains to the fact that the retrograde access, 
crossing, and recanalization procedures 
were conducted exclusively by a proficient 
interventional radiologist with expertise in 
this domain. Achieving access, crossing, or 
recanalization success and the results of the 
present study can vary among procedures 
conducted by various professionals.

In conclusion, this study elucidates the 
determinants impacting the efficacy of RTPA, 
emphasizing that the most favorable out-
comes were observed in individuals with DM 
who had a non-occluded DPA at the punc-
ture site. The success rates often exhibit a 
high level of efficacy; however, it is important 
to consider that several factors, including the 
selection of the access artery and the under-
lying medical condition, might exert an influ-
ence on the resulting outcomes. The findings 
provide valuable insights for clinicians in cus-
tomizing their strategy based on the unique 
qualities and situation of each patient. Addi-
tional research is needed to further elucidate 
these observations and formulate more pre-
cise clinical recommendations.

Conflict of interest disclosure

The authors declared no conflicts of inter-
est.

References
1.	 Okuno S, Iida O, Shiraki T, et al. Impact of 

calcification on clinical outcomes after 
endovascular therapy for superficial 
femoral artery disease: assessment using 
the peripheral artery calcification scoring 
system.  J Endovasc Ther. 2016;23(5):731-737. 
[CrossRef]

2.	 Htun WW, Kyaw H, Aung YL, Maw M, 
Kwan T. Primary retrograde tibio-pedal 
approach for endovascular intervention 
of femoropopliteal disease with chronic 
total occlusion.  Cardiovasc Revasc Med. 
2020;21(2):171-175. [CrossRef]

3.	 Malyar NM, Freisinger E, Meyborg M, et al. 
Low rates of revascularization and high in-
hospital mortality in patients with ischemic 
lower limb amputation: morbidity and 
mortality of ischemic amputation. Angiology. 
2016;67(9):860-869. [CrossRef]

4.	 Schmidt A, Bakker OJ, Bausback Y, Scheinert 
D. The tibiopedal retrograde vascular access 
for challenging popliteal and below-the-knee 
chronic total occlusions: literature review and 
description of the technique. J Cardiovasc Surg 
(Torino). 2017;58(3):371-382. [CrossRef]

5.	 Kersting J, Kersting J, Kamper L, Das M, Haage P. 
Guideline-oriented therapy of lower extremity 
peripheral artery disease (PAD) - current data 
and perspectives. Rofo. 2019;191(4):311-322. 
English, German. [CrossRef]

6.	 Ali NMOS, Alsaffar MHAAA. Transpedal and 
tibiopedal retrograde revascularization 
for peripheral vascular disease.  Cureus. 
2022;14(2):e22082. [CrossRef]

7.	 Ortiz D, Jahangir A, Singh M, Allaqaband 
S, Bajwa TK, Mewissen MW. Access site 
complications after peripheral vascular 
interventions: incidence, predictors, 
and outcomes.  Circ Cardiovasc Interv. 
2014;7(6):821-828. [CrossRef]

8.	 Mustapha JA, Saab F, McGoff T, et al. Tibio-
pedal arterial minimally invasive retrograde 
revascularization in patients with advanced 
peripheral vascular disease: the TAMI 
technique, original case series.  Catheter 
Cardiovasc Interv. 2014;83(6):987-994. 
[CrossRef]

9.	 Agarwal S, Sud K, Shishehbor MH. Nationwide 
trends of hospital admission and outcomes 
among critical limb ischemia patients: from 
2003-2011. J Am Coll Cardiol. 2016;67(16):1901-
1913. [CrossRef]

10.	 Goltz JP, Planert M, Horn M, et al. Retrograde 
transpedal access for revascularization of 
below-the-knee arteries in patients with 
critical limb ischemia after an unsuccessful 
antegrade transfemoral approach. Rofo. 
2016;188(10):940-948. English. [CrossRef]

11.	 Grözinger G, Hallecker J, Grosse U, et al. 
Tibiopedal and distal femoral retrograde 
vascular access for challenging chronic total 
occlusions: predictors for technical success, 
and complication rates in a large single-
center cohort.  EurRadiol. 2021;31(1):535-542. 
[CrossRef]

12.	 Montero-Baker M, Schmidt A, Bräunlich S, et 
al. Retrograde approach for complex popliteal 
and tibioperoneal occlusions. J Endovasc Ther. 
2008;15(5):594-604. [CrossRef]

13.	 Walker CM, Mustapha J, Zeller T, et al. 
Tibiopedal access for crossing of infrainguinal 
artery occlusions: a prospective multicenter 
observational study. J Endovasc Ther. 
2016;23(6):839-846. [CrossRef]

http://doi.org/10.1177/1526602816656612
http://doi.org/10.1016/j.carrev.2019.10.023
http://doi.org/10.1177/0003319715626849
http://doi.org/10.23736/S0021-9509.17.09905-0
http://doi.org/10.1055/a-0690-9365
http://doi.org/10.7759/cureus.22082
http://doi.org/10.1161/CIRCINTERVENTIONS.114.001306
http://doi.org/10.1002/ccd.25227
http://doi.org/10.1016/j.jacc.2016.02.040
http://doi.org/10.1055/s-0042-110101
http://doi.org/10.1007/s00330-020-07082-3
http://doi.org/10.1583/08-2440.1
http://doi.org/10.1177/1526602816664768


 

488 • September 2025 • Diagnostic and Interventional Radiology Gündoğmuş et al. 

14.	 Aygun MS, Tureli D, Deniz S, Oguzkurt L. 
Ultrasound-guided retrograde tibial access 
through chronically occluded tibial arteries: 
a last resort recanalization technique. Diagn 
Interv Radiol. 2022;28(6):621-626. [CrossRef]

15.	 de Athayde Soares R, Matielo MF, Brochado 
Neto FC, et al. WIfI classification versus 
angiosome concept: a change in the 
infrapopliteal angioplasties paradigm. Ann 
Vasc Surg. 2021;71:338-345. [CrossRef] 

http://doi.org/10.5152/dir.2022.21844
http://doi.org/10.1016/j.avsg.2020.07.049


I N T E R V E N T I O N A L  R A D I O L O G Y
O R I G I N A L  A R T I C L ECopyright@Author(s) - Available online at dirjournal.org.

Content of this journal is licensed under a Creative Commons
Attribution-NonCommercial 4.0 International License.

489

Flow-diverting stents in the management of extracranial carotid artery 
aneurysms 

PURPOSE
This study aims to investigate the indications and therapeutic efficacy of flow-diverting stents 
(FDSs) in the management of extracranial carotid artery aneurysms (ECAAs) and dissections.

METHODS
A retrospective analysis was conducted on 18 patients treated for ECAAs with an FDS between 
2010 and 2024. Patient demographics, aneurysm characteristics, procedural details, and clinical and 
radiologic follow-up outcomes were extracted from medical records. Procedures were performed 
under general anesthesia using standard endovascular techniques. Patients received preoperative 
and postoperative antiplatelet therapy and were fully anticoagulated during the procedure. Fol-
low-up assessments included digital subtraction angiography or computed tomography angiog-
raphy at 6–12 months and clinical evaluations to monitor symptom resolution and complications.

RESULTS
Eighteen patients, with an average age of 46.44 ± 17.54 years, underwent 19 endovascular inter-
ventions. Technical success was achieved in all cases. Single stent deployment was used in 15 aneu-
rysms, and telescopic stent deployment in 7. Total occlusion of the aneurysm was achieved in 94.4% 
of cases. One patient required retreatment due to the separation of two overlapped telescopic 
stents. All patients were discharged within 2 days post-procedure, with symptomatic patients expe-
riencing the complete resolution of symptoms. No complications or adverse events were reported 
during the follow-up period.

CONCLUSION
The endovascular treatment of ECAAs with FDSs appears to be a safe and effective alternative, 
achieving high technical success and positive clinical outcomes.

CLINICAL SIGNIFICANCE
The use of FDSs for treating ECAAs significantly improves patient outcomes with minimal compli-
cations.
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Carotid artery, stenting, flow diverter, aneurysm, neuroendovascular treatments
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Extracranial carotid artery aneurysms (ECAAs) account for <1% of all peripheral arterial 
aneurysms.1 The most common etiologies of ECAAs include atherosclerosis and dissec-
tion with or without trauma.2 These aneurysms are often diagnosed incidentally during 

examinations for other pathologic processes and are mostly asymptomatic.3 Although the risk 
of ECAA rupture and exsanguination is minimal, complications such as thrombosis, emboliza-
tion, and nerve compression frequently indicate the need for repair.4,5

In cases where ECAAs are located more distally in the  internal carotid artery (ICA) and near 
the base of the skull, endovascular therapy is recommended. Despite the lack of consensus, 
various types of stents are available for the endovascular treatment of ECAAs. Coated stents 
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are often avoided in tortuous carotid arter-
ies due to their stiffness and lack of maneu-
verability during the procedure.3 However, 
flow-diverting stents (FDSs) have proven to 
be more effective in treating extracranial an-
eurysms and dissections.4,6

This study aims to investigate the indica-
tions and therapeutic efficacy of FDSs in the 
management of ECAAs and dissections.

Methods
The Institutional Review Board of Ege 

University Faculty of Medicine approved 
this retrospective study (protocol number: 
24-8T/23, date: 26.06.2024). Informed con-
sent was not required due to this study’s 
retrospective and observational nature. All 
identifiable details were anonymized dur-
ing data collection and analysis to ensure 
patient confidentiality.

We conducted a retrospective analysis on 
a cohort of 18 patients treated in two insti-
tutions for ECAAs using FDSs between 2010 
and 2024. Patient demographics, aneurysm 
characteristics, procedural details, and clini-
cal and radiologic follow-up outcomes were 
extracted from medical records. These cas-
es were confirmed angiographically using 
computed tomography (CT) and magnetic 
resonance imaging. Inclusion criteria en-
compassed patients diagnosed with cervical 
ICA aneurysms, irrespective of aneurysm eti-
ology and presentation. Patients with aneu-
rysms located outside the cervical ICA were 
excluded.

All procedures were performed under 
general anesthesia using standard endo-
vascular techniques. The choice between 
single or telescopic stent deployment was 
based on aneurysm morphology, size, and 
the presence of associated vascular lesions. 
Antiplatelet therapy was administered pre-
operatively and continued postoperatively 
in accordance with institutional protocols. 
Patients were pre-loaded for 5 days with 
antiplatelet medication (300 mg/day of 
aspirin and 75 mg/day of clopidogrel). In 
cases of resistance to clopidogrel, 10 mg/
day of prasugrel was used. Platelet func-
tion was measured using multiple elec-
trode aggregometry (Multiplate® Analyzer; 
Roche Diagnostics, Munich, Germany). All 
tests were undertaken 1 day before the 
endovascular procedure. According to the 
consensus opinion of the Working Group 
on High On-Treatment Platelet Reactivity, 
platelet aggregation (adenosine diphos-
phate) values >47 U (the normal range in 
the absence of an antiaggregant is 57–113 
U, as reported by the manufacturer) is con-
sidered indicative of nonresponsiveness or 
hyporesponsiveness (resistance).7

All patients were fully anticoagulated with 
intravenous heparin during the procedure. 
Post-procedure, dual antiplatelet therapy 
was continued for 6–12 months, and aspirin 
was continued for the patient’s lifetime. 

A 6 or 7 Fr introducer was placed in the 
groin region for the vascular intervention, 
followed by navigation into the common 
carotid artery proximal to the dissection. A 
microwire inside a microcatheter was then 
crossed through the dissection segment. An 
FDS of the appropriate diameter and length 
was selected according to the measure-
ments made from three-dimensional angi-
ography. After the microcatheter was placed 
in the lesion, Pipeline (Medtronic, Irvine, CA, 
USA), Derivo (Acandis, Pforzheim, Germany), 
and Surpass Evolve (Stryker Neurovascular, 
Kalamazoo, MI) stents were used.

Technical success was defined as the ac-
curate placement and deployment of the 
FDS in the targeted segment of the cervical 
ICA without peri-procedural complications. 
Digital subtraction angiography or CT angi-
ography was performed routinely at 6 and 
12 months after stent deployment. Total oc-
clusion of the aneurysm on imaging was de-
fined as the absence of residual filling. Clin-
ical follow-up assessments were performed 
to monitor symptom resolution and poten-
tial complications. 

No statistical comparisons were made in 
this descriptive study. Summary statistics are 
reported as median and range for continu-
ous variables or frequency counts and per-
centages for categorical variables.

Result 
A total of 18 patients, comprising 8 men 

(45%) and 10 women (55.5%), underwent 19 
endovascular interventions. The average age 
was 46.44 ± 17.54 years, ranging from 8 to 
68 years. Six cases were discovered inciden-
tally during imaging investigations for other 
pathological processes, whereas the other 
patients presented with various symptoms 
(Table 1). 

Clopidogrel resistance was detected in 
three patients; they were re-loaded with pra-
sugrel. All patients were treated with FDSs. 
Technical success was achieved in all cases 
(100%) (Figures 1-4). Single stent deploy-
ment was utilized in 15 locations, whereas 
telescopic (dual) stent deployment was em-
ployed in 7 aneurysms. Imaging follow-up 
indicated that the total occlusion of the an-
eurysm was achieved in 17 out of 18 patients 
(94.4%). One patient required retreatment 
(patient 16) due to the separation of two 
overlapped telescopic stents, resulting in re-
sidual filling. When evaluated retrospective-
ly, it was thought that the stent separation 
was caused by insufficient manipulation dur-
ing initial stent deployment and leaving the 
short overlapped segment. This was success-
fully addressed with a third stent. Notably, 
aneurysm occlusion persisted in subsequent 
follow-ups.

All patients were discharged on postoper-
ative day 1 or 2. Clinically, symptom resolu-
tion was observed in symptomatic patients, 
including the complete disappearance of 
neck pain and swallowing difficulties. No 
complications or adverse events (transient 
ischemic attack or stroke) were reported dur-
ing the follow-up period.

Discussion
Our study found that FDSs are highly 

effective in treating ECAAs. Among the 18 
patients who underwent 19 endovascular in-
terventions, technical success was achieved 
in all cases, with 94.4% (17 out of 18) of aneu-
rysms showing total occlusion on follow-up 
imaging. One patient required retreatment 
due to the separation of two telescopic 
stents. Clinical outcomes were positive, with 
symptomatic patients experiencing the res-
olution of symptoms, and no complications 

Main points

•	 The study achieved a 100% technical suc-
cess rate in treating extracranial carotid 
artery aneurysms (ECAAs) with flow-divert-
ing stents (FDSs), as all 19 endovascular in-
terventions in 18 patients were successfully 
performed without peri-procedural compli-
cations.

•	 Follow-up imaging indicated a 94.4% total 
occlusion rate of aneurysms, with 17 out of 
18 patients showing complete occlusion. 
Only one patient required retreatment due 
to the separation of two overlapped tele-
scopic stents, which was successfully ad-
dressed with a third stent.

•	 All symptomatic patients experienced the 
resolution of their symptoms post-treat-
ment.

•	 The study reported no complications or 
adverse events, such as transient ischemic 
attack or stroke, during the follow-up peri-
od, indicating a safe profile for FDSs in ECAA 
treatment.
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Table 1. Summary of patients with ECAAs treated with an FDS

No/age 
(year)/
sex 

Etiology  Presentation  Aneurysm: side/
geometry/length/

diameter/neck 

Associated vascular 
lesions

FDS name/size Radiologic follow-up  Clinical fol-
low-up

1/8/F Fall 
Swallowing 
difficulties, 
neck mass

R/saccular/6 cm/3 
cm/0.5 cm None Pipeline/5 × 30 mm 

(two telescopic) 1-year CTA: total occlusion Disappearance 
of symptoms

2/45/M Unknown TIA  L/fusiform/2 cm/0.9 
cm/1.5 cm None Pipeline/5 × 30 mm 1- year CTA: total occlu-

sion No complaint

3/21/M Fall (suicide) Incidental 
(polytrauma)

R/saccular/1.5 cm/1.5 
cm/0.5 cm

L/fusiform/3.5 cm/2 
cm/2.5 cm

Aortic transec-
tion treated with 

stent graft

Pipeline/5 × 30 mm 
each

6-month CTA: total oc-
clusion No complaint

4/54/F Unknown Neck mass R/saccular/2.8 cm/2.2 
cm/1 cm None Pipeline/5 × 30 mm 

(two telescopic)
6-month CTA: total oc-

clusion No complaint

5/ 65/M  Unknown Incidental L/saccular/1.6 cm/0.5 
cm/1 cm None Pipeline/5 × 30 mm 1-year CTA: total occlusion No complaint

6/68/F Unknown Neck mass R/saccular/3 cm/3 
cm/1.3 cm None Pipeline/5 × 30 mm 6-month CTA: total oc-

clusion No complaint

7/35/F Unknown Acute neck 
pain

L/fusiform/2.5 cm/1.5 
cm/2 cm 

R narrowing of cer-
vical ICA due to long 
segment dissection

Pipeline/5 × 30 mm 12-month CTA: total oc-
clusion No complaint

8/45/M Unknown TIA
L/two saccular/2.5 

cm/1.5 cm/1 cm and 
1.2 cm/1.2 cm/0.7 cm 

None Pipeline/5 × 30 mm 
(two telescopic)

24-month CTA: total oc-
clusion No complaint

9/64/F Unknown Incidental L/saccular/0.8 cm/0.8 
cm/0.4 cm

L cavernous ICA 
aneurysm 15 mm in 

diameter
Pipeline/5 × 30 mm 15-month CTA: total oc-

clusion
No complica-

tions

10/65/F
Fibromus-
cular dys-

plasia
Incidental R/Saccular/0.3 cm/0.3 

cm/0.3 cm 

Two intracranial an-
eurysms 6 mm and 4 

mm in diameter 
Pipeline/5 × 30 mm 6-month CTA: total oc-

clusion
No complica-

tions

11/51/F Unknown Syncope

R/saccular/0.5 cm/0.3 
cm/0.4 cm

L/fusiform/1.5 cm/0.8 
cm/0.5 cm

Two intracranial an-
eurysms 1.3 cm and 
0.5 cm in diameter  

Pipeline/4.5 × 20 
mm (R)

Surpass/ 5 × 50 mm 
(L)

38-month DSA: total 
occlusion No complaint

12/16/M Unknown

Right 
transient 

hemiparesis 
8 months 

before 

L/fusiform/4 cm/1.5 
cm/ 3 cm None Derivo/5.5 × 50 mm 

(two telescopic) 

6-month DSA: apparently 
diminished aneurysm. 
36-month CTA: almost 

total occlusion with mini-
mal neck filling 

No complaint

13/33/M Unknown

Acute stroke, 
mechanical 

thrombecto-
my 4 weeks 

before

L/fusiform/1.5 cm/1 
cm/1.5 cm

Dissecting stenosis 
involving whole pre-
petrous ICA segment

Surpass/5 × 20 mm 
and Derivo/ 5 × 50 

mm (telescopic)

30-month DSA: aneurysm 
occlusion with 50% long 

segment stenosis
No complaint

14/48/F Unknown Incidental

R/saccular/0.9 cm/0.9 
cm/0.5 cm

L/fusiform/3 cm/1 
cm/2.5 cm

Cavernoma in cervi-
cal spinal cord

Pipeline/5 × 30 mm 
in each

6-month DSA: total oc-
clusion No complaint

15/52/F Unknown Incidental R/saccular/1.5 cm/1.5 
cm/0.5 cm Occluded L ICA Pipeline/5 × 30 mm 12-month Doppler US: 

total occlusion No complaint

16/61/M Unknown Neck pain R/fusiform/2.5 cm/1.5 
cm/0.6 cm

Three intracranial 
aneurysms 5, 6, and 
15 mm in diameter

Derivo/4.5 × 30 and 
5.5 × 30 mm (tele-

scopic)
Derivo/5.5 × 50 mm 

(retreatment)

6-month DSA: residual 
filling due to separation of 

overlapped stents. Re-
treatment with third stent. 

18-month DSA: total 
occlusion 

No complaint

17/54/F
Connective 
tissue dis-

order
Neck pain

R/saccular/1 cm/1 
cm/0.4 cm and 0.9 
cm/0.8 cm/0.4 cm
L/saccular/2 cm/1 

cm/0.5 cm

None Pipeline/4.75 × 30 
mm in each.

6-month CTA: total oc-
clusion 

Neck pain 
subsides

18/51/M
Fibromus-
cular dys-

plasia
Neck pain

R/fusiform/1 cm/0.8 
cm/0.8 cm

L/fusiform/1 cm/0.9 
cm/0.7 cm

None
Derivo/5 × 30 mm 

(two telescopic in R)
Derivo/5 × 30 mm (L)

6-month DSA: total oc-
clusion 

Neck pain 
subsides

F, female; M, male; ECAAs, extracranial carotid artery aneurysms; FDS, flow-diverting stent; TIA, transient ischaemic attack; L, left; R, right; ICA, internal carotid 
artery; CTA, computed tomography angiography; DSA, digital subtraction angiography; US, ultrasound.
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or adverse events were reported during the 
follow-up period.

ECAAs can arise from various etiologies, 
including atherosclerosis, trauma, infec-
tions, and inflammatory conditions.2 Many 
cases, similar to those in our study, can be 
idiopathic.8 Giannopoulos et al.’s9 system-
atic review found trauma to be the cause in 
54.3% (38 out of 70) of cases. Similar to our 
study, the literature indicates that neurologi-
cal symptoms occur in approximately 42% to 
51% of ECAA cases.10-12 Given the high mor-
bidity associated with ECAAs, treatment is 
recommended upon diagnosis, especially if 
symptomatic.13,14 Untreated ECAAs can lead 
to distal embolization (particularly in true 
aneurysms) or exert a mass effect on adja-
cent structures (particularly in false aneu-
rysms).15,16

Several therapeutic strategies have 
been proposed for managing ECAAs, in-
cluding surgical, endovascular, and con-
servative therapies. In addition, there is 
a case report of a complex ECAA treated 
with both endovascular and open surgi-
cal approaches.17 However, the optimal 
treatment modality remains controversial 
due to the lack of established guidelines. 
Open surgery for ECAA treatment has a 
2.6% peri-procedural mortality rate, and 
cranial nerve injury occurs in 11.8% to 26% 
of cases.2,9 Moreover, open surgery can be 
risky if the aneurysm’s location and patient 
suitability are not optimal. Attigah et al.18 
classified aneurysms into high (type I) and 
very low (type V) positions, with these 
positions being more suitable for endo-
vascular treatment. In an observational 
study by Choi et al.19 involving 41 patients 
treated with surgical, conservative, or end-

ovascular methods, surgical treatment was 
preferred for Attigah type I ECAAs at their 
institution (64.0% vs. 40.0%, P = 0.09), and 
both surgical and endovascular treatments 
were deemed safe.

A meta-analysis by Galyfos et al.20 in-
volving 374 patients with 383 ECAAs (220 
were treated with open surgery and 81 
with endovascular methods) found simi-
lar 30-day mortality rates for open surgery 
and endovascular treatments [4% vs. 0%; 
pooled odds ratio (OR), 2.67; 95% confi-
dence interval (CI), 0.291–24.451]. Stroke 
and transient ischemic attack rates were 
also comparable (5.5% vs. 1.2%; pooled OR, 
1.42; 95% CI, 0.412–4.886), but cranial injury 
was more common in open surgery (14.5% 
vs. 0%; OR, 3.98; 95% CI, 1.178–13.471).20 
The literature also shows that the perioper-
ative stroke rate for endovascular treatment 
ranges from 2% to 3.1%.9,10 Similarly, Ni et 
al.21 demonstrated in a study with a 2-year 
follow-up that no deaths or neurological 
adverse events occurred.

Endovascular modalities described in the 
literature include covered stenting,12 bare 
metal stenting,2 multiple stent techniques 
(telescoping stenting, overlapped stent-
ing),22 and stent-assisted coiling14 for treating 
ECAAs. Self-expanding carotid stents have 
traditionally been used for treating carotid 
atherosclerosis in high-risk patients due to 
their positive effects on coronary atheroscle-
rosis. Recently, these stents have also been 
employed to address spontaneous dissec-
tions or those caused by trauma or angioplas-
ty.4,8,23 However, mechanical tests reveal that 
self-expanding carotid stents tend to stiffen, 
with bending stiffness increasing non-line-
arly as deflection rises.24 This stiffness makes 
these stents less suitable for use in a distal 
cervical or petrous ICA, where sharp angula-
tion at the skull base occurs. Furthermore, ca-
rotid stents with large cell designs are highly 
porous and may lack sufficient radial force to 
seal a false lumen or induce thrombosis in a 
pseudoaneurysm.25

In our study, we used FDSs for all cases. Al-
though there are limited reports on the use 
of FDSs,4,5,25-28 they offer several advantages 
over traditional closed- and open-cell stents. 
Kurre et al.28 reported their experience with 
stent placement for acute ICA dissections in 
73 patients presenting with acute ischemia, 
using FDSs in approximately 30% of cases. 
They reported excellent success rates (100%) 
for justified reconstructions of the cervical 
ICA and a low complication rate (8%), with 
no new ischemic symptoms in treated dis-

Figure 1. Patient 1: Chronic traumatic aneurysm (a). Magnetic resonance imaging shows a huge mass 
compressing the esophagus and laryngeal air passage. (b) Subtracted computed tomography (CT) 
angiography reveals the aneurysm with extensive wall calcification. (c) Angiography demonstrates a huge 
aneurysm arising from the pre-petrous segment of the right internal carotid artery. (d) One-year follow-up 
CT angiography confirms the disappearance of the aneurysm and shrinkage of the mass.
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sections.28 Similarly, Hilditch et al.5 treated 
seven young patients with symptomatic ex-
tracranial ICA dissection using FDSs, with no 
serious perioperative complications. None of 
the patients experienced recurrent ischem-
ic events following ICA reconstruction, and 
no postprocedural in-stent stenosis was ob-
served.

FDSs are approved for the treatment of 
wide-necked intracranial aneurysms and 
are potentially suitable for treating dis-
sections with or without aneurysms at the 
skull base due to several unique features. 
The softer and more flexible characteristics 
of FDSs provide greater durability against 
stent fracture in the highly mobile high-cer-
vical ICA transition at the skull base. FDSs 
are low-porosity woven tubes, offering 

three times the vessel wall coverage com-
pared with traditional intracranial stents.25 
The higher metal coverage of the parent 
vessels (30%–50%) of FDSs can improve the 
closure of a dissection flap or pseudoaneu-
rysm and reduce continued blood flow into 
a false lumen. This can also reduce recurrent 
embolic events, providing an advantage 
over braided stents, which generally offer 
less metal coverage.29 In addition, FDSs fa-
cilitate the neo-intimal remodeling of the 
parent artery. Another significant feature of 
the FDS is its greater flexibility and adapt-
able radial force compared with traditional 
self-expanding carotid stents, allowing eas-
ier accommodation to sharp angulation at 
the skull base.

Despite the advantageous properties of 
FDSs in treating ECAAs with or without dis-
section, certain factors may limit their future 
use. Notably, some features of the extracra-
nial cervical vessel structure, such as high 
lumen pressures and frequent positional 
changes due to neck movement, pose a 
higher risk of stent migration compared with 
intracranial vessels.30 Both proximal migra-
tion in the anterior and posterior circulation 
and the spontaneous shortening of FDSs 
have been reported.31 In our series, we en-
countered the separation of two overlapped 
telescopic stents in only one patient. Anoth-
er concern is the need for dual antiplatelet 
agents 6–12 months following FDS place-
ment, complicating the management of any 
medical conditions requiring surgery.26

Another significant limitation of FDSs in 
cervical segments is the parent artery diame-
ter, as current flow diverters are recommend-
ed for vessel diameters of up to 5.2–5.75 mm, 
designed to open approximately 0.25 mm 
above their nominal diameter, with the larg-
est available size being approximately 5.25 
mm. For arteries measuring wider than 5.75 
mm, other adjunctive endovascular tech-
niques should be considered. For example, 
Amuluru et al.4 and Rahal et al.32 reported 
concurrent anchoring strategies with FDS 
deployment in cases where the distal cervi-
cal ICA measured ≥5.25 mm. To ensure ad-
equate coverage of the aneurysm neck and 
to cover long segment dissection, if any, we 
intentionally used multiple FDSs in a tele-
scoping configuration in six patients. Tsang 
et al.26 also highlighted the use of the tele-
scoping method in six of the seven cases in 
their series. 

This study has several limitations that 
should be considered when interpreting the 
findings. The retrospective, non-randomized 
design may introduce recall bias and limit 
the establishment of causal relationships. 
The small sample size because of the low 
incidence of ECAAs limits the study’s power. 
The etiology and aneurysm type also differed 
in each case. Additionally, some patients did 
not have a long enough follow-up period. 
Although these limitations require cautious 
interpretation, they also point to opportu-
nities for future research to address these 
constraints and enhance our understanding 
of the subject.

In conclusion, considering the patient’s 
condition and the characteristics of the 
aneurysm, the endovascular treatment of 
ECAAs with FDSs appears to be a safe and 
feasible alternative. 

Figure 2. Patient 3: Bilateral acute traumatic dissecting aneurysms. (a) Computed tomography (CT) 
angiography reveals a bilateral high-cervical internal carotid artery (ICA) dissection accompanied by 
saccular (R) and fusiform (L) aneurysms. (b, c) Angiograms show more clearly the anatomy of the right (b) 
and left (c) cervical ICA aneurysms. (d) Six-month control CT angiography confirms the disappearance of 
both aneurysms and the normal calibration of the dissected segments. 
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T E C H N I C A L  N O T E

Utilization of a steerable microcatheter and adjunctive techniques 
for prostatic artery embolization in anatomically challenging 
vesicoprostatic trunks 

ABSTRACT
Prostatic artery (PA) origination from a common trunk with the superior vesical artery (SVA) is a 
frequent cause of technical difficulties in PA catheterization for PA embolization (PAE). These diffi-
culties, which substantially increase the operative time, radiation dose, cost, and technical failure 
rate of PAE, can often be overcome by the utilization of a steerable microcatheter (MC) with a tip 
that can be manually adjusted at an angle that optimally conforms to the shape and origin of the 
common vesicoprostatic trunk. Adjunctive techniques that can be applied when the steerable MC 
fails to engage the PA include: 1) the protective temporary embolization of the SVA so that a perma-
nent embolic can be redirected into the PA; 2) PAE via collaterals between superior vesical branches 
and the PA; and 3) embolization from a proximal position of the MC near the PA orifice to exploit 
preferential flow to the PA. In the authors’ recent experience, the utilization of a steerable MC with 
and without adjunctive techniques (in 12 and 23 patients, respectively) resulted in a 35% increase 
in the technically successful embolization of PAs originating from vesicoprostatic trunks with no 
significant complications. Familiarization with alternative devices and techniques may substantially 
improve the technical outcome of PAE in cases with challenging arterial anatomy.

KEYWORDS
Angiography, microcatheter, prostatic artery, prostatic artery embolization, vesicoprostatic trunk

You may cite this article as: Moschouris H, Şentürk Ç, Stamatiou K. Utilization of a steerable microcatheter and adjunctive techniques for prostatic artery 
embolization in anatomically challenging vesicoprostatic trunks. Diagn Interv Radiol. 2025;31(5):496-501.

Prostatic artery (PA) origination from a common vesicoprostatic trunk with the superi-
or vesical artery (SVA) (referred to as type 1 PA origination, according to a widely used 
angiographic classification)1 is the most prevalent (or second most, depending on the 

population in question) variety of PA origination.1,2 Compared with other types of PA origi-
nation, type 1 is associated with significantly more technical difficulties during attempted PA 
catheterization for PA embolization (PAE). These difficulties, mainly caused by a short and cra-
nially oriented vesicoprostatic trunk, with or without an unfavorable angle of origin of the PA 
from this common trunk, may lead to prolonged operative times, increased radiation doses 
for staff and patients, and the need for additional microcatheters (MCs) and microguidewires 
(MGWs).2,3 The rate of unsuccessful attempts at superselective catheterization of the PA is also 
significantly higher for type 1 origination compared with all other types combined,2 and this 
eventually translates into unilateral (rather than bilateral) PAE procedures with suboptimal 
clinical outcomes. 

Among other approaches, the utilization of a steerable MC with a tip manually adjustable 
by the operator to angles of 0°–180°, has been briefly reported in the literature3-5 as an option 
to address the challenges associated with vesicoprostatic trunks during PAE. There is likely 
room for refinement and the application of adjunctive techniques in the deployment of the 
steerable MC to further improve the technical outcomes of PAEs. The aim of this work is there-
fore to describe the utilization of a steerable MC and of adjunctive techniques for PAE in the 
context of anatomically challenging vesicoprostatic trunks. The clinical efficacy and safety of 
the described techniques is also briefly evaluated.
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Methods
In the centers of the authors, a steerable 

2.4 French (Fr) MC (SwiftNINJA, Merit Medical 
Systems, Inc., South Jordan, UT, USA) was de-
ployed when catheterization of the common 
vesicoprostatic trunk proved impossible af-
ter attempts of approximately 3 min dura-
tion with the initial standard combination of 
devices. This combination included a 2 Fr MC 
(Parkway Soft-Asahi Intecc Co., Japan) and a 
double-angled MGW (0.016” Meister, Asahi 
Intecc Co.). Compared with the standard de-
vice, the tip of the steerable MC can not only 
be adjusted so that it is optimally oriented 
to the orifice of the common vesicoprostatic 
trunk but also provides better support and a 
steadier angle that is not prone to straighten-
ing upon insertion of the MGW. The tip of the 
steerable MC was locked at the desired an-
gle and catheterization was attempted. After 
initial engagement of the orifice of the com-
mon vesicoprostatic trunk with the MGW, the 
MGW tended to advance more easily into the 
SVA than into the PA. After distal advance-
ment of the MGW into the SVA, the angled 
tip of the steerable MC was “unlocked,” and 
the device was advanced distally over the 
MGW and into the SVA to secure this first 
step of catheterization. Subsequently, the 
MC–MGW combination was slowly retracted 
under fluoroscopy until it reached the origin 
of the PA. Catheterization of the latter was 
then attempted with appropriate rotation of 
the double-angled MGW and, as necessary, 
with a new adjustment of the tip of the MC 
so that it was angled and “locked” in the di-
rection of PA origination (Supplementary 
Figures 1, 2). The same double-angled MGW 
used in the initial attempts was combined 
with the steerable MC. Occasionally, howev-
er, if appropriately angled, the steerable MC 

alone (without the MGW) could be advanced 
to engage first the common vesicoprostatic 
trunk and then the PA (Supplementary Vid-
eos 1, 2). A high-quality “roadmap” image 
greatly facilitated the identification of the 
origins of the target arteries.

When attempts with a steerable MC and 
MGW proved fruitless, the following tech-
niques were applied:

1. Protective temporary embolization of 
the SVA. This can be applied when the MC 
easily advances into the SVA but cannot be 
redirected into the PA. In the current work, a 
temporary embolic agent (EmboCube Gela-
tin, Merit Medical) with particles of a hydrat-
ed size of 2.5 mm was injected through the 
MC into the SVA. Care was taken to avoid a 
too-distal or too-proximal occlusion, includ-
ing at the PA origin. After angiographic con-
firmation of an SVA occlusion, the MC was 

withdrawn just proximal to the PA origin. A 
permanent embolic (composed of micro-
spheres) was then slowly injected, and its 
redirection into the PA was fluoroscopically 
documented (Figure 1). Care is required to 
avoid backflow into the anterior division of 
the internal iliac artery. Occasionally, resis-
tance to the advancement of the MGW in 
the SVA after its occlusion forces the MGW to 
enter an otherwise non-selectable PA. At this 
point, superselective catheterization of the 
PA can be accomplished. Finally, although 
gelatin is considered a temporary embolic, 
the authors confirm the patency of the con-
tralateral SVA prior to the protective occlu-
sion of the ipsilateral SVA.

2. PAE via collaterals. Descending SVA 
branches with rich anastomoses to the PA 
may occasionally be encountered. Owing 
to their usually obtuse angle of origin from 
the SVA, superselective catheterization and 

Main points

•	 Prostatic artery (PA) origination from the an-
terior division of the internal iliac artery in 
the form of a common trunk with the superi-
or vesical artery (i.e., a vesicoprostatic trunk) 
is frequently encountered.

•	 This vesicoprostatic trunk may be clinically 
relevant to PA embolization because of the 
frequently associated difficulties arising 
from it during the procedure. 

•	 These difficulties may result in increased op-
erative times, radiation doses, and costs and 
even in technical failure of the procedure.

•	 A steerable microcatheter with a tip that can 
be manually adjusted to an angle of 0°–180° 
can be employed with or without adjunc-
tive techniques to overcome the aforemen-
tioned difficulties.

Figure 2. Embolization through collaterals to the prostatic artery (PA). Angiographic image shows the tip of 
the microcatheter (MC) (dotted arrow) in the distal part of a branch of the superior vesical artery. Contrast 
injection in this branch opacifies the left hemiprostate and, retrogradely, the left PA (arrow). No significant 
perfusion of the bladder wall is appreciated. Embolization was safely performed from this position of the 
MC. 

Figure 1. Protective superior vesical artery (SVA) embolization. (a) Fluoroscopic image with the “roadmap” 
technique shows advancement of the microguidewire (MGW) into the SVA (dotted arrow). Redirection 
of the MGW to the prostatic artery (PA) (arrow) was impossible. (b) Angiographic image after protective 
embolization and proximal occlusion of the SVA (dotted arrow) shows good opacification of the PA (arrow) 
and of the right hemiprostate. Embolization was safely performed from this position of the microcatheter.

a b
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the distal advancement of the MC into these 
branches is much easier than catheteriza-
tion of the PA. If a slow manual contrast in-
jection in these branches reveals substantial 
prostatic opacification and negligible per-
fusion of the bladder wall, PAE can be safely 
performed through these descending SVA 
branches (Figure 2).

3. Embolization from a proximal position 
of the MC near the PA orifice that exploits 
preferential flow to the PA. This can be ap-
plied when all previous options have failed 
and when the tip of the steerable MC can 
only reach the orifice of the PA without en-
gaging it. In the current work, with appropri-
ate rotation of the MC and/or adjustments of 
the angle of its tip, the latter was positioned 
against the PA orifice. Angiograms were ac-
quired during slow manual contrast injec-
tions to ensure that only the PA was opaci-
fied (Figure 3). Embolization was then slowly 
performed and stopped when a sub-stasis of 
flow was observed in the PA.

Of a total of 157 patients with benign 
prostatic hyperplasia (314 pelvic sides) treat-
ed with PAE in the centers of the authors 
during the last 3 years (Table 1), a common 
vesicoprostatic trunk was observed in 101 
pelvic sides (32.2%). In cases with a double 
or triple PA per pelvic side, only the most 
prominent PA was registered. All patients 
were informed in detail of both the standard 
and the adjunctive PAE techniques and pro-
vided written informed consent prior to the 
procedure. Of the 101 cases with vesicopros-
tatic trunks, PAE was accomplished with a 
standard MC in 59 cases, PA catheterization 
required additional utilization of steerable 
MC with no adjunctive technique in 23 cas-
es, and a steerable MC and adjunctive tech-
niques were eventually employed in 12 cases 
(Table 2). In the remaining 7 cases, utilization 
of one of the aforementioned approaches 
either failed or adjunctive techniques were 
contraindicated, and the patients underwent 
unilateral PAE. All 35 patients who were suc-
cessfully treated with a steerable MC, with or 
without adjunctive techniques, underwent 
bilateral PAE, and the clinical success rate 1 
year post-PAE was 87%. No major complica-
tions were observed. Minor complications 
were observed in 6 of the 35 patients. The 
technical success rate within the entire co-
hort of 157 patients was 96.8% (bilateral PAE 
in 128 patients, unilateral PAE in 24 patients, 
and technical failure/no PAE in 5 patients). 
The clinical success rate 1 year post-PAE was 
83.7%, and complications (minor only) were 
encountered in 25 of the 157 patients (Sup-
plementary Figure 3, Supplementary Table 1). 

Finally, imaging from and the clinical out-
comes of the 35 patients who were treated 
with the steerable MC, with or without ad-
junctive techniques, were comparable with a 
previous series from the same centers with-
in which only conventional catheterization 
techniques were applied.6 

Discussion
According to a practical and widely ac-

cepted approach,1 PA origination can be 
angiographically classified into five types. 
In type 1, the PA and the SVA share a com-
mon origin (trunk) from the anterior division 

Figure 3. Exploitation of preferential flow to the prostatic artery (PA). (a) Fluoroscopic image with the 
“roadmap” technique shows the tip of the steerable microcatheter (MC) (dotted arrow) in the vesicoprostatic 
trunk. The PA (arrow) has an acutely angled and tortuous origin from the trunk, and superselective 
catheterization of the PA was impossible. (b) Angiographic image after adjusting the tip of the MC to face 
the PA ostium (dotted arrow) shows good opacification of the PA (arrow) and of the right hemiprostate and 
no reflux in the superior vesical artery or in the anterior division of the internal iliac. Embolization was safely 
performed from this position of the MC.

a b

Table 1. Demographic and clinical features of the patients

Variable Value for all patients 
with PAE treated in the 
two centers (n = 157)

Value for the subgroup treated 
with steerable MC ± adjunctive 

techniques (n = 35)

Age (y; mean ± SD) 71.2 ± 10.3 73.1 ± 11.2

BMI (mean ± SD) 26.6 ± 2.6 27.1 ± 3.1

PV (mL; mean ± SD) 87.1 ± 48.2 77.4 ± 41.2

Indication for PAE (proportion of patients)

Moderate LUTS 54/157 11/35

Severe LUTS 57/157 14/35

Indwelling bladder catheter 40/157 9/35

Hemorrhage of prostatic origin 6/157 1/35

PAE, prostatic artery embolization; MC, microcatheter; SD, standard deviation; BMI, body mass index; PV, prostate 
volume; LUTS, lower urinary tract symptoms; y, years.

Table 2. Additional data about the adjunctive techniques for PAE

Adjunctive technique Number of 
patients

Embolic 
material

Percentage of 
prostatic infarction 
of the treated lobe*

Clinical success 1 year 
post-PAE (proportion 

of patients)

Protective SVA 
embolization 6 Embosphere 

(100–300 μm) 5%–55% 6/6

PA embolization via 
collaterals 3 Embosphere 

(100–300 μm) 31%–39% 3/3

Proximal PA 
embolization and 
exploitation of 
preferential flow to 
the PA 

3 Embosphere 
(300–500 μm) 0%–26% 2/3

*Percentage of prostatic infarction = the volume of infarcts in the treated lobe/the total volume of the treated lobe 
(infarcts were evaluated with contrast-enhanced ultrasound). PAE, prostatic artery embolization; SVA, superior 
vesical artery; PA, prostatic artery.
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of the internal iliac artery. In type 2, the PA 
originates from the anterior division of the 
internal iliac artery (separately from the SVA). 
Type 3 describes PA origination from the 
obturator artery, while type 4 indicates orig-
ination from the internal pudendal artery. Fi-
nally, type 5 includes rare PA origins, such as 
origination from the accessory pudendal or 
aberrant obturator artery. Among other vas-
culo-anatomical factors, PA origination type 
affects the technical outcome of PAE, with 
type 1 most often associated with difficult or 
failed PA catheterizations.

Compared with standard MCs, the utili-
zation of a steerable MC appears to signifi-
cantly increase the chances of the successful 
catheterization of type 1 PA originations—
particularly in cases of short, cranially orient-
ed vesicoprostatic trunks with an acute angle 
of PA origination2-5—by up to approximately 
35%, according to the experience presented 
herein. The steerable MC can also address 
additional challenges that often coexist with 
type I PA origin, such as a tortuous and ectat-
ic anterior division of the internal iliac artery 
or a base catheter facing posterolaterally in-
stead of anteromedially.7 When preinterven-
tional computed tomographic angiography 
reveals such a challenging anatomy, it may 
be more practical to begin with a steerable 
rather than a standard MC; however, the fi-
nancial aspects of this approach should be 
further investigated.

With the adjunctive techniques described 
herein, PAE can be performed even when 
superselective catheterization of the PA is 
impossible. The following technique-specif-
ic comments can also be made: 1) protec-
tive coiling of the SVA has been described 
before7 and, despite its permanent nature, 
is considered a safe technique. However, 
since protective occlusion of the SVA is only 
needed during the few minutes of the injec-
tion of microspheres into the PA, the authors 
prefer a temporary embolic agent for the 
protection of the SVA, with the potential for 
complete SVA recanalization in the follow-

ing days or weeks. Moreover, uniformly cut 
gelatin particles with a standardized hydrat-
ed size probably ensure a more controlled 
and precise occlusion compared with the 
gelfoam slurry prepared by the operator;6 
2) collaterals between vesical and prostatic 
arteries are not uncommon,8 but they can 
only rarely serve as pathways for safe and 
effective PAE. Distal advancement of the MC 
in the collaterals and slow, controlled man-
ual contrast injections6 are required to con-
firm abundant flow to the prostate and the 
absence of bladder wall opacification; and, 
finally 3) it should be acknowledged that the 
exploitation of preferential flow to the PA is 
a suboptimal PAE technique that should be 
applied only when previous options have 
failed. Relatively larger microspheres with a 
diameter of 300–500 microns (rather than 
100–300 microns) are preferred for this last 
option to minimize the risk of ischemic com-
plications in the case of reflux to the SVA or 
to the more distal branches of the anterior 
division of the internal iliac artery.

Other options to address the aforemen-
tioned difficulties are either not widely 
available—such as utilization of a robotic 
c atheter7—or are more complex and inva-
sive—such as the combination of a larger 
sheath and a “buddy wire”.5 The adjunctive 
techniques presented herein appear to be 
simpler, more widely available, and afford-
able, as they can be applied not only with 
steerable but also with standard MCs.

In conclusion, familiarization with the 
application of a steerable MC and with the 
adjunctive techniques described herein may 
substantially improve the technical outcome 
of PAE in cases of anatomically challenging 
vesicoprostatic trunks.
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Supplementary Figure 1. Schematic drawing showing usual maneuvers for prostatic artery (PA) catheterization in challenging case of vesicoprostatic (VP) trunk. 
(a) The tip of the steerable microcatheter (MC) is manually angulated towards the orifice of the VP trunk and locked. (b) The microguidewire (MGW) is inserted; 
more often than not, it advances into the superior vesical artery (black dotted arrow) instead of the PA (black arrow). (c) The tip of the MC is unlocked and the latter 
is inserted into the superior vesical artery over the MGW. (d) The MC and MGW are slowly withdrawn close to the origin of the PA; the latter is catheterized with 
appropriate rotation of the MGW, and, if required, additional angulation and locking of the MC. (e) The MGW is advanced into the PA. All drawings correspond to 
ipsilateral oblique angiographic projections. Blue arrow indicates the direction of advancement (or withdrawal) of MC and MGW.

a cb d e

Supplementary Figure 2. Representative case of utilization of steerable microcatheter (MC) in the context of challenging vesicoprostatic (VP) trunk. Ipsilateral 
oblique roadmap image (a), shows a short VP trunk (dotted arrow) which originates at 90° angle from the anterior division of the internal iliac artery. The angle of 
prostatic artery (PA, arrow) origin from the VP trunk is also unfavorable (less than 90°). Similar projections during attempt of catheterization with steerable MC (b, 
c), show the tip of the MC (dotted arrow, b) angulated towards the orifice of the VP trunk. Despite suboptimal support from the base catheter, the microguidewire 
(arrow, c) can be directed into the PA. Anteroposterior angiogram (d) after distal advancement of the MC into the PA shows distal prostatic branches (arrows).

a cb d
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Supplementary Figure 3. Kaplan-Meier curves showing the clinical success rates for the entire patient cohort (n = 157) who unterwent PAE in the 2 centers of the 
authors during the last 3 years (a), and for the subgroup of patients (n = 35) who underwent PAE with steerable MC ± adjunctive techniques (b). PAE, prostatic artery 
embolization; MC, microcatheter.

a b

Supplementary Table 1. Complications encountered in the patients of this work

Complication* Number of patients (%)

For the entire patient cohort (n = 157) For the subgroup treated with steerable MC ± adjunctive 
techniques (n = 35)

Haematospermia 3 (1.9) -

Haematuria 2 (1.3) 1 (2.8)

Penile ulcers (small, ischemic) 2 (1.3) -

Acute urinary retention 9 (5.7) 4 (11.5)

Prostatic tissue expulsion 1 (0.6) -

Rectal bleeding 2 (1.3) -

Urinary tract infection 2 (1.3) -

Inguinal haematoma 4 (2.5) 1(2.8)

Total 25 (15.9) 6 (17.1)

*All complications were considered minor, because they required no hospitalization and were self-limiting, or resolved with conservative treatment. MC, microcatheter.

Supplementary Video 1 link: https://youtu.be/JSOz3imIncg

Supplementary Video 1. Despite suboptimal support from and unfavorable rotation of the base catheter, the steerable MC can be appropriately angled and directed into 
the vesicoprostatic trunk without a MGW. MC, microcatheter, MGW, microguidewire.

Supplementary Video 2 link: https://youtu.be/gU1DBLcCZOk

Supplementary Video 2. Despite unfavorable rotation of the base catheter, appropriate angulation of the steerable MC can help the operator to direct the MGW into the 
vesicoprostatic trunk and then into the PA. MC, microcatheter, MGW, microguidewire, PA, prostatic artery.
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Dear Editor, 

Model training presents significant advantages for training purposes in several key 
areas of musculoskeletal embolization. The model allows trainees to gain practical 
experience with the procedures, techniques, and equipment used in real-world sce-

narios. This hands-on practice is invaluable for building confidence and competence to find 
and treat neovessels. As we have seen recently,1 detecting neovessels, which is a direct marker 
of the technical success of this treatment, is a key but challenging step in performing emboli-
zation and must be mastered to avoid inappropriate patient management.

The patellar tendinopathy pig animal model2 provides a realistic environment for trainees 
to learn how to diagnose and treat neovascularization. This is particularly important for un-
derstanding the complexities and nuances of different degrees of neovessel visualization. In 
this study, we improved our understanding of the model and developed a classification for 
the evaluation of these neovessels during pre- and post-embolization angiographies. A Lik-
ert scale was used to evaluate the neovessels in our model (grade 0: no neovessels; grade 1: 
slight tumor blush equivalent to muscle enhancement; grade 2: marked tumor blush greater 
than muscle enhancement; grade 3: very marked tumor blush). Additionally, we examined 
associated vascular anomalies (arterial anastomosis, early venous return). These observations 
are detailed and illustrated in the portfolio (Figures 1 and 2) for the reader’s reference. Based 
on this classification, this model allows for an expert and reliable angiographic evaluation of 
the effectiveness of the embolization agent used by comparing the neovessels before and 
after embolization.

During the past year, from 2023 to 2024, 24 angiographies were conducted on our pig 
patellar tendinopathy model, involving 12 pigs and 24 tendons. Tendinopathy induction in-
volved injecting a total of 50 mg of type 1 collagenase per tendon under ultrasound guidance, 
using two syringes, each containing 25 mg at a concentration of 25 mg/mL. The injections 
were performed using 1-mL insulin syringes (G25 with attached needles) for precise and con-
trolled delivery. On all the angiographies performed at D7, the presence of neovessels was 
noted. Across all the series performed, 5 had grade 1 neovessels, 8 had grade 2, and 11 had 
grade 3. Moreover, six had multiple arterial anastomoses and seven had early venous return 
(often in association). For reference, these described vascular anomalies can be associated 
with any grade of neovessels, sometimes masking their detection. This highlights the value of 
this model for training in identifying neovessels and then practice in treating them. 

One of the key benefits of using an animal model lies in the tactile feedback it offers, which 
is crucial for learning how to manage resistance and understand the importance of quality 
injections, as we previously described,1 in musculoskeletal embolization. This tactile feedback 
also aids in assessing reflux and making real-time adjustments, skills that are challenging to 
replicate in purely virtual or silicone-based environments. This hands-on experience may help 
to develop not only theoretical knowledge but also essential technical competence. 

Although simulators represent the future of medical training, and some affordable op-
tions do exist, those specifically designed for high-fidelity embolization procedures remain 
expensive. Moreover, one of the issues with current simulators is their lack of fidelity to the 
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actual procedure, which limits their effec-
tiveness. This makes purchasing a simulator 
a significant financial investment that may 
not deliver the expected training outcomes, 
further exacerbating the financial barriers for 
many programs.3 By contrast, although using 
an animal model also incurs significant costs, 
it offers a highly realistic, high-fidelity experi-
ence that closely mimics human procedures, 
making it an invaluable tool for training.

Nevertheless, implementing an animal 
model from scratch involves considerable 
costs. For example, acquiring a refurbished 
C-arm capable of fluoroscopy and digital 
subtraction angiography for use with ani-
mals costs approximately €60,000. Additional 
expenses for model induction include ultra-
sound equipment (approximately €10,000) 
and needles for intrapatellar injections. Sup-
plies for embolization, which are single use for 
each pig (introducer, guidewire, 4Fr catheters, 
2.0Fr microcatheters, embolization particles), 
cost approximately €2,000 per procedure. The 
cost of housing for the animals for 1 week is 
approximately €1,000 per pig, including phar-
macy costs (particularly for anesthesia cover-
age) and the purchase of operating room sup-
plies (compresses, sterile drapes), which are 
approximately €300 per pig. Radiation shield-
ing for the facility could add another €100,000. 
Although these costs may seem high, they are 
indicative and vary depending on the existing 
infrastructure at each institution.

However, the tactile feedback and in-
tra-procedural experience provided by the 
animal model remain unparalleled, offering 
a training fidelity that current simulators 
cannot achieve. This model allows trainees 
to practice in a realistic environment, gaining 
practical skills in embolization that are direct-
ly translatable to clinical practice. As such, 
despite the costs, the animal model remains, 
until today, an invaluable tool for advanced 
training in musculoskeletal embolization.

Additionally, this animal model facilitates 
the continuous creation of new e-learning 
content (anatomical education, the classi-
fication of neovessels, and the inclusion of 
video recordings of angiograms) and can be 
employed for various educational purposes, 
such as anatomical dissections or managing 
hemorrhages in surgical training just before 
the sacrifice of the animal. Furthermore, an 
additional comparative study between tradi-
tional methods and this animal model could 
be useful to more objectively assess its edu-
cational effectiveness. 

Standardized training is essential for 
maintaining high medical standards and 

Figure 1. Evaluation of neovessels according to a Likert scale, grade 1 to 3. The dotted lines represent the 
anterior surface of the inflamed patellar tendon in these profile views from arteriographies performed 7 
days after tendinopathy induction. The black arrows represent the genicular artery. Pictures (a) and (b) 
show grade 1 neovessels (black stars), which correspond to a slight tumoral blush equivalent to muscle 
enhancement. It is important to note the difference in enhancement compared with grade 2 (c) and grade 
3 (d, e) neovessels, which exhibit significantly more pronounced enhancement.

Figure 2. Evaluation of vascular anomalies associated with neovessels. Under the same conditions, images 
a and b represent an early venous return (white arrowheads). This early venous return can sometimes mask 
the appearance of neovessels, as seen in image b (grade 1) compared with image a (grade 2). Early venous 
return results in contrast agent leakage, making it difficult to adequately impregnate the arterial vascular 
network during injection. Images c (grade 1) and d (grade 2) illustrate arterial collaterals (black arrowheads), 
which are also important to identify. If not occluded, they continue to supply the neovessel bed, leading to 
treatment failure.

a

d e

b c
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ensuring the best possible outcomes for 
patients. We believe that the combination 
of theoretical e-learning with practical 
sessions on the animal model provides a 
balanced solution for acquiring in-depth 
knowledge and essential technical skills. 
This blended approach not only enhances 
the learning experience but also ensures 
the development and refinement of new 
techniques, ultimately leading to optimal 
patient outcomes. Overall, this model serves 
as an invaluable resource for medical train-
ing, providing a comprehensive and safe en-
vironment for learning in the field of muscu-
loskeletal embolization.
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ABSTRACT
Radiography is a field of medicine inherently intertwined with technology. The dependency on 
technology is very high for obtaining images in ultrasound (US), computed tomography (CT), and 
magnetic resonance imaging (MRI). Although the reduction in radiation dose is not applicable 
in US and MRI, advancements in technology have made it possible in CT, with ongoing studies 
aimed at further optimization. The resolution and diagnostic quality of images obtained through 
advancements in each modality are steadily improving. Additionally, technological progress has 
significantly shortened acquisition times for CT and MRI. The use of artificial intelligence (AI), which 
is becoming increasingly widespread worldwide, has also been incorporated into radiography. 
This technology can produce more accurate and reproducible results in US examinations. Machine 
learning offers great potential for improving image quality, creating more distinct and useful imag-
es, and even developing new US imaging modalities. Furthermore, AI technologies are increasingly 
prevalent in CT and MRI for image evaluation, image generation, and enhanced image quality.

KEYWORDS
Arthrographic applications, cerebrospinal fluid flowmetry, imaging techniques, magnetic reso-
nance spectroscopy, magnetic resonance imaging techniques

You may cite this article as: Kantarcı M, Aydın S, Oğul H, Kızılgöz V. New imaging techniques and trends in radiology. Diagn Interv Radiol. 2025;31(5):505-517.

Medical imaging is the process of generating visual representations of the body’s tis-
sues and organs to examine their structure and function for clinical and scientific pur-
poses. These techniques allow the evaluation of internal structures beneath the skin 

and bones, facilitating the diagnosis of abnormalities and the treatment of diseases. Medical 
imaging has become an essential component of healthcare, research, and biological imag-
ing.1,2

Imaging technologies play a critical role in diagnosing abnormalities and supporting ther-
apy, providing medical personnel with essential information about their patients’ conditions. 
Techniques such as electroencephalography (EEG), magnetoencephalography (MEG), and 
electrocardiography capture and quantify data rather than generate visuals. They present 
information as parameter graphs over time or maps with varying levels of detail. Although 
these technologies have limitations, they can be considered a form of medical imaging on 
a smaller scale. By 2010, more than 5 billion medical imaging studies had been completed 
worldwide.3

Medical imaging accounts for approximately 50% of the overall ionizing radiation ex-
posure in the United States. These technologies are crucial for the diagnosis, management, 
treatment, and prevention of various disorders. Imaging techniques are now essential for 
diagnosing nearly all major medical conditions, including trauma, malignancies, cardiovas-
cular diseases, neurological disorders, and numerous other health issues. These techniques 
are operated by highly skilled technicians and medical specialists, such as oncologists and 
internists.1

Medical imaging technologies are predominantly used for medical diagnostics. Diagnosis 
refers to the systematic identification of a patient’s condition and associated symptoms. The 
process involves gathering data from the patient’s medical history, physical examinations, or 
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questionnaires to determine the appropri-
ate course of treatment. However, diagnosis 
can be challenging, as many indications and 
symptoms are non-specific in nature. For 
example, the presence of erythema, which 
is characterized by redness of the skin, may 
indicate a variety of disorders. Therefore, 
distinct diagnostic methods are required to 
identify the etiology of diseases and deter-
mine appropriate treatment or preventive 
measures.4,5

Historically, ancient physicians made 
medical diagnoses based on visual and audi-
tory observations, occasionally supplement-
ed by the examination of human specimens. 
For example, techniques such as examining 
bodily fluids, including urine and saliva, were 
commonly practiced before 400 B.C. In an-
cient Egypt and Mesopotamia, physicians 
were capable of diagnosing conditions relat-
ed to the gastrointestinal and cardiovascular 
systems, cardiac rhythm, spleen, liver, and 
menstrual disorders. However, medical in-
terventions were primarily limited to affluent 
and noble individuals.5

Hippocrates, who lived around 300 B.C., 
advocated the use of the mind and senses 
as diagnostic tools, earning him the title of 
the “Father of Medicine.” He promoted a di-
agnostic process that included urine testing, 
skin color observation, and the examination 
of the lungs and other external indicators. 
He also observed the correlation between 

illness and heredity. Abu al-Qasim al-Zah-
rawi, an Arabic physician of the Islamic era, 
documented the first recorded instance of a 
hereditary genetic disorder, now known as 
hemophilia. He provided a detailed account 
of a family in Andalusia in which the males 
were affected by this condition.5

During the Middle Ages, physicians em-
ployed various methods to determine the 
origins of physical imbalances. Uroscopy, 
the predominant technique, involved col-
lecting the patient’s urine in a specialized 
container called a “matula” and analyzing 
its color, odor, density, and the presence of 
precipitates. Physicians also examined the 
consistency and color of blood to distinguish 
between chronic and acute conditions. Pulse 
rate, strength, and rhythm were evaluated 
through palpation. Additionally, medical 
practices during this period often incorpo-
rated the interpretation of zodiac signs.6

In the 19th century, the introduction of 
diagnostic equipment such as X-rays and 
microscopes brought about a significant 
transformation in the field of diagnosing 
and treating disorders. In the early part of 
the century, doctors predominantly diag-
nosed diseases by analyzing symptoms 
and indications. During the 1850s, the use 
of instruments such as ophthalmoscopes, 
stethoscopes, and laryngoscopes enhanced 
doctors’ sensory capabilities, leading to the 
development of novel diagnostic methods 
and approaches. During this era, a variety 
of diagnostic techniques were developed, 
including chemical testing, bacteriological 
tests, microscopic examinations, X-rays, and 
several other medical tests.5,6

The development of X-rays marked sub-
stantial advancements in medical imaging 
procedures. Wilhelm Conrad Roentgen dis-
covered X-rays in November 1895, a discov-
ery that earned him the Nobel Prize in 1901. 
Initially, radiologists used the term “plane 
film” to describe X-rays, employing them to 
diagnose bone fractures and chest abnor-
malities. Fluoroscopy, with its enhanced 
X-ray beam, facilitated the detection of a 
wide range of patient issues. In the 1920s, 
radiologists began using these procedures 
to diagnose disorders such as esophageal 
cancer, ulcers, and stomach conditions. Flu-
oroscopy ultimately evolved into computed 
tomography (CT).7

Numerous advanced imaging techniques 
have been developed, each with its princi-
ples, applications in medical labs, and ad-
vancements over time. The following tech-
niques are essential for understanding their 

benefits and uses in diagnosing, managing, 
and treating various diseases, including car-
diovascular conditions, cancer, neurological 
disorders, and trauma.

Advancements across modalities

1. Computed tomography

CT uses X-rays to generate highly de-
tailed cross-sectional images of the body. 
The high-resolution imaging of tissues and 
organs aids in diagnosing internal injuries, 
cancers, and other illnesses. Hounsfield de-
veloped the first iteration of a CT scanner in 
the 1960s. CT, commonly known as X-ray CT, 
was first implemented in 1971 at Atkinson 
Morley Hospital in Wimbledon (now part of 
St George’s Hospital). Sir Godfrey Hounsfield 
performed this pioneering brain scan under 
the guidance of Jamie Ambrose, MD, an ex-
pert neuroradiologist. The objective of the 
scan was to investigate less painful alterna-
tives to existing methods of brain examina-
tion. CT technology has undergone signifi-
cant developments since its introduction in 
the 1970s. These advancements have revolu-
tionized the field of diagnosis and treatment 
planning by using X-rays and advanced algo-
rithms to produce highly detailed cross-sec-
tional images. The scanner designs used for 
image formation in CT are called genera-
tions. New generations have emerged with 
different arrangements of components and 
mechanical movements required for data 
collection. The main differences between 
CT generations relate to the number and 
arrangement of detectors, the shape of the 
X-ray beam, and the rotation of the tube and 
detectors. Based on a recent analysis by Mor-
dor Intelligence, the CT market is projected 
to experience significant growth, with its 
value expected to rise from $8.14 billion in 
2023 to $10.95 billion by 2028. This growth is 
anticipated to occur at a compound annual 
growth rate of 6.12%.8

The introduction of dual-energy CT 
(DECT) technology marked a substantial de-
parture from traditional methods and paved 
the way for contemporary advancements in 
CT technology. DECT is a well-established 
technology with a significant and extensive 
background. Sir Godfrey Hounsfield devised 
a technique in the 1970s to differentiate cal-
cium from iodine by using two distinct ener-
gy spectra from X-ray photons. This method 
relies on understanding the specific atomic 
numbers and unique K-edge characteristics 
of various substances. These features are es-
sential for discerning the differing impacts of 
Compton scattering and the photoelectric 
effect in X-ray attenuation.9

Main points

•	 Computed tomography (CT) scans will con-
tinue to be an essential part of contempo-
rary medical diagnostics thanks to develop-
ments in resolution, velocity, radiation dose 
reduction, artificial intelligence (AI) integra-
tion, and personalized treatment. The devel-
opment of portable CT scanners and the use 
of functional and multimodal imaging will 
enhance this technology’s potential.

•	 Advancements in magnetic resonance im-
aging (MRI) systems are meant to improve 
accessibility, shorten scan times, and pro-
duce better-quality images in areas where 
MRI has historically had difficulties. 

•	 AI technology can produce results from ul-
trasound (US) exams that are more accurate 
and consistent. The application of machine 
learning to US imaging has great potential 
to improve image quality, produce more 
unique and useful images, and possibly in-
troduce new US imaging methods.

•	 Across all modalities, AI technologies are 
increasingly being used and showing an in-
creased trajectory in both image production 
and evaluation.
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In the early 1980s, DECT technology was 
primarily used for bone densitometry, as 
demonstrated by devices such as the Soma-
tom DR manufactured by Siemens Health-
care. This device employed rapid tube poten-
tial switching to acquire two-photon energy 
spectra. Because of the limited computing 
capabilities of the hardware available at the 
time, DECT was mainly used for densitome-
try purposes. However, the 21st century wit-
nessed notable progress in the therapeutic 
use of DECT, driven by rapid advancements 
in processing capabilities. During this peri-
od, scanners with dual sources, such as the 
Somatom Definition DS in 2006 and the 
Somatom Definition Flash in 2009, were in-
troduced. Additionally, multilayer detectors, 
such as the Brilliance-64 in 2015, were also 
introduced. In 2010, General Electric Health-
care improved the technique of rapid tube 
potential switching with models such as the 
Revolution GSI and Discovery 750 HD.10

DECT enables the capture and recon-
struction of a wide range of images. The 
kilovolt peak (kVp) images generated by 
DECT closely resemble those obtained from 
single-energy CT, as they replicate the char-
acteristics of a single-energy spectrum. 
These images can be acquired using du-
al-layer, rapid kVp-switching, and split-filter 
DECT techniques. Dual-source DECT gener-
ates images by using a pair of kVp values or 
kVp-equivalent images, which are calculated 
by combining data from two distinct peaks 
using a weighted average. As a result, the 
reconstructions resemble images obtained 
using a single, user-selected kVp value. Vir-
tual monoenergetic imaging replicates scans 
using photons at a specific energy level, 
which is advantageous due to the increased 
iodine attenuation at lower photon energy 
levels. In addition, material decomposition 
techniques exploit the different effects of 
Compton scattering and the photoelectric 
effect on X-ray attenuation. This allows for 
the production of images with enhanced or 
reduced iodine visibility and the exclusion of 
urine or calcium.9,11

Current studies on the cost-effectiveness 
of DECT reveal partially conflicting results 
for different areas of use. Although its use for 
incidental renal lesions and in the emergen-
cy department reduce costs, it is noted that 
the costs of cardiovascular system imaging 
sometimes increase. From this perspective, 
detailed studies on more specific usage areas 
are needed to determine the cost-effective-
ness of DECT.12-14

Table 1 provides a summary of the areas 
in which DECT is used substantially more 
frequently. Recent studies suggest that it 
may also be beneficial in the evaluation of 
pulmonary perfusion, myocarditis, and the 
diagnosis of alveolar echinococcosis. These 
applications are in addition to those men-
tioned above.15-18

After August 2022, the Food and Drug Ad-
ministration (FDA) approved two biomedical 
imaging technologies, developed in collabo-
ration with the National Institute of Biomed-
ical Imaging and Bioengineering (NIBIB), to 
be used in clinical settings. Both methods 
offer improvements in CT. Dr. Cynthia McCo-
llough, the project lead and director of Mayo 
Clinic’s CT Clinical Innovation Center, and her 
team have made a significant advancement 
by developing the first photon-counting 
detector (PCD)-CT system. This new system 
outperforms current CT technology and 
was described as the first major imaging 
advancement cleared by the FDA for CT in a 
decade. 

Photon-counting CT (PCCT) is an ad-
vanced technological development in the 
field of energy-resolving, direct-conversion 
X-ray detectors. After 15 years of thorough 

study and development, this technique has 
recently been integrated into clinical CT 
equipment. The fundamental concepts of 
PCCT differ greatly from those of traditional 
CT detectors. The detectors used in tradition-
al CT are known as energy-integrating detec-
tors. These provide signals that are directly 
proportional to the total energy of photons 
received within a specific measurement in-
terval. PCCT, however, uses PCDs to directly 
convert the energy of individual photons 
into electrical impulses. The device exclu-
sively emits electrical pulses with heights ex-
ceeding the thresholds indicative of noise.5 
Therefore, this technology enables a signifi-
cant reduction in electrical noise levels and 
an increase in the signal-to-noise ratio (SNR). 
Furthermore, it can also be utilized in du-
al-energy imaging. The advent of PCCT has 
the potential to transform the clinical CT field 
by leveraging its multiple inherent advantag-
es and overcoming several constraints pres-
ent in existing cutting-edge CT systems (Fig-
ure 1).9 DECT requires specialized equipment 
and is limited to two energy levels. However, 
with the introduction of this novel detector, 
additional “buckets” are available to catego-
rize X-ray energies, enhancing the ability to 
accurately represent material differences.

Table 1. DECT applications

Region Material categorization/virtual 
monoenergetic beam

Quantification of iodone

Brain Used to differentiate between tumors and 
bleeding

Used to distinguish between bleeding 
and contrast

Cardiac
Using low virtual monoenergetic KeV 
contributes to imaging
myocardial fibrosis

Lung

COVID-19 shows high iodine density 
around pulmonary opacity and increased 
perfusion in the lung parenchyma
Reduced perfusion in the lung 
parenchyma within the area of
pulmonary infarct indicates possible 
hypoperfused lung or pulmonary 
embolism.

Abdomen

Differentiates a hypoperfused segment of 
the bowel wall from one that is normally 
perfused
Distinguishes between different types of 
tumors
Aids in analyzing the composition of distinct 
kidney or gallstones

Iodine map imaging helps to better 
visualize iodine accumulation in the 
bowel wall, thereby improving diagnostic 
certainty for intramural hemorrhage

Vasculer 
imaging

Reduces the impact of blooming artifacts 
from calcified plaques

Bones
VNC images can be used to distinguish 
chronic fractures from acute and non-
displaced CT occult fractures

Metallic 
artifacts

A high monoenergetic beam can help 
minimize metallic artifacts

DECT, dual-energy computed tomography; COVIF-19, coronavirus disease-2019; VNC, virtual non-contrast images; 
CT, computed tomography.
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Published in the Journal Radiology, clin-
ical investigations have demonstrated that 
the new PCCT devices can effectively reduce 
noise by up to 47%. In addition, the new 
technique reduces the amount of contrast 
agent required for CT imaging. Due to the en-
hanced signal provided by the PCCT system, 
participants in the trial were able to achieve 
the same image quality as conventional CT 
systems using 30% less contrast agent. The 
PCCT systems offer superior spatial resolu-
tion compared with conventional systems, 
delivering the highest reported resolution for 
a clinical CT system.19,20 Siemens developed a 
prototype PCD-CT system, and with financial 
support from McCollough through NIBIB, the 
team began scanning patients with approval 
from the Institutional Review Board. A total 
of 1,100 patients were examined in these 
tests, initially using a traditional CT system 
and subsequently with the advanced PCCT 
scanner, showcasing the benefits of the new 
technology. This device is the first product of 
its category available on the market.20

Another CT-based method approved by 
the FDA is artificial intelligence (AI)-assisted 
CT perfusion (CTP) imaging. An AI software 
was developed to assist in image reconstruc-
tion to reduce the elevated radiation dose 
in CTP. This software employs the K-space 
weighted image average technique to re-
duce noise in CTP images, resulting in low-
er radiation exposure for patients without 
compromising image processing quality or 
speed. Research has demonstrated that the 
software effectively decreases the radiation 
exposure of CTP by 50%–75% compared 
with the conventional CTP approach. Ad-
ditional benefits of using this approach in-
clude no interruptions to the regular clinical 
workflow and no requirement for upgrades 
or modifications to existing CT hardware. The 
software has received FDA 510(k) clearance 
and is eligible for integration into clinical 
practice.21

The prospects for CT technology in the 
future are highly encouraging for both 
healthcare providers and patients. Advance-
ments in resolution, velocity, radiation dose 
reduction, AI integration, and personalized 
medicine will ensure that CT scans remain a 
crucial component of modern medical diag-
nostics. The use of functional and multimod-
al imaging, along with the development of 
portable CT scanners, will further enhance 
the capabilities of this technology. In the 
future, the continuous progress of CT tech-
nology will lead to greater accuracy in diag-
nosis, improved treatment outcomes, and 
enhanced patient care.

Nowadays, thanks to advances in CT 
technology, especially cone beam and du-
al-source CT, arthrography is used in the 
diagnosis of many musculoskeletal patholo-
gies. Compared with conventional magnetic 
resonance imaging (MRI) and MR arthrogra-
phy, CT arthrography is superior in depict-
ing chondral/osteochondral damage, loose 
bodies, chondral variations, and subarticular 
bone fractures.22-27 Moreover, CT arthrog-
raphy has excellent spatial resolution with 
multiplanar imaging capability and shorter 
examination times. Other indications for CT 
arthrography include patients with non-MRI-
safe implantable devices or cardiac pacemak-
ers and individuals with claustrophobia.24,28

Cone beam or flat-panel detector CT tech-
nology uses a cone-shaped X-ray beam and 
applies software programs with sophisticat-
ed algorithms, including back projection. 
Because of its perfect high spatial resolution, 
cone beam CT arthrography allows the opti-
mal evaluation of cartilage and subchondral 
bone microarchitecture in the articular sur-
face.29,30 Recent studies have reported that 
cone beam CT scans can obtain images with 
very high resolution (75–300 μm slice thick-
ness) with low-dose applications.30-32 Lower 
radiation doses in cone beam CT technolo-
gy are achieved through the smaller field of 
view, the use of a high-quality flat-panel de-
tector system, and pulsed X-ray beams.33

In DECT, two different datasets are ac-
quired at different voltage peak levels to sep-
arate materials based on tissue composition 
(e.g., urate mineralization, calcification, and 
iodine). This technique allows for the detec-
tion of gout tophi and the demonstration of 
bone marrow edema in vertebral compres-
sion fractures.34,35 Recently, DECT has also 
been used to distinguish intra-articular io-

dinated contrast media from adjacent bone 
in CT arthrographic applications.36-38

2. Advancements in magnetic resonance 
imaging techniques and features

MRI was first implemented as a clinical di-
agnostic instrument in the early 1980s. Signif-
icant technological developments have oc-
curred since its introduction. Advancements 
in various technical components, including 
data acquisition, image reconstruction, and 
hardware systems, have greatly impacted 
and propelled growth in other areas of MRI 
technology. The advancements in each com-
ponent have generated new opportunities 
for growth in the others. Moreover, the swift 
integration of cutting-edge technologies de-
rived from fundamental sciences and tech-
nical disciplines such as computer science, 
data processing, and semiconductors has re-
sulted in revolutionary advancements in MRI 
technology (Figure 2).

Initial developments in MRI techniques 
focused on optimizing data acquisition pro-
tocols to achieve adequate spatial and tem-
poral resolution, contrast, and imaging effi-
ciency. An example of this delicate balance 
is the implementation of line reductions in 
the basic spin-echo protocol. However, this 
method has a drawback-the absence of fre-
quency data, leading to a reduction in either 
image quality or image dimensions. Scan-
ning time was reduced in methods such as 
the fast spin echo, echo planar imaging, or 
multi-echo approach by recording multi-
ple lines following the radio frequency (RF) 
pulse. Despite the improvement, a major 
limitation was the rapid decline in signal 
intensity caused by energy transfer during 
T2 capture. This limitation allowed only 3–4 
lines per RF pulse and led to a noticeable 
degradation in image quality.39

Figure 1. Illustrations of traditional CT (a) and photon-counting CT (b) detectors. CT, computed tomography.

a b
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2a. Acquisition procedures: advancements 
in parallel imaging techniques

Parallel imaging is currently employed in 
almost all clinical MRI scans to enable fast 
data capture for several reasons. Abdominal 
and cardiac scans often require patients to 
hold their breath to facilitate shorter scan-
ning times. In certain situations, such as 
when multiple sequences occur after exci-
tation pulses, blurring artifacts can arise, es-
pecially in imaging techniques such as turbo 
spin echo, due to significant T2 relaxation. 
These artifacts occur during the decomposi-
tion process while retrieving the lines. In oth-
er contexts, swift data collection is crucial to 
obtain extensive datasets efficiently.40 

Parallel imaging reduces scanning time 
by using phased array coils to capture dis-
tinct perspectives of the tissue, thereby 
avoiding the need to scan a large portion of 
the region subjected to gradient encoding. 
However, the sensitivity of each coil element 
decreases rapidly with distance, which limits 
data collection to a specific tissue profile. A 
comprehensive image is generated by com-
bining individual images from each coil. The 
maximum acceleration factor in parallel im-
aging is directly proportional to the num-
ber of coils. Typically, parallel imaging tech-
niques employ coil arrays consisting of 4–8 
coils. However, arrays with 32 or even 128 
channels are available, particularly in cardiac 
imaging, resulting in a significant reduction 
in scanning time.

2b. Methods for reconstructing images for 
analysis

To prepare the data for meaningful infor-
mation extraction, the initial steps of image 
capture, preprocessing, and segmentation 
are essential. During these processes, irrele-
vant or noise-based signals are eliminated. 
Patient movement is a common cause of 
noise. Sequential images are registered to 
correct motion artifacts, a process that can 
be achieved using algorithms specifically 
designed for medical imaging. The Insight 
ToolKit is currently considered the standard 
for MRI registration. It offers a range of al-
gorithms for various operations, including 
transformations, similarity metrics, and con-
trast normalization.41

Machine learning applications have 
been increasingly used in recent trends in 
preprocessing and segmentation, such as 
denoising. Feature identification and clas-
sification have become important trends 
in machine learning techniques, primarily 
because these tasks require a large amount 

of manual effort. The abundance of imaging 
data obtained from MRI scans has increased 
the complexity of clinical diagnoses relying 
on MRIs, prompting the development of au-
tomated methods for data extraction and 
interpretation. Machine learning relies on 
algorithms generated from neural network 
architectures. These structures consist of 
nodes connected by weighted edges. Nodes 
receive inputs, multiply them by a set of pa-
rameters called weights, and then transport 
the resulting outputs through transfer func-
tions such as sigmoid and hyperbolic tan-
gent functions.42

Multi-information sourcing refers to the 
process of gathering and obtaining multiple 
sources of information. Models that use mul-
tiparametric techniques offer the substantial 
benefit of examining correlations between 
a large number of quantitative parameters, 
potentially leading to significantly improved 
accuracy. This contrasts with methods that 
analyze data using only one parameter. The 
time it takes for longitudinal (T1) and trans-
verse (T2) relaxation, as well as the produc-
tion of classical MR contrasts after the event, 
are all important metrics that can be ob-
tained through MRI. However, this list is not 
exhaustive. Monitoring these metrics is done 
in conjunction with cutting-edge techniques 
for rapidly collecting data and performing 
computer analysis.39

Contemporary multiparametric analytical 
techniques use similar methods. These meth-
ods involve sampling both parameters and 
K-spaces simultaneously. These techniques 
require adjusting the collection parameters 
to capture data on the transient state, fol-

lowed by undersampled K-space snapshots 
after each stimulation. Consequently, para-
metric maps are generated using a physical 
model based on the Bloch equations. Mag-
netic resonance fingerprinting (MRF) and 
quantitative transient-state imaging (QTI) 
are two examples of the various methods 
created as a direct outcome of this method-
ology.43,44

Modern multiparametric analytical 
techniques use similar methods by simul-
taneously sampling both parameters and 
K-spaces. These methods involve gathering 
transient-state data by adjusting the collec-
tion parameters and obtaining undersam-
pled K-space snapshots after each stimula-
tion. Parametric maps are generated using 
a physical model based on the Bloch equa-
tions. The methodologies of MRF and QTI 
have led to the development of these tech-
niques.45

MRF is a technique that involves altering 
the settings of MRI sequences over time. 
This results in a series of MRI images with 
different weighting, and each type of tissue 
has a distinct MRI signal fingerprint. These 
fingerprints can be simulated using compu-
tational methods to generate a collection of 
tissue-specific fingerprints. During image re-
construction, the fingerprints obtained from 
the MRI data are compared with a dictionary. 
The fingerprint with the highest correlation 
is used to determine the MRI parameters 
for each voxel. After analyzing all the voxels, 
parametric maps are generated. The promis-
ing potential of MRF lies in its ability to accu-
rately detect and identify specific structural 
characteristics, enabling the diagnosis of a 

Figure 2. The advancements in MRI technology and the interconnections among its technical components. 
Advancements in fundamental sciences and engineering have a significant influence on MRI technology. 
Innovations in each component stimulate advancements in others. MRI, magnetic resonance imaging; 
MRgFUS, MR-guided focused ultrasound; PET, positron emission tomography.
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wide range of clinical diseases. Novel meth-
odologies, such as quantitative sequencing, 
enable the rapid and precise mapping of 
dynamic physiological processes. These ap-
proaches can evaluate blood flow in cardiac 
assessments by calculating scalar or vector 
velocities. A study was conducted to deter-
mine scalar velocities perpendicular to a vas-
cular slice using multiparametric T1, T2, and 
proton density (PD) data. However, these 
methods are limited by their reliance on 
physical models to simulate the physiologi-
cal events being mapped, which may result 
in potential data loss. Moreover, the complex 
nature of these models often requires con-
siderable computational resources, thereby 
prolonging the time required for data collec-
tion.39

2c. Functional application through mag-
netic resonance imaging 

Blood oxygenation-level dependent 
(BOLD) imaging, sometimes referred to as 
functional MRI (fMRI), was developed to in-
directly assess neural activity in the brain by 
examining changes in blood oxygenation 
associated with brain activity. This type of 
imaging utilizes the neurovascular response 
of hyperemia, in which specific brain activi-
ty leads to increased blood oxygenation in 
the stimulated area (Figure 3). Conventional 
procedures for BOLD imaging typically em-
ploy T2 weighting and scan durations of less 
than 5 seconds to record the hemodynamic 
response function. Since its inception, the 
use of BOLD imaging has expanded signifi-
cantly.46

The dependence of the BOLD signal on 
neurovascular mechanisms introduces spe-
cific constraints on fMRI, primarily because 
the hemodynamic response is slower than 
the underlying brain activity. This disparity 
means that the precise timing of neuronal 
spiking events is largely obscured. To iso-
late the signal activity associated with these 
events, mathematical processing techniques 
such as the general linear model or experi-
mental block protocols are used. By employ-
ing these techniques, a temporal resolution 
of 100 milliseconds can be achieved, which 
is roughly one-tenth the speed of the brain 
activities being observed.39

An additional challenge encountered by 
fMRI is the constrained SNR, resulting from 
limitations in data acquisition and prepro-
cessing. Researchers are actively exploring 
the use of strong magnetic fields to enhance 
the accuracy of anatomical imaging to ad-
dress this challenge. Although most fMRI 

scans are conducted using three T fields, 
there is a growing trend toward employing 
seven T fields. Higher field strengths can re-
duce the need for spatial smoothing and im-
prove the correlation coefficients of neuronal 
activity in resting-state networks (RSNs), indi-
cating enhanced spatial resolution.47

An effective approach to overcome the 
time constraints of fMRI is to employ multi-
modal methods, which combine fMRI with 
techniques such as EEG or MEG. Both EEG 
and MEG provide quick temporal responses, 
capable of identifying brain events with mil-
lisecond precision. The reason for integrating 
these techniques with fMRI is their notably 
improved temporal resolution. Recent tech-
nical improvements enable the concurrent 
recording of EEG and fMRI signals, enhanc-
ing our comprehension of the spatial and 
temporal characteristics of physiological 
signals. Nevertheless, compared with fMRI 
alone, these integrated methodologies are 
less commonly employed. EEG has a poorer 
spatial resolution than fMRI, whereas MEG 
encounters difficulties in accurately deter-
mining the source of activity. Hence, to draw 
any experimental or clinical conclusions, it is 
imperative for experimental designs or clin-
ical assessments utilizing these integrated 
methodologies to precisely ascertain the 
source of the signals.48

The persistent difficulties in understand-
ing multimodal approaches have stimulated 
a longstanding desire to create alternative 
techniques that provide both precise spatial 
and temporal resolution. A novel method 
has been devised that combines the iden-
tification of extremely low magnetic fields 
generated by cerebral electrical activity 

with the detection of the hemodynamic re-
sponse using fMRI. The technique, referred 
to as direct imaging of neuronal activity for 
fMRI, employs alternating K-space lines to 
capture the hemodynamic response while 
directly measuring the ultra-weak magnetic 
field using another K-space line. Thus far, this 
methodology has exclusively been utilized in 
animal models.49

A significant advancement in fMRI is the 
development of resting-state fMRI (RS-fMRI), 
which examines the inherent, involuntary os-
cillations in the BOLD signal with a frequency 
below 0.1 Hz without requiring any specific 
activities. The functional importance of these 
variances was first identified in 1995 a study 
where participants were instructed to ab-
stain from engaging in any cognitive, verbal, 
or motor tasks. By analyzing the correlation 
between the BOLD signal time course in a 
particular brain region that is stimulated by 
bilateral finger tapping and the signals in 
other brain areas, the researchers discov-
ered a strong association between changes 
in activity in the left somatosensory cortex 
and changes in activity in the correspond-
ing region of the opposite hemisphere. This 
finding led to the deduction that these “rest-
ing networks” reflect the brain’s functional 
connections. Following that, the analysis of 
spontaneous, synchronized fluctuations in 
activity across different regions of the brain 
has resulted in studies that have discovered 
a spectrum of 7–17 enduring networks, with 
7 consistently recognized.39,50

RSNs in the human brain are mostly iden-
tified through the analysis of BOLD signals. 
This analysis is based on fMRI’s capacity to 
detect neuronal activity. RS-fMRI relies on 

Figure 3. Multiparametric MR images (DTI, MRS, and BOLD fMRI) demonstrate functional activity in the 
right motor cortex. The images also evaluate the relationship between mass and the motor cortex. MR, 
magnetic resonance; DTI, diffusion tensor imaging; MRS, magnetic resonance spectroscopy; BOLD fMRI, 
blood oxygenation-level dependent functional magnetic resonance imaging.
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the BOLD signal, which allows for the indirect 
monitoring of brain activity. This technique 
shares the advantages of fMRI, such as the 
ability to observe neural activity, but it has its 
intrinsic limitations. The primary constraint 
of fMRI is its temporal resolution, which is 
limited by the time it takes for the hemo-
dynamic response. Therefore, one essential 
component of RS-fMRI use is the quantifi-
cation of fluctuations in brain activity rather 
than directly recording instances of spiking.39

In the initial investigations of RSN func-
tional connectivity, researchers chose spe-
cific areas of interest (ROIs) according to 
their own preferences chose specific regions 
of interest according to their preferences. 
Although the ROI technique is simple and 
easily understandable, its efficiency in dis-
covering new networks is limited due to its 
dependence on user-defined regions. This 
is because it is restricted by specified crite-
ria. As a result of this constraint, as well as 
progress in mathematical modeling and pro-
cessing capacity, there has been a transition 
from imposing initial conditions on data to 
extracting patterns of brain activity directly 
from the unprocessed time series. An exem-
plary illustration of this novel methodology 
is independent component analysis (ICA), 
which posits that the time series signal aris-
es from numerous spatiotemporal process-
es that are statistically independent of each 
other. Through the process of separating 
these autonomous signals, scientists are able 
to create chronological sequences for par-
ticular parts of the brain and organize them 
into maps that depict their spatial arrange-
ment. RS-fMRI data can also be interpreted 
using graph theory, in which nodes repre-
sent activity sources and edges character-
ize the connectivity between these nodes. 
Unlike ICA, which primarily emphasizes the 
strength of correlations between distinct 
areas, graph theory specifically investigates 
the characteristics of network structure. The 
interconnections between nodes are charac-
terized by graph metrics, including average 
path length, clustering coefficients, node 
degree, centrality measurements, and mod-
ularity levels. Graph theory is a potentially 
valuable tool for investigating how networks 
in the brain combine and separate. Modular-
ity, a measure of the presence of function-
ally distinct components or modules within 
RSNs, is a key tool for characterizing func-
tional changes in behavior, network distur-
bances, or diseases. This method has uncov-
ered substantial modifications in situations 
such as stroke and psychiatric disorders.39,51,52 

Theoretically, conclusions concerning 
causation based on directed functional con-
nectivity can be expanded to include overall 
neural activity across the brain. Empirical 
investigations utilizing RS-fMRI have demon-
strated that RSNs can be differentiated based 
on their metastability and synchronization. 
These observations have resulted in theories 
of brain function and behavior that propose 
that the human brain operates at maximal 
metastability when at rest, indicating an ide-
al state of network switching. Identifying the 
characteristics of RSNs, such as metastability, 
suggests that changes in directed connec-
tivity could be used to evaluate the devel-
opment of various brain states. This presents 
the methodological challenge of creating 
a descriptive methodology that links func-
tional neuroimaging data to the overall dy-
namics of the entire brain. Recent efforts to 
address this challenge have pursued two pri-
mary methodologies.53,54

2d. Arthrographic applications in magnetic 
resonance imaging

Joint bone structures can be evaluated 
successfully using conventional radiographs 
and CT scans. However, these modalities do 
not enable the examination of soft tissue 
stabilizers. MRI, MR arthrography, and CT ar-
thrography are the preferred imaging tech-
niques for evaluating the labral, meniscal, fi-
brocartilaginous, capsular, and ligamentous 
structures of joints (Figures 4-6). Routine 
joint MR examination pulse sequences in-
clude fast spin-echo PD with fat suppression, 
T1- and T2-weighted fast spin-echo without 
fat saturation, and, occasionally, short tau 
inversion recovery (STIR). Conventional MRI 
sequences allow the non-invasive evaluation 
of tendon pathologies. However, labroliga-
mentous and chondral lesions in these se-
quences are frequently overlooked. Direct 
MR arthrography with the intra-articular in-
jection of diluted contrast media is a more 
sensitive imaging modality for evaluating 

stabilizers, such as the labrum, joint capsule, 
and ligaments.55-60 In an imaging study that 
used arthroscopy as a reference standard, 
Gusmer et al.61 found that conventional MRI 
has 86% sensitivity for detecting superior 
labral tears and 74% sensitivity for detecting 
posterior labral tears (Figure 7). However, de-
spite improvements in image quality, routine 
MRIs may underestimate the exact extent of 
tears of the glenoid labrum.60-62 Moreover, 
labrocapsular variant anomalies can be mis-
diagnosed as labral pathologies.56,63

Because of increased intra-articular fluid 
in patients with acute joint injuries, fluid-sen-
sitive MR sequences such as PD, STIR, and 
T2-weighted imaging can reveal intra-artic-
ular damage, including labroligamentous, 
cartilaginous, and capsular injuries. However, 
in patients with chronic repetitive trauma, di-
rect MR arthrography demonstrates clear di-
agnostic superiority over conventional MRI. 
Direct MR arthrography involves the intra-ar-
ticular injection of diluted contrast media 
(gadolinium chelate). This technique allows 
for the optimal and separate evaluation of 
intra-articular structures with adequate cap-
sular distension. Moreover, capsular disten-
sion in direct MR arthrography permits the 
leakage of contrast material into the labral 
substance or sublabral location in cases of 
labral tears or detachments (Figures 8 and 9). 
This makes it easier to identify pathologies of 
the glenoid or acetabular labrum.

Fluoroscopy-guided intra-articular injec-
tions for arthrography have been commonly 
employed since 1975.64 However, many au-
thors now advocate for performing injection 
procedures under ultrasonography guidance 
to avoid damaging anatomical structures 
along the injection pathway.65-68 Real-time 
ultrasonographic guidance for arthrographic 
examination eliminates exposure to iodinat-
ed contrast material and ionizing radiation. 
In our routine practice, we use sonographic 
guidance for various approaches: the poste-
rior approach for shoulder arthrography, the 

Figure 4. (b) Axial T1-weighted knee MR arthrogram obtained following intra-articular gadolinium injection 
shows the articular cartilage and capsule more clearly than pre-arthrographic axial PD MR imaging (a). MR, 
magnetic resonance; PD, proton density.

a b
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anteromedial approach for ankle arthrogra-
phy, the anterolateral approach for hip ar-
thrography, the dorsal–radial approach for 
wrist arthrography, the lateral approach for 
elbow arthrography, and the anterolateral 
approach for knee arthrography. 

In arthrographic procedures, a sufficient 
volume of contrast solution is injected until 
the joint capsule is adequately dilated. The 
solution volume is determined based on the 
resistance encountered during injection and 
the patient’s comfort level. The diluted gad-
olinium solution used for all joint arthrogra-
phy procedures should have a concentration 
of 1:200. Table 1 shows the arthrographic 
solution volume and needle size for each 
joint.

A thin-section three-dimensional (3D) 
MR arthrography sequence, such as the 
fat-suppressed T1-weighted volumetric in-
terpolated breath-hold examination (VIBE), 
allows for multiplanar reconstruction us-
ing submillimetric image slices. 3D VIBE MR 
arthrography not only provides excellent 
contrast for labroligamentous structures but 
also allows the optimal evaluation of the fi-
brocartilaginous complex and subchondral 
bone structure (Figure 10). In recent years, 
the 3D high-resolution T1-weighted VIBE MR 
arthrography sequence has been success-
fully employed for diagnosing glenoid bare 
spot, illustrating intra-articular small liga-
mentous structures, describing the aponeu-
rotic expansion of the supraspinatus tendon, 
demonstrating glenoid cartilage defects ac-
companied by labral pathologies, and eval-
uating glenohumeral joint capacity for diag-
nosing primary adhesive capsulitis.22-24,69-72 
Lastly, MR arthrographic examinations with 
stress maneuvers have been successfully 
used to investigate capsular abnormalities of 
the shoulder joint.73

2e. Magnetic resonance spectroscopy and 
cerebrospinal fluid flowmetry

When placed in a strong magnetic field, 
hydrogen nuclei (protons) exhibit magnetic 
properties, serving as the source of measur-
able signals in MRI. The protons in water mol-
ecules are the primary source of the signal in 
MR examinations. However, protons in differ-
ent molecules display slight magnetic varia-
tions, and this subtle difference enables the 
identification of small molecules in MR spec-
troscopy (MRS).74 If the molecules are mobile 
and present in measurable quantities, MRS 
can depict these molecules within tissues on 
the MR spectrum (Figure 11).75 The raw sig-
nal obtained by MRS is dominated by water, 

Figure 7. Coronal oblique plane PD MR imaging (a) of the right glenohumeral joint shows no pathology in the 
superior labrum; however, T1-weighted VIBE MR arthrography (b) reveals a type 2 SLAP lesion (blue arrow). PD, 
proton density; MR, magnetic resonance; VIBE, volumetric interpolated breath-hold examination.

a b

Figure 5. Axial (a), coronal oblique (b), and sagittal oblique (c) shoulder MR arthrograms optimally demonstrate 
the joint capsule, labroligamentous structures, and the underside of the rotator cuff tendons. MR, magnetic 
resonance.

a b c

Figure 6. Coronal plane T1-weighted VIBE, TSE T1, and multi-detector CT arthrograms of the radiocarpal 
joint clearly reveal the cartilaginous surface, joint capsule, and triangular fibrocartilaginous complex. VIBE, 
volumetric interpolated breath-hold examination; CT, computed tomography.

a b c

Figure 8. Transverse PD MR imaging (a) of the left glenohumeral joint shows no pathology in the anterior 
labrum; however, after Gd injection into the articular space (b), SE T1-weighted MR arthrography (c) clearly 
reveals a fibrous Bankart lesion (blue arrow). [The illustration was created using Adobe Photoshop (Adobe Inc., 
2021 Adobe Photoshop, https://www.adobe.com/products/photoshop.html) based on figures provided by 
the Complete Anatomy program (3D4 Medical, 2021. Complete Anatomy. Retrieved from https://3d4medical.
com/)]. PD, proton density; MR, magnetic resonance; Gd, gadolinium; SE, spin-echo.

a b c

https://3d4medical.com/
https://3d4medical.com/
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rendering signals from other metabolites in-
visible. To address this issue, water suppres-
sion techniques are employed, allowing for 
a clear and useful spectrum. MRS is not only 
used for differential diagnosis in neuroradiol-
ogy, particularly in brain tissue, but also in 
other parts of the body,76-78 focusing on spe-
cific metabolites of the targeted tissue. 

Another advanced MRI technique, ce-
rebrospinal fluid (CSF) flowmetry, is used 
to assess CSF through both qualitative and 
quantitative approaches (Figure 12). Time-re-
solved 2D phase-contrast MRI with velocity 
encoding is the most commonly employed 
method for this examination. The measured 
flow parameters in this technique reflect 
the pulsatile (to-and-fro) movement of CSF 
caused by vascular pulsations rather than 
the slow CSF transfer along the glymphatic 
pathway. This technique relies on the se-
quential, location-specific application of a 
pair of phase-encoding pulses in opposite 
directions. Stationary protons, which experi-
ence the same pulse in both instances, pro-
duce no signal. By contrast, moving protons, 
which encounter altered phase-encoding 
pulses, are rendered visible.79 CSF flowmetry 
studies are particularly useful in evaluating 
clinical conditions such as normal pressure 
hydrocephalus, the patency of third ventric-
ulostomy, aqueductal stenosis, and CSF flow 
at the cervicomedullary junction.80 

2f. Artificial intelligence 

AI has revolutionized MRI by introducing a 
wide range of applications that improve im-
age acquisition, analysis, and therapeutic de-
cision-making. The integration of AI into MRI 
has ushered in a new era in medical imaging, 
offering substantial benefits to both patients 
and healthcare providers. Table 2 summariz-
es how AI enhances various aspects of MRI, 
including improving image quality, facilitat-
ing disease diagnosis, and supporting treat-
ment planning.81

3. Ultrasound

Ultrasound (US) is a versatile imaging 
technique widely used as an initial diag-
nostic method in various clinical scenarios 
worldwide. Continuous advancements in US 
technology provide new opportunities for 
medical diagnoses and therapies, solidifying 
its importance in medical imaging.

A 3D imaging method has been devel-
oped to overcome the limitations of tradi-
tional 2D US. This innovation allows the visu-
alization of 3D anatomy, precise transducer 
adjustments for optimal disease monitoring, 

and accurate volume measurements. Several 
techniques have been developed for produc-
ing 3D US images; these include mechanical 
and free-hand scanning with linear arrays 
and the use of 2D arrays for real-time 3D 
imaging, also known as 4D US. Mechanical 
scanning utilizes a motorized mechanism to 
move a standard transducer and algorithms 
to construct 3D images from 2D scans. A mo-
tor/encoder ensures accurate information on 

the positions and orientations of the 2D US 
images, enabling the precise adjustment of 
the scanning geometry.82

Calibration is a crucial step in 3D recon-
struction. It involves determining the posi-
tion and angle of the position sensor rela-
tive to the US image. Various methods can 
achieve this. One successful approach en-
hances the spatial calibration of probes in 3D 
free-hand ultrasonic scanning. This method 

Figure 9. Transverse plane PD MR imaging (a) of the right glenohumeral joint shows no pathological findings 
in the posterior labrum; however, SE T1-weighted MR arthrography (b) clearly reveals a posterior labral defect 
(blue arrow). PD, proton density; MR, magnetic resonance; SE, spin-echo.

a b

Figure 10. Coronal plane T1-weighted VIBE MR arthrography of the radiocarpal joint shows a central 
rupture (blue arrow) of the triangular fibrocartilaginous complex. VIBE, volumetric interpolated breath-hold 
examination; MR, magnetic resonance.

Figure 11. Measuring metabolites of the brain using MR spectroscopy [the illustration was created using 
Adobe Photoshop (Adobe Inc., 2021 Adobe Photoshop, https://www.adobe.com/products/photoshop.html) 
based on figures provided by the Complete Anatomy program (3D4 Medical, 2021. Complete Anatomy. 
Retrieved from https://3d4medical.com/)]. MR, magnetic resonance.
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identifies similarity measures between two 
image sets-one from a 2D sweep and the 
other from a 3D reconstruction taken in a 
perpendicular sweep. However, a limitation 
of mechanical or free-hand scanning is the 
relatively slow volume capture rate, typically 
2–3 volumes per second, which can hinder 
3D imaging efficiency.83

The implementation of transducers 
equipped with 2D phased arrays for real-time 
3D imaging has greatly enhanced the rate 
at which volume acquisition occurs. These 
transducers use electronic scanning to col-
lect 3D data by producing a diverging beam 
in a pyramidal shape. The received echoes 
are then processed to create real-time 3D 
images. To further enhance high-volume 
imaging rates, a wideband 2D sparse array 
paired with multiline receiving has been pro-
posed. This approach optimizes the use of a 
limited number of active components while 
maintaining a high level of accuracy and 
speed.82,83

A critical aspect of 3D imaging is the 
representation of the generated images, 
commonly achieved through multiplanar 
reformatting or volume rendering. However, 
the spatial resolution of 3D imaging is aniso-
tropic and is typically inferior to that of 2D 
imaging. This limitation arises because the 
spacing between the collected 2D images 
increases with depth, resulting in reduced 
resolution at greater depths.83

Elastography is an advanced imaging 
technique that uses US to assess tissue stiff-
ness, enhancing the diagnostic capabilities 
of B-mode US. Two primary methods of elas-
tography are employed in evaluating breast 
lesions, shear wave elastography (SWE) and 
strain elastography. Although strain elastog-
raphy requires operator expertise, SWE relies 
on focused radiation forces and eliminates 
the need for manual compression, making it 
operator independent.84

SWE is widely used in diagnosing tumor-
al and inflammatory pathologies in many 
organs, with research in these areas steadily 
growing. Moreover, recent studies suggest 
that SWE may also play a role in monitoring 
treatment efficacy.84-86

AI technology has the potential to create 
more accurate and repeatable outcomes in 
US examinations. AI and computer-assist-
ed technologies can standardize medical 
processes, reduce training and examination 
durations, and improve the quality of US 
images across four main study areas. Lever-
aging machine learning in US imaging holds 

considerable promise for enhancing image 
quality, providing clearer and more practical 
visuals, and introducing novel US imaging 
techniques. Advancements in beamforming, 
super-resolution, and image enhancement 
often require hardware modifications, which 
are typically more complex than straight-
forward software upgrades. Despite these 
challenges, many recent research advance-
ments outperform conventional reconstruc-

tion algorithms, which transform ultrasonic 
wave measurements into display visuals. The 
enhanced processing capabilities of med-
ical devices now support the integration of 
increasingly sophisticated real-time solu-
tions in a range of US imaging approaches. 
AI algorithms can aid healthcare profession-
als-including physicians, nurses, and tech-
nicians-in performing comprehensive US 
scans, thereby simplifying the learning pro-

Table 2. Concise overview of how AI improves several elements of MRI

Submission Description

Image enhancement Reduces noise and artifacts in MRI images. Enhances image resolution for 
finer anatomical details

Image reconstruction Enables faster MRI scans. Reconstructs high-quality images from sparsely 
sampled data

Disease detection and 
diagnosis

Identifies and characterizes tumors in MRI scans. Aids in diagnosing 
conditions such as
Alzheimer’s using brain MRI. Assists in detecting heart diseases via cardiac 
MRI

Lesion segmentation Accurately segments lesions in MRI scans, aiding in treatment planning

Functional MRI analysis Maps brain regions activated during tasks or conditions, facilitating 
cognitive research

Diffusion MRI analysis Reconstructs white matter tracts in the brain, which are valuable for 
neurosurgical planning

Quantitative imaging

Quantifies tissue properties (T1, T2, diffusion) for disease characterization. 
AI analyzes tissue
perfusion in MRI, which is important for diagnosing conditions such as 
stroke

Automated reporting Generates automated radiology reports by extracting findings from MRI 
scans

Treatment planning Assists in radiotherapy planning by delineating target volumes on MRI

Monitoring disease 
progression Tracks disease progression by analyzing changes in MRI scans over time

Predictive modeling Predicts disease outcomes and treatment responses based on MRI data

Quality control Performs quality checks on MRI scans, flagging artifacts and anomalies

Population studies Analyzes large MRI datasets for trends, risk factors, and early disease 
indicators

Customization and 
personalization Tailors MRI protocols to individual patients for optimized imaging

AI, artificial intelligence; MRI, magnetic resonance imaging.

Figure 12. CSF flow analysis using CSF flowmetry [the illustration was created using Adobe Photoshop 
(Adobe Inc., 2021 Adobe Photoshop, https://www.adobe.com/products/photoshop.html) based on figures 
provided by the Complete Anatomy program (3D4 Medical, 2021. Complete Anatomy. Retrieved from 
https://3d4medical.com/)]. CSF, cerebrospinal fluid.
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cess. Modern image processing algorithms 
used for measurement, quantification, and 
computer-aided detection have evolved be-
yond conventional feature engineering. The 
latest US imaging systems utilize advanced 
deep learning approaches. Computer-assist-
ed diagnosis, triage, detection, and quanti-
fication are currently receiving considerable 
academic attention for their potential to re-
duce the workload of physicians (Figure 13).87

In conclusion, the field of radiography is 
being significantly influenced by technolog-
ical advancements, potentially more so than 
other areas of medicine. Current develop-
ments in CT technology primarily focus on 
reducing the dosage of the ionizing radia-
tion administered to patients. By contrast, 
progress in MRI systems is centered around 
improving accessibility, shortening scan du-
rations, and generating high-quality images 
in regions where MRI has traditionally faced 
challenges. Furthermore, the development 
of portable devices for bedside use is be-
coming an increasingly important objective 
in both CT and MRI. Sonography innovations 
are advancing to enhance image quality and 
expand the applications of elastography. AI 
technology holds great potential for produc-
ing more accurate and repeatable results in 
US exams, enhancing image quality, generat-
ing clearer and more useful images, and even 
developing new US imaging techniques. 
Furthermore, AI technologies are being in-
creasingly integrated into CT and MRI, with a 
growing focus on improving image produc-
tion, enhancing image quality, and facilitat-
ing image evaluation.
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Impact of a computed tomography-based artificial intelligence software 
on radiologists’ workflow for detecting acute intracranial hemorrhage

PURPOSE
To assess the impact of a commercially available computed tomography (CT)-based artificial intel-
ligence (AI) software for detecting acute intracranial hemorrhage (AIH) on radiologists’ diagnostic 
performance and workflow in a real-world clinical setting.

METHODS
This retrospective study included a total of 956 non-contrast brain CT scans obtained over a 70-day 
period, interpreted independently by 2 board-certified general radiologists. Of these, 541 scans 
were interpreted during the initial 35 days before the implementation of AI software, and the re-
maining 415 scans were interpreted during the subsequent 35 days, with reference to AIH probabil-
ity scores generated by the software. To assess the software’s impact on radiologists’ performance 
in detecting AIH, performance before and after implementation was compared. Additionally, to 
evaluate the software’s effect on radiologists’ workflow, Kendall’s Tau was used to assess the correla-
tion between the daily chronological order of CT scans and the radiologists’ reading order before 
and after implementation. The early diagnosis rate for AIH (defined as the proportion of AIH cases 
read within the first quartile by radiologists) and the median reading order of AIH cases were also 
compared before and after implementation.

RESULTS
A total of 956 initial CT scans from 956 patients [mean age: 63.14 ± 18.41 years; male patients: 
447 (47%)] were included. There were no significant differences in accuracy [from 0.99 (95% con-
fidence interval: 0.99–1.00) to 0.99 (0.98–1.00), P = 0.343], sensitivity [from 1.00 (0.99–1.00) to 1.00 
(0.99–1.00), P = 0.859], or specificity [from 1.00 (0.99–1.00) to 0.99 (0.97–1.00), P = 0.252] following 
the implementation of the AI software. However, the daily correlation between the chronological 
order of CT scans and the radiologists’ reading order significantly decreased [Kendall’s Tau, from 
0.61 (0.48–0.73) to 0.01 (0.00–0.26), P < 0.001]. Additionally, the early diagnosis rate significantly 
increased [from 0.49 (0.34–0.63) to 0.76 (0.60–0.93), P = 0.013], and the daily median reading order 
of AIH cases significantly decreased [from 7.25 (Q1–Q3: 3–10.75) to 1.5 (1–3), P < 0.001] after the 
implementation.

CONCLUSION
After the implementation of CT-based AI software for detecting AIH, the radiologists’ daily reading 
order was considerably reprioritized to allow more rapid interpretation of AIH cases without com-
promising diagnostic performance in a real-world clinical setting. 

CLINICAL SIGNIFICANCE
With the increasing number of CT scans and the growing burden on radiologists, optimizing the 
workflow for diagnosing AIH through CT-based AI software integration may enhance the prompt 
and efficient treatment of patients with AIH. 

KEYWORDS
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ogist, workflow, accuracy
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Early and accurate detection of acute 
intracranial hemorrhage (AIH) on brain 
computed tomography (CT) is imper-

ative due to the serious risks posed by this 
condition.1-3 Timely diagnosis allows for im-
mediate, life-saving intervention, whereas 
delayed detection can result in severe brain 
damage or death.2-4 However, the rapidly in-
creasing number of CT scans performed dai-
ly has placed a substantial burden on med-
ical staff, including radiologists, potentially 
compromising the accuracy and timeliness 
of AIH diagnosis.5,6

In addition to the increasing workload, 
radiologists often face interruptions in their 
workflow due to various factors, such as ur-
gent consultations, training of junior staff, 
and technical issues with imaging equip-
ment.7-9 These disruptions can lead to delays 
in image interpretation, increased cognitive 
load, and even diagnostic errors, particular-
ly in high-stakes conditions such as AIH.10,11 
Such challenges underscore the importance 
of optimizing radiologists’ workflow to en-
sure timely and accurate diagnoses.12

Recently, artificial intelligence (AI) has 
become a major focus in the field of neu-
roradiology, and numerous commercially 
available AI-based software programs have 
been developed for detecting acute cere-
bral findings.13-18 Although previous studies 
have demonstrated the impressive stand-
alone performance of these AI algorithms 
in diagnosing AIH and other stroke-relat-
ed conditions on CT scans, their potential 
benefits for workflow optimization remain 
underexplored. Although early and prompt 
decision-making in AIH cases is critical for 
patient outcomes,2-4 radiologists have tradi-
tionally relied on ambiguous prioritization 
systems such as stat, routine, or first-in, first-
out (FIFO). This is largely because they are 

unable to assess the urgency of each exam 
in the worklist before opening it in the pic-
ture archiving and communication system 
(PACS).19,20 To address this issue, some studies 
have shown that integrating AI algorithms 
into the PACS can greatly improve turn-
around time (TAT) by prioritizing images 
based on urgency, thereby facilitating fast-
er intervention and improved outcomes.20-24 
Therefore, evaluating the impact of AI soft-
ware on radiologists’ workflow in real-world 
settings is crucial for advancing its practical 
integration. 

This observational study aims to explore 
the impact of a commercially available CT-
based AI software for detecting AIH on ra-
diologists’ diagnostic performance and their 
workflow in a real-world clinical setting. 

Methods
The retrospective study was performed in 

line with the principles of the Declaration of Hel-
sinki and approved by the Eunpyeong St. Mary’s 
Hospital’s Institutional Review Board (protocol 
number: PC24RASI0078, date: June 2024), and 
informed consent was waived according to the 
decision of the board committee. 

Sample eligibility 

A total of 1,375 non-contrast brain CT 
scans from patients with suspected AIH (in-
cluding subdural, epidural, subarachnoid, 
intraparenchymal, and intraventricular hem-
orrhages) were potentially eligible over a 70-
day period between December 1, 2023, and 
February 9, 2024. During this period, scans 

were included based on the following crite-
ria: (1) the first CT scan performed during the 
patient’s clinical course, (2) acceptable image 
quality for interpretation, and (3) availabil-
ity of complete radiologist reports. All po-
tentially eligible CT scans were reviewed by 
a board-certified neuroradiologist with 11 
years of experience (J.K.) according to these 
criteria. After review, 273 follow-up scans, 
140 scans with major metal artifacts caused 
by clips or coils, and 6 scans without radiolo-
gist interpretation were excluded. Ultimately, 
956 non-contrast brain CT scans were includ-
ed in this study.

To distinguish between study periods 
before and after AI software implementa-
tion, the boundary date was set as January 
5, 2024, the date of implementation. Conse-
quently, the pre-AI period was defined as the 
35 days from December 1, 2023, to January 
4, 2024, whereas the post-AI period covered 
the following 35 days from January 5 to Feb-
ruary 9, 2024. Of the 956 brain CT scans, 541 
were acquired during the pre-AI period, and 
the remaining 415 during the post-AI period 
(Figure 1). 

Computed tomography scanning protocol

CT scans were performed using one of 
two CT machines at the institution. Machine 
A was a 128-slice single-source CT scanner 
(SOMATOM Edge, Siemens Healthineers, 
Forchheim, Germany) with a tube potential 
of 70–140 kVp and 20–800 mA; machine B 
was a dual-source CT scanner (SOMATOM 
Force, Siemens Healthineers, Germany) with 

Figure 1. Flowchart of study enrollment. AI, artificial intelligence; AIH, acute intracranial hemorrhage; CT, 
computed tomography.

Main points

•	 A commercially available computed to-
mography-based artificial intelligence (AI) 
software was developed to ease the grow-
ing burden on radiologists to promptly di-
agnose acute intracranial hemorrhage (AIH).

•	 Evaluating AI software in a real-world clini-
cal setting is essential for practical use. 

•	 The implementation of this AI software con-
siderably optimized radiologists’ prioritiza-
tion of reading order and enabled earlier re-
porting of AIH cases without compromising 
performance.

•	 The optimized workflow by the AI software 
integration is expected to improve the 
prompt and efficient treatment of patients 
with AIH.
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a variable tube potential of 70–150 kVp and 
20–1300 mA. The acquisition parameters 
were as follows: slice thickness, 4 mm with-
out gap; rotation time, 1.0 s; pitch, 1; auto-
matic tube voltage modulation (CARE kV, 
Siemens Healthineers, Germany) using a ref-
erence of 120 kV; automatic tube current se-
lection (CAREDose 4D, Siemens Healthineers, 
Germany) using a reference of 250 mAs; and 
collimation of 128 × 0.6 for machine A and 
192 × 0.6 for machine B.

Artificial intelligence software develop-
ment 

The commercially available CT-based AI 
software for detecting AIH (HyperInsight - 
ICH, version 2.0.1, Purple AI Inc., Korea) used 
in this study was developed using deep 
learning algorithms trained on 28,351 slices 
from 2,010 patients with AIH and 1,000 nor-
mal participants. The AIH detection process 
employed a joint convolutional and recur-
rent neural network-based sequence module 
that provided AIH probability scores (ranging 
from 0 to 100) on both a patient-wise and 
slice-wise basis. It also generated anomalies 
for patients with AIH by subtracting original 
CT images from restored images and post-
processing them using unsupervised train-
ing on normal datasets. AI-assisted brain CT 
images showing AIH locations and scores 
were displayed to the radiologists on the 
PACS viewer alongside the original images.18

Ground truth for acute intracranial hemor-
rhage

To establish the ground truth for AIH, 2 
board-certified neuroradiologists (S.W.O. and 
H.Y.L., with 17 and 19 years of experience in 
brain imaging, respectively) independently 
reviewed the same set of 956 non-contrast 
brain CT scans. The neuroradiologists diag-
nosed AIH based solely on CT findings and 
were blinded to patients’ clinical information, 
previous reading results, and follow-up im-
aging. In cases of disagreement, the ground 
truth was determined by consensus, refer-
ring to other available imaging modalities.

Radiologists’ computed tomography inter-
pretation 

Two board-certified general radiologists 
(H.B. and H.S., each with 10 years of experi-
ence in brain imaging without fellowship 
training in neuroradiology) routinely inter-
preted the enrolled non-contrast brain CT 
scans as part of clinical practice. These ra-
diologists were blinded and unaware of the 
study’s purpose and design throughout the 
entire study period. Therefore, they could 

freely refer to patients’ clinical information 
and other available studies using the institu-
tion’s PACS (ZeTTA PACS, version 1.0.0.42.10, 
TaeYoung Soft, Korea). Prior to AI software 
implementation, the two radiologists re-
ceived brief training in using the software 
from a board-certified neuroradiologist (J.K.) 
for 1 day. The radiologists required minimal 
learning time with the AI software, as the 
probability scores were intuitively presented 
within the existing worklist interface. After 
implementation, the AIH probability scores 
generated by the software were integrated 
into the PACS worklist, allowing the radiolo-
gists to determine the reading order based 
on the scores. Figure 2 exemplifies the work-
lists before and after implementation. During 
the entire study period, CT scan completion 
time and the radiologists’ final report time 
were automatically recorded on the PACS 
server of our institution.

Definition of the early diagnosis rate

Since early diagnosis of AIH is crucial for 
improving patient outcomes,1-4 the early 
diagnosis rate for AIH cases was defined to 
assess the potential effectiveness of changes 
to the reading order. The first quartile of the 
radiologists’ reading order was chosen as the 
threshold for defining early diagnosis, be-
cause the first quartile is commonly used to 
identify the highest-priority or most urgent 
cases in general medical practice.25,26 By us-
ing the first quartile of reads, the aim was to 
assess the effectiveness of the prioritization 
by the AI software. The equation for the early 
diagnosis rate was defined as follows:

=
Early 
Diagnosis 
Rate

AIH cases read rapidly within the 
first quartile by radiologists

Total AIH cases

        (1)

Statistical analysis

The sample size of the case group was cal-
culated based on a significance level of 0.05, 
a statistical power of 0.8, a specificity of 0.90 
from a previous meta-analysis, and a speci-
ficity of 0.984 from prior validation research, 
with a dropout rate of 10%.13,17 The deter-
mined sample size for the study was 202 cas-
es. Due to its explanatory nature, the sample 
size for the daily analysis was determined 
based on previous studies,27 and a minimum 
of 1 month was selected for each period be-
fore and after AI software implementation. 
The stand-alone performance of the AI soft-
ware after implementation was evaluated 
using the area under the receiver operating 
characteristic curve (AUC), accuracy, sensitiv-
ity, and specificity. 

First, a simple comparison of the radiol-
ogists’ absolute TAT (the time gap between 
CT scan completion and the radiologists’ fi-
nal report) was conducted as a preliminary 
study. The TAT of cases with and without 
AIH between the pre-and post-AI periods 
was compared using an independent t-test, 
following the Shapiro–Wilk test for normal-
ity. This preliminary comparison aimed to 
explore the feasibility of conducting daily 
comparisons and to avoid bias arising from 
TAT comparisons.

Furthermore, to evaluate the impact of 
AI software on the radiologists’ daily diag-
nostic performance for AIH, their accuracy, 
sensitivity, and specificity were calculated in 
both pre-and post-AI periods and compared 
between the two periods. Moreover, the im-
pact of false negative and false positive cas-
es generated by the AI software on radiolo-
gists’ decisions was assessed in an additional 
sub-analysis.

Figure 2. This figure provides examples of the worklists used in the study. The left worklist during the pre-
AI period shows the radiologists’ routine worklists before AI software implementation. By contrast, in the 
SK_BRAIN column, the AIH probability scores generated by the software were added to the worklist during 
the post-AI period. Consequently, the radiologists could use the score to predict that the cases with a blue 
background (*) were less likely to exhibit AIH, whereas the cases with a red background were more likely to 
exhibit AIH (†) after the implementation. AI, artificial intelligence; AIH, acute intracranial hemorrhage.
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Lastly, the impact of the AI software on 
the radiologists’ workflow was evaluated. 
The ordinal correlation between the chrono-
logical order of CT scans and the radiologists’ 
reading order was measured using Kendall’s 
Tau in both pre-and post-AI periods. These 
rank correlation coefficients were compared 
between the two periods. In addition, the 
modified reading order was evaluated to 
confirm whether it appropriately prioritized 
the rapid reading of AIH. For this evaluation, 
the daily early diagnosis rate for AIH cases 
and the median reading order of AIH were 
calculated in both pre- and post-AI periods 
and compared between the two periods.

Mean daily diagnostic performance; Ken-
dall’s Tau; early diagnosis rate for AIH cases; 
median reading order of AIH; and baseline 
characteristics including age, gender pro-
portion, AIH incidence, Glasgow Coma Scale 
scores, and modified Rankin scale scores 
between the pre-and post-AI periods were 
compared using independent t-tests or 
Mann–Whitney U tests following the Shap-
iro–Wilk test. A visual summary of the com-
parison analyses is presented in Figure 3. 

Continuous variables were described as 
means with 95% confidence intervals (CIs) 
using bootstrapping, and ordinal variables 
were described as medians with ranges from 
the 25th percentile (Q1) to the 75th percentile 
(Q3). The statistical software MedCalc (ver-
sion 23.2.1, MedCalc Software Ltd, USA) was 
used for statistical analysis. A P value less 
than 0.05 was considered statistically signif-
icant.

Results

Patient characteristics 

A total of 956 initial CT scans from 956 pa-
tients were included. Of these, 541 and 415 

CT scans were acquired during the pre-and 
post-AI periods, respectively. The mean age 
of the total patient cohort was 63.14 years ± 
18.41 (standard deviation), the proportion 
of male participants was 45%, and the inci-
dence of AIH was 13%. There was no signifi-
cant difference in median age [pre-AI period: 
67 years (51–77); post-AI period: 67 (52–78); 
P = 0.558], number of male patients [pre-AI 
period: 246 (45%); post-AI period: 201 (48%); 
P = 0.363], AIH cases [pre-AI period: 72 (13%); 
post-AI period: 50 (12%); P = 0.681], median 
Glasgow Coma Scale score [pre-AI period: 
15 (15–15); post-AI period: 15 (15–15); P = 
0.831], and modified Rankin scale scores 
[pre-AI period: 0 (0–0); post-AI period: 0 (0–
0); P = 0.295] before and after AI implemen-
tation. The number of daily CT scans [pre-AI 
period: 12 (7.25–17.75); post-AI period: 12 
(10–19.75); P = 0.256] and daily AIH cases 
[pre-AI period: 1 (0–1.75); post-AI period: 2 
(1–3); P = 0.063] were not significantly differ-
ent. These results are summarized in Table 1. 

Preliminary comparison of turnaround 
time

In the preliminary study, the mean TAT 
significantly decreased (from 1,610 min to 
1,145 min, P < 0.001) after AI software imple-

mentation. When analyzed by cases with and 
without AIH, TAT significantly decreased in 
both cases with AIH (from 1,452 min to 870 
min, P < 0.001) and without AIH (from 2,084 
min to 1,184 min, P < 0.001) after AI software 
implementation. These preliminary results 
are illustrated in Figure 4.

Stand-alone performance of the artificial 
intelligence software

The prevalence of AIH in the post-AI peri-
od was 12%. After AI software implementa-
tion, the AUC for the standalone AI software 
was 0.99 (95% CI, 0.98–0.99) in detecting 
AIH. The accuracy, sensitivity, and specificity 
were 0.98 (95% CI, 0.97–0.99), 0.96 (95% CI, 
0.86–0.99), and 0.99 (95% CI, 0.97–0.99), re-
spectively, using a probability score cut-off of 
50% for detecting AIH. 

Diagnostic performance of radiologists

The radiologists’ daily accuracy [from 0.99 
(95% CI, 0.99–1.00) to 0.99 (95% CI, 0.98–
1.00), P = 0.343], sensitivity [from 1.00 (95% 
CI, 0.99–1.00) to 1.00 (95% CI, 0.99–1.00), P 
= 0.859], and specificity [from 1.00 (95% CI, 
0.99–1.00) to 0.99 (95% CI, 0.97–1.00), P = 
0.252] for detecting AIH were not significant-

Figure 3. This figure presents a schematic representation of the statistical analyses used in this study. To assess the AI software’s impact on the radiologists’ diagnostic 
performance (a) in AIH detection, performance was compared before and after implementation. To assess the impact of the software on the radiologists’ workflow, 
Kendall’s Tau (b) was used to compare the correlation between the daily chronological order of the CT scan and the radiologists’ reading order before and after the 
implementation. The median reading order of AIH (c) and the early diagnosis rate for AIH (d) (defined as the proportion of AIH cases read rapidly within the top 
quarter by radiologists) were compared before and after implementation. AI, artificial intelligence; AIH, acute intracranial hemorrhage; CT, computed tomography.

Table 1. Baseline characteristics of patients

Baseline characteristics Pre-AI period (n = 541) Post-AI period (n = 415) P value

Age (years)* 67 (51–77) 67 (52–78) 0.558

Number of male patients (%) 246 (45) 201 (48) 0.363

Number of AIH cases (%) 72 (13) 50 (12) 0.681

Glasgow Coma Scale score* 15 (15–15) 15 (15–15) 0.831

Modified Rankin Scale score* 0 (0–0) 0 (0–0) 0.295

Number of daily CT scans* 12 (7.25–17.75) 12 (10–19.75) 0.256

Number of daily AIH cases* 1 (0–1.75) 2 (1–3) 0.063

*The Mann–Whitney U test was used, and the values are presented as the median with the range between Q1 and 
Q3. AI, artificial intelligence; AIH, acute intracranial hemorrhage; CT, computed tomography.
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ly different after AI software implementation. 
These results are summarized in Table 2. 

In an additional sub-analysis of false neg-
ative and false positive cases, there were two 
false negative and four false positive cases 
generated by the AI software. However, the 
radiologists’ diagnoses and the ground truth 
for AIH were entirely identical even in these 
cases. Examples of cases with and without 
AIH integrated with the AI software are illus-
trated in Figure 5. 

Prioritization of reading order and early di-
agnosis

The daily correlation between the chrono-
logical order of CT scans and the radiologists’ 
reading order significantly decreased after 
AI software implementation [Kendall’s Tau: 
from 0.61 (95% CI, 0.48–0.73) to 0.01 (95% 
CI, 0.00–0.26), P < 0.001]. The radiologists’ 
daily early diagnosis rate of AIH significantly 
increased after AI software implementation 
[from 0.50 (0.23–1.00) to 1.00 (0.55–1.00), P 
= 0.014]. Furthermore, the radiologists’ daily 
median reading order for AIH cases signifi-
cantly decreased after AI software imple-
mentation [from 7.25 (3–11.75) to 1.5 (1–3), 
P < 0.001]. These results are summarized in 
Table 2 and illustrated in Figure 6.

Discussion
This study aimed to assess the impact of a 

commercially available CT-based AI software 
for AIH detection on radiologists’ diagnostic 
performance and workflow. The software 
greatly optimized radiologists’ reading pri-
oritization and enabled them to read AIH 
cases more rapidly in daily practice. Further-
more, the AI software did not compromise 
the radiologists’ diagnostic performance for 
detecting AIH, even in cases where the AI 
generated false positives or false negatives.

Regarding the radiologists’ diagnostic 
performance for AIH, the impact of the AI 
software was negligible, and the radiolo-
gists were not influenced by the false neg-
ative or false positive results generated by 
the software. Several factors may explain 
this finding. First, the study design played a 
role. In this observational study, the readers 
had access to patient information and oth-
er examinations as part of routine clinical 
practice, unlike previous validation studies 
with controlled conditions where readers 
lacked clinical context.17 Additionally, the 
diagnostic accuracy of board-certified ra-
diologists for AIH is known to be particularly 
high in routine clinical settings.1-3 Therefore, 
it is not surprising that the radiologists in 

this study–being board-certified and expe-
rienced in diagnosing AIH–maintained high 
performance. Notably, the minor changes in 
accuracy and specificity may indicate effec-
tive management of false positives by the AI 
software. In other words, potential false pos-
itives generated by the AI were either easily 
recognized or efficiently disregarded, there-
by not compromising diagnostic outcomes. 
Consequently, our findings suggest that the 
AI software’s impact on detection perfor-
mance may be negligible–or at least not det-
rimental–when radiologists interpret images 
under routine conditions or already possess 
sufficient diagnostic expertise.28,29 

To evaluate whether the AI software could 
influence the radiologists’ actual reading or-

der, we compared the correlation between 
the chronological order of CT scans and the 
radiologists’ reading order before and after 
AI software implementation. Before the im-
plementation, there was a high correlation 
between the two, suggesting that radiolo-
gists typically interpreted CT scans using a 
traditional stat or FIFO prioritization system. 
However, after implementation, a consid-
erable dissociation between the two orders 
was observed, along with an increased early 
diagnosis rate of AIH. This suggests that the 
integrated AI software substantially altered 
the radiologists’ reading order and facilitated 
prioritization of CT scans with AIH over those 
without. This shift in prioritization occurred 
because radiologists could estimate the ur-

Figure 4. In each figure, the left image shows a non-contrast brain CT scan, whereas the right image shows 
an overlaid heatmap of AIH generated by the AI software. The red box below depicts the AIH probability 
score (hemo. score) for both the slice- and patient-wise levels, as well as the model and version information 
of the AI software. (a) AIH is not visible on the CT scan, resulting in an AIH probability score of less than 50%, 
with no heatmap. (b) There is AIH in the left basal ganglia, extending to the left lateral ventricle, resulting 
in a probability score of over 50% with a visible heatmap. AI, artificial intelligence; AIH, acute intracranial 
hemorrhage; CT, computed tomography.

a

b

Table 2. Radiologists’ diagnostic performance, prioritization of reading order, and early 
diagnosis between the pre- and post-AI periods

Variables Pre-AI period (35 days) Post-AI period (35 days) P value

Accuracy† 0.99 (0.99–1.00) 0.99 (0.98–1.00) 0.343

Sensitivity† 1.00 (0.99–1.00) 1.00 (0.99–1.00) 0.859

Specificity† 1.00 (0.99–1.00) 0.99 (0.97–1.00) 0.252

Kendall’s Tau† 0.61 (0.48–0.73) 0.01 (0.00–0.26) <0.001*

Early diagnosis rate‡ 0.50 (0.23–1.00) 1.00 (0.55–1.00) 0.014*

Median reading order‡ 7.25 (3.00–10.75) 1.50 (1.00–3.00) <0.001*

*P < 0.05, statistical significance. †An independent t-test was used, and the values are presented as the mean with 
95% CI. ‡The Mann–Whitney U test was used, and the values are presented as the median with the range between 
Q1 and Q3. AI, artificial intelligence; CI, confidence interval.
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gency of AIH cases by referring to the AIH 
probability score before opening a CT scan 
from their worklist. This predictability led to a 
remarkable increase in early diagnosis. After 
implementation, the median reading order 
of AIH cases considerably decreased, and the 
early diagnosis rate for AIH cases increased 
substantially. These changes signify that the 
radiologists’ workflow was prioritized and 
optimized to allow for more rapid interpreta-
tion of AIH cases. Considering that non-con-
trast brain CT is the first-line approach for 
AIH, these improvements brought by the AI 
software may enhance not only the prompt-
ness but also the efficiency of clinical diagno-
sis and treatment for patients with suspected 
AIH.1-4,6,24

In terms of patient characteristics, the 
modified Rankin scale scores were not con-
siderably different after AI software imple-
mentation. However, these findings should 
be interpreted with caution. Because the pri-
mary objective of this study was to evaluate 
the impact of AI integration on radiologists’ 
workflow, the AI software was not utilized by 
physicians in clinical decision-making. More-
over, functional outcomes are influenced by 
a wide range of clinical variables, including 
age, neurological status, comorbidities, and 
treatment delays.2-4,16 None of these factors 
were adjusted for in our analysis, as this was 
beyond the scope of the study. Therefore, 
the lack of observed improvement in func-
tional outcomes does not imply that the AI 
software lacks clinical value. On the contrary, 
considering our findings demonstrating en-
hanced reading prioritization by AI and pre-
vious research indicating the greatest bene-
fits of AI when used by clinicians,17 it can be 
inferred that AI contributes to efficiency and 
potentially improves patient care in clinical 
environments. Consequently, this study re-
mains important as it establishes a founda-
tion for the broader adoption of AI in clinical 
practice.

In this study, we conducted an ordinal 
comparison on a daily basis rather than a 
simple TAT comparison between the pre-
AI and post-AI periods, as the mean TAT for 
both cases with and without AIH had already 
decreased substantially in the preliminary 
study. Radiologists’ TAT can be affected by 
numerous factors, including routine tasks, 
working days, or other unexpected circum-
stances,7-11 and the radiologists in this study–
who interpreted various imaging modalities 
across different body parts–may have been 
similarly influenced.19,20 Therefore, our daily 
ordinal comparison of radiologists’ reading 
order more accurately reflected their work-

flow in a routine real-world clinical setting 
than a simple TAT comparison. As a result, we 
mitigated potential bias and gained clearer 
insights into radiologists’ workflow. 

This study had several limitations. First, its 
retrospective observational design may have 
introduced uncontrolled bias that could 
have affected our results. Second, the find-
ings were based on data from a single insti-

Figure 6. This figure illustrates box and whisker plot charts comparing variables between the pre-AI 
(blue box) and post-AI (red box) periods. (a) Kendall’s Tau between the chronological order and (b) the 
radiologists’ reading order considerably decreased, whereas the early diagnosis rate for AIH considerably 
increased after AI software implementation. (c) The median reading order of AIH decreased substantially 
after implementation. An asterisk (*) indicates a statistically significant difference. AI, artificial intelligence; 
AIH, acute intracranial hemorrhage.

a b c

Figure 5. This figure illustrates box and whisker plot charts comparing TAT between the pre-AI (blue box) 
and post-AI (red box) periods. In the overall case (a), the mean TAT considerably decreased after AI software 
implementation. The mean TATs of cases without (b) and with AIH (c) in the post-AI period were considerably 
shorter than those in the pre-AI period. An asterisk (*) indicates a statistically significant difference. AI, 
artificial intelligence; AIH, acute intracranial hemorrhage; TAT, turnaround time.

a b c
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tution using machines from a single vendor, 
which may limit the generalizability of the 
study. Additionally, radiologists’ experience 
levels, institutional CT workflow protocols, 
and the availability of technical support may 
vary greatly across centers, potentially in-
fluencing both diagnostic performance and 
the impact of AI-driven prioritization.30 Third, 
our statistical analysis of daily comparisons 
for radiologists’ performance and workflow, 
while logically sound, may have unpredict-
ably weakened statistical power by reducing 
the sample size from hundreds to dozens. To 
maintain statistical robustness without sacri-
ficing temporal granularity, future research 
could employ rolling averages, time-series 
models that account for intraday variabili-
ty, or extend the study period. Finally, this 
comparison study focused solely on the daily 
impact of AI software assistance on AIH de-
tection within the radiologists’ workflow and 
did not assess broader real-world challeng-
es. For instance, integrating AI into clinical 
workflows requires substantial computa-
tional resources and careful implementation 
planning. Therefore, additional prospective 
multicenter trials involving multiple vendors, 
a larger reader cohort, and diverse clinical 
settings are needed to mitigate potential se-
lection bias and improve generalizability.30,31

In conclusion, the integration of CT-based 
AI software for detecting AIH considerably 
enhanced the prioritization of radiologists’ 
reading order and accelerated their interpre-
tation of AIH cases while maintaining diag-
nostic performance by optimizing workflows 
in real-world clinical settings. Consequently, 
with the increasing number of CT scans and 
the growing demands placed on radiologists, 
AI software is expected to improve workflow 
efficiency and support the prompt and effec-
tive treatment of patients with AIH.
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Feasibility study of computed high b-value diffusion-weighted 
magnetic resonance imaging for pediatric posterior fossa tumors

PURPOSE
To evaluate the diagnostic efficacy of computed diffusion-weighted imaging (DWI) in pediatric pos-
terior fossa tumors generated using high b-values.

METHODS
We retrospectively performed our study on 32 pediatric patients who had undergone brain mag-
netic resonance imaging for a posterior fossa tumor between January 2016 and January 2022. The 
DWIs were evaluated for each patient by two blinded radiologists. The computed DWI (cDWI) was 
mathematically derived using a mono-exponential model from images with b = 0 and 1,000 s/mm2 
and high b-values ​​of 1,500, 2,000, 3,000, and 5,000 s/mm2. The posterior fossa tumors were divided 
into two groups, low grade and high grade, and the tumor/thalamus signal intensity (SI) ratios were 
compared. The Mann–Whitney U test and receiver operating characteristic (ROC) curves were used 
to compare the diagnostic performance of the acquired DWI (DWI1000), apparent diffusion coeffi-
cient (ADC)1000 maps, and cDWI (cDWI1500, cDWI2000, cDWI3000, and cDWI5000).

RESULTS
The comparison of the two tumor groups revealed that the tumor/thalamus SI ratio on the DWI1000 
and cDWI (cDWI1500, cDWI2000, cDWI3000, and cDWI5000) was statistically significantly higher in high-
grade tumors (P < 0.001). In the ROC curve analysis, higher sensitivity and specificity were detected 
in the cDWI1500, cDWI2000, cDWI3000, and ADC1000 maps (100%, 90.90%) compared with the DWI1000 
(80%, 81.80%). cDWI3000 had the highest area under the curve (AUC) value compared with other 
parameters (AUC: 0.976).

CONCLUSION
cDWI generated using high b-values ​​was successful in differentiating between low-grade and high-
grade posterior fossa tumors without increasing imaging time.

CLINICAL SIGNIFICANCE
cDWI created using high b-values can provide additional information about tumor grade in pediat-
ric posterior fossa tumors without requiring additional imaging time.

KEYWORDS
Computed diffusion-weighted imaging, high b-value, magnetic resonance imaging, pediatric pos-
terior fossa tumors, synthetic diffusion-weighted imaging

You may cite this article as: Delibalta S, Genç B, Ceyhan Bilgici M, Aslan K. Feasibility study of computed high b-value diffusion-weighted magnetic resonance 
imaging for pediatric posterior fossa tumors. Diagn Interv Radiol. 2025;31(5):526-531.

Pediatric brain tumors are the most common childhood solid tumors and are frequently 
located in the posterior fossa.1,2 The most common tumors in the posterior fossa in chil-
dren are medulloblastoma (MB), pilocytic astrocytoma (PA), and ependymoma.3,4

Although conventional magnetic resonance imaging (MRI) is necessary for the diagnosis 
of brain tumors and the evaluation of their extent and location, it provides limited informa-
tion on tumor type and grade.5 Advanced MRI techniques such as diffusion-weighted imag-
ing (DWI) contribute to the differential diagnosis of these tumors. Diffusion restriction and 
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low apparent diffusion coefficient (ADC) 
values ​​are found more prominently in high-
grade tumors with high cellularity than in 
low-grade tumors.6 However, when using 
standard b-values ​​(b = 1,000 s/mm2), over-
laps can be observed in the signal intensity 
(SI) of high-grade and low-grade tumors.7,8 
When DW images obtained using high b-val-
ues (b = 3,000 s/mm2) and standard b-values 
in the differential diagnosis of high-grade 
and low-grade gliomas were compared, 
more successful results were obtained in 
examinations with high b-values.9 However, 
at a field strength of 1.5T, higher b-values 
result in low image quality and a low sig-
nal-to-noise ratio (SNR).10,11 Computed DWI 
(cDWI) is a synthetic DWI mathematically 
derived from an acquired DWI with two dif-
ferent b-values.12 Synthetic DWI with high 
b-values ​​exhibits stronger diffusion effects 
at a higher SNR than images obtained us-
ing existing b-values ​​and can be generated 
without additional scanning time.13,14 Studies 
have demonstrated that cDWI has improved 
lesion prominence compared with conven-
tional DWI when examining the brain and 
other body regions.13,15-19 To the best of our 
knowledge, no studies have investigated the 
diagnostic performance of calculated high 
b-values in pediatric posterior fossa tumors. 
In the present study, we aimed to evaluate 
the diagnostic performance of cDWI gener-
ated using high b-values ​​in pediatric poste-
rior fossa tumors.

Methods
This study was approved by the Ethics 

Committee of Ondokuz Mayıs University 
Faculty of Medicine and was conducted in 
accordance with the Declaration of Helsinki 
and Good Clinical Practice guidelines (Oc-
tober 26, 2022, number: 2022/467). The re-
quirement for informed consent was waived.

Patients

This study was conducted retrospectively 
in a single center after approval from the Eth-
ics Committee, and the report was drafted in 
accordance with the Standards for Reporting 
of Diagnostic Accuracy Studies guidelines.20 
Between January 2016 and January 2022, 
32 pediatric patients who had undergone 
preoperative brain MRI for posterior fossa 
tumors and who had not received treatment 
were included in the study. One patient 
without a histopathological diagnosis was 
excluded from the study, and three patients 
were excluded from the study because arti-
facts affected the evaluation of the DW im-
ages. Finally, 28 patients were included in the 
study (Figure 1).

Based on the World Health Organization 
2021 classification, the patients were di-
vided into two groups: low grade (grade 1 
and 2 tumors) and high grade (grade 3 and 
4 tumors).21 The mean age of the low-grade 
tumor group was 7.5 ± 3.9 years (eight girls: 
7 ± 3.4 years; five boys: 8.1 ± 4.0 years), and 
the mean age of the high-grade tumor group 
was 9.2 ± 4.3 years (six girls: 9.1 ± 5.1 years; 
nine boys: 9.2 ± 4.5 years).

Magnetic resonance imaging examination

All examinations were performed using 
1.5T MRI (Achieva, Philips Healthcare, Best, 
Netherlands and Magnetom, SIEMENS AG, 
Erlangen, Germany) devices. All acquisitions 
were performed in the multiparametric MRI 
protocol, using T1WI, T2WI, fluid attenu-
ated inversion recovery, dynamic contrast 

enhanced MRI, and DWI sequences. The ac-
quisition parameters of the DWI are summa-
rized in Table 1. cDWI was created based on 
images with b = 0 and 1,000 s/mm2, with high 
b-values ​​of 1,500, 2,000, 3,000, and 5,000 s/
mm2, using the mono-exponential model es-
tablished in a study produced by our team.14

Image analysis

Images were evaluated by two radiolo-
gists, with evaluations and measurements 
performed independently of each other’s 
assessment and without knowledge of the 
tumor pathology. Precontrast T2, precontrast 
T1, and postcontrast T1WIs were analyzed, 
and tumor boundaries were established 
while assessing the cystic, hemorrhagic, and 
necrotic components of the tumor. Using 
the volume of interest (VOI) approach and 
ITK-SNAP, measurements were taken from 
the solid portion of the tumor using DWI.22 
Similar measurements were calculated man-
ually using ITK-SNAP software from the ac-
quired DWI1000, cDWI (b = 1,500, 2,000, 3,000, 
and 5000 s/mm2), and ADC1000 maps. In each 
patient, the tumor and thalamus SI ratio was 
calculated by measuring the right thalamus 
using the VOI method.

Statistical analysis 

The IBM SPSS (version 22; IBM, Armonk, 
NY, USA) software program was used in all 
calculations. The Shapiro–Wilk test was used 
in all statistical studies to verify normal distri-
bution. Descriptive statistics of the data are 
presented as n (%), and for normalized vari-
ables, mean ± standard deviation values are 

Main points

•	 Compared with images generated using ex-
isting b-values, synthetic diffusion-weight-
ed imaging (DWI) with high b-values ex-
hibits greater diffusion effects at a higher 
signal-to-noise ratio and may be produced 
without additional scanning time.

•	 The use of computed DWI (cDWI) with high 
b-values can help distinguish between low-
grade and high-grade tumors without re-
quiring more imaging time.

•	 For differentiating between low-grade and 
high-grade posterior fossa tumors, cDWI1500, 
cDWI2000, and cDWI3000 perform better as di-
agnostic tools than the acquired DWI1000 and 
apparent diffusion coefficient1000 maps.

Figure 1. Study flowchart. MRI, magnetic resonance imaging.
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provided, whereas for non-normalized vari-
ables, the median (min–max) is provided. The 
Mann–Whitney U test was used for data with 
normal distribution, comparing the tumor/
thalamus SI ratios of high-grade and low-
grade tumors on DWI1000, cDWI1500, cDWI2000, 
cDWI3000, cDWI5000, and ADC1000 maps. The re-
ceiver operating characteristic (ROC) curve 
was calculated for the diagnostic perfor-
mance of DWI1000, cDWI1500, cDWI2000, cDWI3000, 
cDWI5000, and ADC1000 maps in differentiating 
high–low grade tumors with the area under 
the curve (AUC). Youden’s index was used to 
select the optimal predicted probability cut-
off. The sensitivity and specificity of the DWI 
and ADC maps were calculated by deter-
mining the cut-off value using an ROC curve 
analysis. Interobserver correlation was eval-
uated using the intraclass correlation (ICC) 
coefficient, and κ values were interpreted 
as follows: κ  =  0.00–0.20, slight agreement; 
κ  =  0.21–0.40, fair agreement; κ  =  0.41–
0.60, moderate agreement; κ  =  0.61–0.80, 
substantial agreement; and κ  =  0.81–1.00, 
almost perfect agreement.23 A P value <0.05 
was considered statistically significant.

Results
In total, 13 low-grade [PA = 7 (54%), 

posterior fossa ependymoma (grade 2) = 3 
(23%), low-grade tumor-diffuse astrocyto-
ma = 3 (23%)] and 15 high-grade [MB = 13 
(87%), posterior fossa ependymoma (grade 
3) = 1 (1%), glioblastoma = 1 (1%)] tumors 
were included in our study. The tumor/thal-
amus SI ratios (median and min–max val-

ues) for DWI1000, cDWI1500, cDWI2000, cDWI3000, 
and cDWI5000 in low-grade and high-grade 
tumors are reported in Table 2. The median 
(min–max) SI rates were higher in the high-
grade tumors than in the low-grade tumors 
(P < 0.001). When the two tumor groups were 
compared, the tumor/thalamus SI ratio dis-

tributions were more clearly distinguished 
at higher b-values ​​than at b = 1,000 s/mm2 
(Figure 2). In the ICC test, the kappa value 
was found to be greater than 0.75 for all pa-
rameters, with an almost perfect correlation 
between 0.82 and 0.95 (P < 0.001 for each 
comparison) (Table 2).

Figure 2. Box plot comparing tumor/thalamus signal intensity ratios in high-grade and low-grade tumors. Compared with diffusion-weighted imaging (DWI)1000, the 
difference between the two groups is more pronounced in computed DWI (cDWI1500, cDWI2000, cDWI3000, and cDWI5000). SI, signal intensity.

Table 1. Diffusion-weighted imaging sequence parameters

ssEPI DWI b1000

Parameters PHILIPS achieva SIEMENS magnetom

Field of view (mm × mm) 240 × 240 229 × 229

Matrix 192 × 192 192 × 192

Slice thickness 3.50 mm 5 mm

Repetition time 4,200 ms 4,200 ms

Echo time 72 ms 105 ms

Flip angle 90° 90°

Calculated b-values b1500, b2000, b3000, b5000 b1500, b2000, b3000, b5000

ssEPI, single-shot echo-planar imaging; DWI, diffusion-weighted imaging.

Table 2. Tumor/thalamus signal intensity ratios in diffusion-weighted imaging (DWI) and 
computed diffusion-weighted imaging at different b-values

Parameters Low-grade tumors 
(n = 13)

Median (min–max values)

High-grade tumors 
(n = 15)

Median (min–max values)

P ICC (κ 
values) 

P (for 
ICC) 

DWI1000 1.09 (0.90–1.71) 1.62 (1.16–2.17) <0.001 0.82 <0.001

cDWI1500 1.00 (0.75–1.70) 1.75 (1.18–2.27) <0.001 0.89 <0.001

cDWI2000 0.82 (0.46–0.70) 1.89 (1.21–2.39) <0.001 0.91 <0.001

cDWI3000 0.59 (0.25–1.69) 1.99 (1.24–2.99) <0.001 0.94 <0.001

cDWI5000 0.38 (0.08–1.66) 2.81 (1.24–6.10) <0.001 0.95 <0.001

The Mann–Whitney U test was used to compare the tumor/thalamus signal intensity ratios of high-grade and low-
grade tumors. The intraclass correlation (ICC) was used to assess interobserver correlation. DWI, diffusion-weighted 
imaging; cDWI, computed diffusion-weighted imaging.
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In the ADC1000 maps, median (min–max) 
ADC values ​​were found to be lower in the 
high-grade tumors than in the low-grade 
tumors [low-grade tumor: 1.1 (0.5–1.6) × 10-3 
mm2/s; high-grade tumor: 0.8 (0.6–1.0) × 10-3 
mm2/s, P < 0.001].

In the ROC curve analysis of the DWI1000, 
cDWI, and ADC1000 maps, the AUC values 
(Figure 3) were found to be statistically sig-
nificant in all parameters. The AUC value was 
higher in cDWI3000 than in other parameters 
(AUC: 0.976, P < 0.001). In the ROC curve 
analysis, when optimal cut-off values ​​were 
used, higher sensitivity and specificity were 
detected in cDWI (b = 1,500, 2,000, and 3,000 
s/mm2; 100%, 90.9%) than in DWI1000 (80%, 
81.80%). The ADC1000 maps (100%, 90.90%) 
revealed higher sensitivity and specificity 
than DWI1000 (80%, 81.80%), whereas cDWI5000 
(93%, 81.80%) displayed higher sensitivi-
ty than DWI1000 but similar specificity (80%, 
81.80%) (Table 3). The DWI1000, cDWI, and 
ADC1000 maps of the two patients diagnosed 
with juvenile PA and MB are presented in Fig-
ures 4 and 5, respectively.

Discussion
In our study, we evaluated the benefits of 

cDWI created using high b-values ​​for pediat-
ric posterior fossa tumors compared with ac-
quired DWI with standard b-values ​​(b = 1,000 
s/mm2). We determined that the ADC1000 
maps, DWI1000, cDWI1500, cDWI2000, cDWI3000, 
and cDWI5000 were effective in distinguish-
ing low–high grade tumors. Notably, our 
study determined that cDWI3000 had a higher 
AUC value for diagnostic performance in the 
ROC curve analysis than other parameters. 
As demonstrated in Table 2, as b-values ​​in-
creased, the tumor/thalamus SI ratios de-
creased in low-grade tumors and increased 
in high-grade tumors. When compared with 
images using b = 1,000 s/mm2, which are fre-
quently used in standard examinations, we 
observed that the difference between the 
two groups increased with the increase in 
b-value. When compared with normal paren-
chyma areas, with the increase in b-values, 
a more significant signal reduction was ob-
served in low-grade tumors (Figure 4) and a 
more pronounced signal in high-grade tu-
mors (Figure 5). As a result, with the increase 
in b-values, a more significant contrast differ-
ence occurred between tumor and normal 
tissue. In a study using acquired DW images 
with b = 1,000 and b = 3,000 s/mm2 on 3T MR 
to compare low-grade and high-grade differ-
entiation in brain tumors, improved diagnos-
tic performance (high sensitivity and specific-
ity) was demonstrated with higher b-values.9 

Figure 4. A 15-year-old female with juvenile pilocytic astrocytoma. (a) Diffusion-weighted imaging 
(DWI)1000, (b) computed DWI (cDWI)1500, (c) cDWI2000, (d) cDWI3000, (e) cDWI5000, and (f) apparent diffusion 
coefficient (ADC)1000 maps. In the mass located in the 4th ventricle, indicated by the arrow, on DWI with 
increased b-values, the signal loss of the tumor tissue is more prominent than that of the parenchyma. In 
addition, a high signal is observed in the parenchyma in the ADC1000 maps (f).
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Figure 3. Receiver operating characteristic (ROC) curves at different b-values.

Table 3. Receiver operating characteristic curve analysis results on diffusion-weighted 
imaging (DWI), computed DWI (cDWI), and apparent diffusion coefficient (ADC)1000 maps

Parameters AUC Cut-off Sensitivity(%) Specificity(%) P

DWI1000 0.903 1.36 80 81.80 <0.001

cDWI1500 0.964 1.15 100 90.90 <0.001

cDWI2000 0.97 1.15 100 90.90 <0.001

cDWI3000 0.976 1.20 100 90.90 <0.001

cDWI5000 0.958 1.22 93 81.80 <0.001

ADC1000 0.909 0.00108 100 90.90 <0.001

AUC, area under the curve.
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In the present study, higher sensitivity 
and specificity were identified in cDWI1500, 
cDWI2000, and cDWI3000 ​compared with DWI1000 
without increasing acquisition time.

Previous studies on pediatric posterior 
fossa tumors and gliomas have revealed that 
high-grade tumors can be effectively distin-
guished from low-grade tumors with mini-
mal ADC values.8,24-26 In the present study, the 
median (min–max) ADC values ​​were found 
to be lower in high-grade tumors than in 
low-grade tumors, which is consistent with 
the literature. In addition, in the present 
study, in the ROC curve analysis, we deter-
mined that cDWI1500, cDWI2000, and cDWI3000 
had higher AUC values ​​than ADC1000 maps, 
although cDWI1500, cDWI2000, and cDWI3000 had 
similar sensitivity and specificity with ADC1000 
maps (Table 3).

In a study comparing cDWI and acquired 
DWI in patients with ischemic stroke, cDWI1000 
and cDWI1500 had higher image quality and 
lesion prominence than acquired DWI1000. 

However, in the present study, DWI2000 and 
cDWI2500 were not found to be an alterna-
tive to conventional DWI because of the 
low lesion detection rates.15 Kamata et al.16 
reported that cDWI3000 was more useful than 
DWI1000 in diagnosing pediatric encephalitis/
encephalopathy, and they obtained similar 
results for acquired DWI3000. In a study inves-
tigating synthetic b-values ​​in breast imag-
ing, synthetic images for b1000 and b2000 
were obtained and compared with acquired 
DWI850. The results demonstrated that lesion 
prominence and image quality were optimal 
in cDWI1200 and cDWI1800. In breast imaging, 
improved lesion visibility and background 
suppression are theoretically expected with 
increasing b-values.13 Similarly, in a study 
investigating diagnostic sensitivity in breast 
cancer, cDWI1500 was found to be more sen-
sitive than acquired DWI1500.27 In addition, 
Daimiel Naranjo et al.28 revealed that cDWI1200 

increased the visibility of the tumor without 
increasing the scanning time, especially in 
dense breast tissue. In a study on prostate 

cancer, cDWI with a high b-value was com-
pared with acquired DWI to detect SI differ-
ences between cancer and normal tissue, 
with cDWI identified as more effective. This 
study verified that cDWI had a better contrast 
ratio than real images with a high b-value.29 
This study has several limitations. First, it was 
retrospective and therefore cDWI at high 
b-values ​​could not be compared with ac-
quired DWI at high b-values. Second, in the 
literature, measurements have been calcu-
lated using region of interest and compared 
with ADCmin values. We used VOI in our 
study, which might produce some differenc-
es compared with the literature. Third, our 
study is the first on cDWI in brain tumors, and 
the results should be verified through further 
studies.

In conclusion, the present study demon-
strated that the diagnostic performance of 
cDWI1500, cDWI2000, and cDWI3000 is stronger 
in the differentiation of low-grade and high-
grade posterior fossa tumors than that of ac-
quired DWI1000 and ADC1000 maps. Moreover, 
the SI ratio between tumor and normal tis-
sue became more pronounced with increas-
ing b-values. Thus, cDWI created with high 
b-values ​​can contribute to the differential di-
agnosis of low-grade and high-grade tumors 
without increasing the imaging time.
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